

ORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET

1 A DOT	NATORY NAME Katahdin Analytical Service	~		***	
	STATE Scarborough, Maine			~~~	
CASE	NO.LJE-15 SDG NO. STO 230 SDG NOS. TO FO	LLOW			
CONTR	ACT NO.		W-W		
.77					
possib	cuments delivered in the Complete SDG File must b le.			e	
		PAGE	NOs	CHI	ECK
n		FROM	TO	LAB	EPA
	ventory Sheet (Form DC-2) (Do not Number)	cooo	<u>©0000</u> 13		
	G Case Narrative	00000016	<u>0000091</u>		
	G Cover Sheet/Traffic Report	<u> </u>	0000015		
4. <u>Vo</u>	latiles Data - 624				
a.	QC Summary		•		
	System Monitoring Compound Summary (Form II	<u> </u>	<u>0000033</u>	<u> </u>	
	Matrix Spike/Matrix Spike Duplicate Summary				
	(Form III VOA)			<u> </u>	
	Method Blank Summary (Form IV VOA)	00000034	0000036	✓	
	GC/MS Instrument Performance Check (Form V VOA)	0000036			
	Internal Standard Area and RT Summary				
	(Form VIII VOA)	0000039	0 <u>000004</u> 0		-
b.	Sample Data	OCCOOH)	5000Cu	,	
	TCL Results - (Form I VOA-1, VOA-2)		Caraby		
	Tentatively Identified Compounds (Form I VOA-				
	Reconstructed total ion chromatograms (RIC) for each sample		-		
	For each sample:				
	Raw Spectra and background-subtracted mass				
	spectra of target compounds identified			V	
	Quantitation reports				
	Mass Spectra of all reported TICs with three		-		
	best library matches			./	
	sest restorly were thes		•		
c.	Standards Data (All Instruments)	0000065	0000124		
	Initial Calibration Data (Form VI VOA-1, VOA-2)	<u> </u>	<u>90001</u> 27	V	
	RICs and Quan Reports for all Standards		_		
	Continuing Calibration Data			<u> </u>	
	(Form VII VOA-1, VOA-2)				
	RICs and Quantitation Reports for all Standards		_		······
	Ares and quantitation Reports for all Standards				
đ.	Raw QC Data				
	BFB	0000125	0000133	1	
	Blank Data	0000 134	000043	\overline{J}	
	Martix Spike/Matrix Spike Duplicate Data	0000144	0000159		

FORM DC-2-1

ORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET

LABOI	RATORY NAME Katahdin Analytical Service:	ŝ			
	STATE Scarborough, Maine				
CASE	NO. LUE-15 SDG NO. SIO230 SDG NOS. TO FO	PTOM			
	SAS NO.			*************************************	
CONTI	RACT NO.				
SOW D	40 .				***************************************
All do	cuments delivered in the Complete SDG File must be	e original doc	uments whe	re	
possib	ite.	PAGE			IECK
		FROM	TO	LAB	EPA
1. <u>rr</u>	wentory Sheet (Form DC-2) (Do not Number)	00cc001	000003		-
2. <u>sr</u>	G Case Narrative	0000016			
3. <u>sr</u>	G Cover Sheet/Traffic Report	0000014	0000015		W
4. <u>Vo</u>	latiles Data - 8260			***************************************	***************************************
a.	QC Summary				
	System Monitoring Compound Summary (Form II	0000164	0000164	/	
	Matrix Spike/Matrix Spike Duplicate Summary				
	(Form III VOA)	ECCO167			
	Method Blank Summary (Form IV VOA)	0000167	0000167		
	GC/MS Instrument Performance Check (Form V VOA)	<u>20000188</u>	8 <u>000000</u> ,		
	Internal Standard Area and RT Summary			•	
	(Form VIII VOA)	5000016E	0000170) V	
b.	Sample Data	0000171	65000178		
	TCL Results - (Form I VOA-1, VOA-2)				***************************************
	Tentatively Identified Compounds (Form I VOA-			<u> </u>	
	Reconstructed total ion chromatograms (RIC) for				
	each sample				
	For each sample:				
	Raw Spectra and background-subtracted mass spectra of target compounds identified			./	
	Quantitation reports		•		
	Mass Spectra of all reported TICs with three		-		
	best library matches			/	
			-		
c.	Standards Data (All Instruments)	00001Fi	A000214		
	Initial Calibration Data (Form VI VOA-1, VOA-2)		00000	✓	
	RICs and Quan Reports for all Standards				
	Continuing Calibration Data		_		
	(Form VII VOA-1, VOA-2)		_	<u> </u>	
	RICs and Quantitation Reports for all Standards		_	<u> </u>	
đ.	Raw QC Data				
	BFB	2000315	0000217		, ·, · · · · · · · · · · · · · · · · ·
	Blank Data	8180000	00000998	· ·	
	Martix Spike/Matrix Spike Duplicate Data	©0023	0000338_		
	• • • • • • • • • • • • • • • • • • • •				

FORM DC-2-1

	SAS NO.		······································		
		*			
		PAGE	NOs	СН	ECK
		FROM	TO	LAB	EPA
. Se	mivolatiles Data				
a.	QC Summary	2.2.2		1	
	Surrogate Percent Recovery Summary (Form II SV)	<u> </u>	<u>0000134</u>		
	MS/MSD Summary (Form III SV)				
	Method Blank Summary (Form IV SV)	<u>0000335</u>	<u>000073</u> (******
	GC/MS Instrument Performance Check (Form V SV)	<u> </u>	50000337		Moreoverhioner
	Internal Standard Area and RT Summary				
	(Form VIII SV)	0000738	<u>६००००३</u> ५		
b.	Sample Data	0000240	<i>6</i> 060247		
	TCL Results - (Form I SV-1, SV-2)			1	
	Tentatively Identified Compounds (Form I SV-		•		
	Reconstructed total ion chromatograms (RIC) for		•		***************************************
	each sample			./	
	For each sample:		•	<u>V</u>	
	Raw Spectra and background-subtracted mass				
	spectra of target compounds			\int	
	-		•		-
	Quantitation reports		-		
	Mass Spectra of TICs with three best library			./	
	matches		-		
	GPC chromatograms (if GPC is required)		-		
c.	Standards Data (All Instruments)	0000248	8000312		
	Initial Calibration Data (Form VI SV-1, SV-2)		,	1	• •
	RICs and Quan Reports for all Standards		•	/	
	Continuing Calibration Data (Form VII SV-1, SV-		-	/	
	RICs and Quantitation Reports for all Standards		-		
đ.	Raw QC Data			,	
	DFTPP	<u> </u>	<u>∞00037</u> ¢ -	V	
	Blank Data	<u> </u>	0000332_		
	Matrix Spike/Matrix Spike Duplicate Data	00003333	0000343		
e.	Raw -GPC Data	0000344	0000345	<u> </u>	
AC.	B	,			
	ticides Data				
a.	QC Summary				
	Surrogate Percent Recovery Summary (Form II	0000346A	000034914	1	
	MS/MSD Duplicate Summary (Form III PEST)			1/	
	Method Blank Summary (Form IV PEST)	0	0000351		**************************************

FORM DC-2-2

OLM04.2

CASE NO. <u>LDE-15</u> SDG NO. <u>SDOJ30</u> SDG NOS. TO SAS NO.	FOLLOW			
	PAGE NOS		CHE	CK
PCB	FROM	TO	LAB	EPA
6. Pesticides Data (Cont.)				
b. Sample Data	<u>0000354</u>	0000376	•	
TCL Results - Organic Analysis Data Sheet			^	
(Form I PEST)				
Chromatograms (Primary Column)				***************************************
Chromatograms from second GC column				
GC Integration report or data system printout				
Manual work sheets				
For pesticides/Aroclors by GC/MS,				
Copies of raw spectra and copies of				
background-subtracted mass spectra of targe	et		_	
compounds (samples & standards)				
c. Standards Data	£000377	combly 1		
Initial Calibration of Single Component		COOGGO		
(Form VI PEST-1 and PEST-2)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Initial Calibration of Multicomponent Analytes				
(Form VI PEST-3)	•		1/	
Analyte Resolution Summary (Form VI PEST-4)				
Performance Evaluation Mixture (Form VI PEST-5	1		-	
Individual Standard Mixture A (FORM VI PEST-6)	•			***************************************
Individual Standard Mixture B (FORM VI PEST-7)			~	
Calibration Verification Summary				
(Form VII PEST-1)			'	
Calibration Verification Summary				
(Form VII PEST-2)				
Analytical Sequence (Form VIII PEST)				
Florisil Cartridge Check (Form IX PEST-1)				
Pesticide GPC Calibration (Form IX PEST-2)			******	
Pesticide Identification Summary for Single				
Component Analytes (Form X PEST-1)			$\sqrt{}$	
Pesticide Identification Summary for				
Multicomponent Analytes (Form X PEST-2)				
Chromatograms and data system printouts				
A printout of retention times and			/	
corresponding peak areas or peak heights				
d. Raw QC Data			,	
Blank Data	CCC06467			
Matrix Spke/Matrix Spike Duplicate Data	0000478	<u>000049</u> 5		

FORM DC-2-3

OLM04.2

ORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET (cont.)

case no. <u>(DE-IS</u> sdg no. <u>STOD30</u> sdg nos. to fo	DLLOW	
PCB	PAGE NOS FROM TO	CHECK LAB EPA
6 Pesticides Data (Cont.) e. Raw GPC Data	0000496 0000503	
f. Raw Florisil Data		
7. Miscellaneous Data		
Original preparation and analysis forms or		
of preparation and analysis logbook pages—624	0000163	
Internal sample and sample extract transfer		
chain-of-custody records	<u>0000037 0000030</u>	
Screening records	·	
All instrument output, including strip charts from screening activities (describe or list)		
Form 8-Ge Analytical Sequence - PCB	0000353	<u> </u>
8. EPA Shipping/Receiving Documents Airbills (No. of shipments) Chain-of-Custody Records Sample Tags Sample Log-in Sheet (Lab & DC1) Miscellaneous Shipping/Receiving Records (describe or list) Sample Receipt Condition Report Login Chain of Custody 9. Internal Lab Sample Transfer Records and Tracking	See Page 8 See page 8	
Sheets (describe or list)		<u> </u>
10. Other Records (describe or list) Telephone Communication Log		
11. Comments:		

	PAGE	NOs	CHE	3CK
	FROM	TO	LAB	EE
Semivolatiles Data				
a. QC Summary			_	
Surrogate Percent Recovery Summary (Form II SV)	NA_	NA	NA	
MS/MSD Summary (Form III SV)				
Method Blank Summary (Form IV SV)				
GC/MS Instrument Performance Check (Form V SV)				
Internal Standard Area and RT Summary				
(Form VIII SV)				
b. Sample Data		<u> </u>		
TCL Results - (Form I SV-1, SV-2)		-		
Tentatively Identified Compounds (Form I SV-				
Reconstructed total ion chromatograms (RIC) for	<u>.</u>		C.XXX	
each sample				
For each sample:				
Raw Spectra and background-subtracted mass		ļ	***************************************	
spectra of target compounds				
Quantitation reports				
Mass Spectra of TICs with three best library				
matches				
GPC chromatograms (if GPC is required)				
c. Standards Data (All Instruments)				
Initial Calibration Data (Form VI SV-1, SV-2)				
RICs and Quan Reports for all Standards	ļ			
Continuing Calibration Data (Form VII SV-1, SV-				
RICs and Quantitation Reports for all Standards	ľ	i de constante de la constante		
d. Raw QC Data				
DFTPP				
Blank Data				
Matrix Spike/Matrix Spike Duplicate Data				
		-		
e. Raw GPC Data				
TPH		•		
Pesticides Data				
a. QC Summary	www	DOMON!		
Surrogate Percent Recovery Summary (Form II	200771	000050C		,
MS/MSD Duplicate Summary (Form III PEST) Method Blank Summary (Form IV PEST)	0000507		· · · ·	

FORM DC-2-2

ase no. $SF0230$ sdg no. $WE-15$ sdg nos. To f	OTFOM			
SAS NO.				
	PAGE	PAGE NOS		CK
TPH	FROM	TO	LAB	EI
Pesticides Data (Cont.)	_			
b. Sample Data	DCC0505	<u>000051</u> 4		
TCL Results - Organic Analysis Data Sheet				
(Form I PEST)				
Chromatograms (Primary Column)				
Chromatograms from second GC column				
GC Integration report or data system printout				
Manual work sheets				
For pesticides/Aroclors by GC/MS,				
Copies of raw spectra and copies of				
background-subtracted mass spectra of target				
compounds (samples & standards)				
c. Standards Data	000051S	5000535		
Initial Calibration of Single Component				
(Form VI PEST-1 and PEST-2)				
Initial Calibration of Multicomponent Analytes				
(Form VI PEST-3)			V	
Analyte Resolution Summary (Form VI PEST-4)		·		
Performance Evaluation Mixture (Form VI PEST-5)			_	
Individual Standard Mixture A (FORM VI PEST-6)			✓ <u> </u>	
Individual Standard Mixture B (FORM VI PEST-7)		·		
Calibration Verification Summary				
(Form VII PEST-1)			/	
Calibration Verification Summary		•		
(Form VII PEST-2)				
Analytical Sequence (Form VIII PEST)		•		***************************************
Florisil Cartridge Check (Form IX PEST-1)		-		***************************************
Pesticide GPC Calibration (Form IX PEST-2)		•		
Pesticide Identification Summary for Single		•		
Component Analytes (Form X PEST-1)			_	
Pesticide Identification Summary for				
Multicomponent Analytes (Form X PEST-2)			/	
Chromatograms and data system printouts		-		
A printout of retention times and				
corresponding peak areas or peak heights		-		**********
ā. Raw QC Data				
Blank Data	<u> 2000 (36</u>	0000539	1/	
Matrix Spke/Matrix Spike Duplicate Data	0000 S10	0000544		

ORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET (cont.)

T01	PAGE FROM	NOS TO	CHE LAB	CK E
TPH	FROM	10	LAND	r
e. Raw GPC Data	mosys	0000549	1	
e. Haw Gre batta				
f. Raw Florisil Data	m, 14.00	And the second s		
Miscellaneous Data				
Original preparation and analysis forms or			,	
of preparation and analysis logbook pages ${\mathscr S}$	260 0000 725	0000331		
Internal sample and sample extract transfer	~~~~~	0000030		
chain-of-custody records	000027	200000		
Screening records				•
All instrument output, including strip charts				
from screening activities (describe or list)				
Form 8-GC Analytical Sequence - TPH	800008	80000G	/	
S. Francisco de la constantina della constantina	-		./	
		***************************************		-
EPA Shipping/Receiving Documents				
Airbills (No. of shipments)				
Chain-of-Custody Records	0000003	<u> 0<i>000</i>00</u>		
Sample Tags		-		
Sample Log-in Sheet (Lab & DC1)	·			
Miscellaneous Shipping/Receiving Records				
(describe or list)				
Sample Receipt Condition Report	<u> </u>	0000093		
Login Chain of Custody	<u> ८००००३५</u>	0000001L		
Internal Lab Sample Transfer Records and Tracking Sheets (describe or list)	I			
		······································		
. Other Records (describe or list)	سمي		. /	
Telephone Communication Log			<u></u>	
				
ALADAGE CONTROL OF THE PROPERTY OF THE PROPERT				

OLMD4.2

ORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET (cont.)

CASE NO. LOG-15 SDG NO. SIGNOS. TO FOLLOW SAS NO						
Completed by: (CLP Lab)	Leseis Dimond (Signature)	Leggie D'mond-OAO (Printed Name/Title)	020215 (Date)			
Verified by: (CLP Lab)	(Signature)	(Frinted Name/Title)	(Date)			
Audited by: (EPA)	(Signature)	(Printed Name/Title)	(Date)			

	FULL INORGANICS COMPLETE SDG FILE (CSF) INVENTORY SHEET				
ľ	RATORY NAME Katahdin Analytical Service Scarborough, ME	rvices			
		3 NOS. TO F	OLLOW		
COMP			***************************************		
SOW	NO.		***************************************		
All	documents delivered in the Complete SDG Fi	ila muet ba	orietaal d		
poss	ible. (Reference - ILM05.4, Exhibit B Sect	tion 2.6)	orranar a	ocoments M	16L6
		PAGE	NOs.	CHI	<u>ck</u>
_		FROM	TO	LAB	REGION
1.	Cover Page	0000014	0000015		***************************************
2. 3.	SDG Narrative	occod6	<u>o⇔coo</u> o∋		
J. 4.	Sample Log-In Sheet (DC-1)	***************************************		<u> </u>	Security of the security of th
5.	Inventory Sheet (DC-2))	0000001	<u>00000013</u>		ate management
٠.	Traffic Report/Chain of Custody Record(s) Inorganic Analysis — Metal S		60000033		
6.	Data Sheet (Form I-IN)	Manuel Tra	04×~ 000		
7.	Initial & Continuing Calibration	9 <u>000</u> 220	550 22J		
	Verification (Form IIA-IN)	0 000 228	<u>0000</u> 573		
8.	CRQL Standard(Form IIB-IN)	0000574	00000579	V	
9.	Blanks (Form III-IN)	082 <u>000</u> 0	0000597	<u>V</u>	
10.	ICP-AES Interference Check Sample (Form IVA-IN)	8P2 <u>000</u> 0	6 <u>000</u> 600	<u>~</u>	***************************************
11.	ICP-MS Interference Check Sample (Form IVB-IN)	And the second second		<u> </u>	***************************************
	Matrix Spike Sample Recovery(Form VA-IN)	000 doa	0000002	<u>~</u>	
13.	Post-Digestion Spike Sample Recovery(Form VB-IN)	10000603	0000004	<u> </u>	
14.	Duplicates (Form VI-IN)	0000		<u> </u>	
15.	Laboratory Control Sample(Form VII-IN)	00000605	00000610	<u></u>	
	ICP-AES and ICP-MS Serial Dilutions (Form VIII-IN)		0000611	<u> </u>	
17.	Method Detection Limits (Annually) (Form IX-IN)	0000612	00000617	<u> </u>	
18.	ICP-AES Interelement Correction Factors (Quarterly) (Form XA-IN)	90 <u>00</u> 613	000068	V	-
19.	ICP-AES Interelement Correction Factors (Quarterly) (Form XB-IN)	Mark American			-1-17-10-0-10-0-10-0-10-0-10-0-10-0-10-
20.	ICP-AES and ICP-MS Linear Ranges (Quarterly) (Form XI-IN)	1 <u>200</u> 00	000069		
21.	Preparation Log (Form XII-IN)	0 <u>6909</u> 0	0000000	<u> </u>	
22.	Analysis Run Log (Form XIII-IN)	000626	0 <u>006</u> 37		
	FORM DC-2-2		M&E D	AS	

FULL INORGANICS COMPLETE SD	G FILE (CSF) I	NVENTORY SH	EET	
	PAG	E NOs.	CE	ECK
·	FROM	<u>TO</u>	LAB	REGION
23. ICP-MS Tune (Form XIV-IN)	17-34-Man	water.	<u> </u>	
24. ICP-MS Internal Standards Relative Intensity Summary (Form XV-IN)	*************	**************	<u>/</u>	
25. ICP-AES Raw Data	0000638	0000828	<u> </u>	
26. ICP-MS Raw Data				
27. Mercury Raw Data		,arra.		
28. Cyanide Raw Data	-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V-Color V del Color V del Colo
29. Preparation Logs Raw Data (Wet Chemistry)	0000829	0000838		
30. Percent Solids Determination Log	- Control of the Cont		. /	
31. USEPA Shipping/Receiving Documents				
Airbill (No. of Shipments 1)	~		/	
Sample Tags			1/	Wal-Promore manual
Sample Log-In Sheet (Lab)			./	
32. Misc. Shipping/Receiving Records (list all individual records)				
Telephone Logs	water.	manage .	V	
Sample Receipt Condition Report	000000000000000000000000000000000000000	0000032		titledisse.co.co.
1.11				
33. Internal Lab Sample Transfer Records &			/-	
Tracking Sheets (describe or list)		***************************************		
	0000037	∞ <u>‱</u> 30	<u> </u>	
Login Chain of Custody Report	OCOCODY	0000034	<u>/</u>	
34. Internal Original Sample Prep & Analysis Records (describe or list)		·		· · · · · · · · · · · · · · · · · · ·
Prep Records				
Analysis Records			<u></u>	
Description Duplicate Precision Form		-	<u> </u>	
35. Other Records (describe or list)		,		
Telephone Communications Log				
DAS Specifications				
36. Comments				
				· · · · · · · · · · · · · · · · · · ·
ompleted by:	^	0		
	ae Dimor		_02021	
(Signature)	(Print Name	& Title)		(Date)
JSEPA)				
(Signature)	(Print Name	& Title)		(Date)
FORM DC-2-2		M&E 1	DAS	

	FULL INORGANICS COMPLETE SDG	FILE (CSF) II	NVENTORY SH	EET	
CITY/	ATORY NAME Katahdin Analytical Ser	······································			
CASE	NO. WE-15 SDG NO. STODEN SDG	NOS. TO	FOLLOW		
CONTR	RACT NO.				
	documents delivered in the Complete SDG Fi ble. (Reference - TLM05.4, Exhibit B Sect		e original d	locuments w	here
		PAG	E NOs.	СН	ECK
		FROM	<u>to</u>	LAB	REGION
1.	Cover Page	0000014	0000015	<u> </u>	-
2.	SDG Narrative	0000016	\mathcal{E}_{40000}		***************************************
3.	Sample Log-In Sheet (DC-1)	***********		<u> </u>	And the Particular State of the
4.	Inventory Sheet (DC-2))	00000001	<u>0000</u> 013		***************************************
	Traffic Report/Chain of Custody Record(s)	<u>0000</u> 0033	0000033		
	Inorganic Analysis - Wetchemistry				
6.	Data Sheet (Form I-IN)	200844	0 <u>000</u> 849		4
	Initial & Continuing Calibration Verification (Form IIA-IN)	***************************************			and the State of t
в.	CRQL Standard(Form IIB-IN)				
9.	Blanks (Form III-IN)	00 <u>00</u> 35	0000841		
	ICF-AES Interference Check Sample (Form IVA-IN)	***************************************	**************************************	<u> </u>	
	ICP-MS Interference Check Sample (Form IVB-IN)			<u> </u>	**************************************
12.	Matrix Spike Sample Recovery(Form VA-IN)			<u> </u>	
	Post-Digestion Spike Sample Recovery(Form VB-IN)	1	, para.	<u> </u>	
14.	Duplicates (Form VI-IN)	2000343	0000843	<u> </u>	
15.	_	2000217	0000842		
	ICP-AES and ICP-MS Serial Dilutions (Form VIII-IN)		**************************************		
17.	Method Detection Limits (Annually) (Form IX-IN)		,		terrer vyr denneral deskr
18.	ICP-AES Interelement Correction Factors (Quarterly) (Form XA-IN)	ermenteren		<u> </u>	
19.	ICF-AES Interelement Correction Factors (Quarterly) (Form XB-IN)	**************************************		<u> </u>	
20.	ICP-AES and ICP-MS Linear Ranges (Quarterly) (Form XI-IN)				<u> </u>
21.	Preparation Log (Form XII-IN)		**************************************		
	Analysis Run Log (Form XIII-IN)	,===			

FORM DC-2-2

M&E DAS

FULL INORGANICS COMPLETE SDO		_		
	PA	GE NOs.		ECK
•	FROM	TO ·	<u>LAB</u>	REGION
23. ICP-MS Tune (Form XIV-IN)		·	V	
24. ICP-MS Internal Standards Relative Intensity Summary (Form XV-IN)	TOTTE AND THE TOTTE OF	Total Administra		
25. ICP-AES Raw Data - Wet chemistry	00 <u>000</u> 830	00 <u>00</u> 80		
26. ICP-MS Raw Data	-			
27. Mercury Raw Data	***************************************			
28. Cyanide Raw Data				 ,.,
29. Preparation Logs Raw Data (Wet Chemistry)	<u> </u>			
30. Percent Solids Determination Log	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
31. USEPA Shipping/Receiving Documents				
Airbill (No. of Shipments 1)				
Sample Tags				
Sample Log-In Sheet (Lab)		,,,		
Misc. Shipping/Receiving Records (list all individual records)				
Telephone Logs				************
Sample Receipt Condition Report	00000)3	<u>∞∞</u> ∞3>>		
**************************************			<u> </u>	
33. Internal Lab Sample Transfer Records & Tracking Sheets (describe or list) Internal Chain of Custody	- xxxxxxxx	<u>—</u> (2000039	1	
Login Chain of Custody Report	0000024	0000036		
34. Internal Original Sample Prep & Analysis Records (describe or list)		-	emanishan-in-	
Prep Records			$\sqrt{}$	
Analysis Records		-		
Description Duplicate Precision Form	1			
35. Other Records (describe or list)			1	
Telephone Communications Log			-	
DAS Specifications				
36. Comments				
			-	
Completed by: (CLP Lab)	seie Dim	00l-QA) O2C) ₄ [5
(Signature)	(Print Na	me & Title)		(Date)
udited by: USEPA)				
(Signature)	(Print Na	me & Title)		(Date)
FORM DC-2-2		M&E	DAS	

ENSAFE NAVY CLEAN WE15-03-06 NWIRP BETHPAGE, NY SI0230

KATAHDIN ANALYTICAL SERVICES, LLC 600 TECHNOLOGY WAY SCARBOROUGH, ME 04074

SAMPLE DATA PACKAGE

SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES ENSAFE NAVY CLEAN WE15-03-06 NWIRP BETHPAGE, NY SI0230

Sample Receipt

The following samples were received on January 14, 2015 and were logged in under Katahdin Analytical Services work order number SI0230 for a hardcopy due date of February 2, 2015.

KATAHDIN	ENSAFE
Sample No.	Sample Identification
SI0230-1	IDWS-0312011315
SI0230-2	IDWGW-3178-011315
SI0230-3	IDWGW-F0A37-011315
SI0230-4	IDWGW-EG332-011315

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in this narrative or in the Report of Analysis.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Jennifer Obrin. This narrative is an integral part of the Report of Analysis.

Organics Analysis

The samples of Work Order SI0230 were analyzed in accordance with "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846, 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA, and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA, and/or "Methods for Chemical Analysis of Water and Wastes", EPA 600/4-79-020, 1979 Revised 1983, U.S. EPA, and/or for the specific methods listed below or on the Report of Analysis.

8270D Analysis

All soil samples and associated QC were subjected to the GPC sample clean-up process.

The initial calibration analyzed on the U instrument on 01/12/2015 had %RSD values for several analytes that exceeded the method acceptance limit of 15%. For these analytes, either a linear or

quadratic model was used for quantitation instead of an average response factor. The target analyte 4-chloroaniline failed for both the linear and quadratic models in the initial calibration curve due to the correlation coefficient and the coefficient of determination being less than the method acceptance criteria of 0.995 and 0.990 respectively. This compound was calibrated using the average model. The corresponding independent check standard (file U9213) had a low concentration for the target analyte 3,3'-dichlorobenzidine, which exceeded the DoD QSM acceptance limit of ±20% of the expected value from the ICAL. The Independent Check Report consists of the full list of spiked analytes, but only the client's list of target analytes are evaluated. The CV (file U9269) had a high response for the target analyte hexachlorocyclopentadiene and low responses for diethylphthalate and 4-nitroaniline, which resulted in %D's that were greater than the DoD OSM acceptance limit of 20% DoD QSM.

8260C Analysis

There were no protocol deviations or observations noted by the organics laboratory staff for this analysis.

E624 Analysis

Samples SI0230-2, 3, and 4 were manually integrated for the target analyte acetone. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

The initial calibration was calibrated at the following concentrations: 1, 5, 20, 50, 100, and 200ug/l. The calibration verification standard (CV) was analyzed at a concentration 20 ug/l as specified in the method. The acceptance criterion for the CV is that the concentration of each target analyte must be within a specific concentration range. The data system does not have a Form 7 for an EPA method 624 CV that lists the %D for each analyte. Instead, a Recovery Report sheet was used that lists the spiked Concentration added for each analyte, the Concentration Recovered, the % Recovered, and Limits. The Limits column lists the method acceptable concentration range. The % Recovered column is the concentration recovered divided by the Concentration Added. This column is disregarded. The Concentration Recovered is manually compared to the method acceptable concentration range.

The reported percent recovery acceptance limits for the Laboratory Control Samples (LCSs) are method limits for the full list of spiked compounds and nominal limits for all additional compounds. The recoveries of the spiked analytes in the LCS, Matrix Spike (MS) and Matrix Spike Duplicate (MSD) are compared to these acceptance limits. Katahdin standard operating procedure is not to take corrective action until the number of spiked analytes in the LCS that are outside of the QC limits is not greater than the DoD QSM allowable number of exceedances. If the associated MS/MSD has greater than the allowable number of exceedances, no corrective action is taken, as long as the LCS is acceptable.

The LCS WG157009-1 had low recoveries for four target analytes and the LCS WG157065-1 had low recoveries for eight target analytes that were outside of the method acceptance limits. The DoD QSM allowable number of exceedances for 51 analytes is 3.

8015M TPH Analysis

Sample SI0230-1 was manually integrated for the surrogate o-terphenyl and TPH range. The specific reasons for the manual integrations are indicated on the raw data by the manual integration codes (M1-M11). These codes are further explained in the attachment following this narrative.

8082A Analysis

Samples SI0230-2, 3, and 4 had low recoveries for the surrogates DCB and/or TCX on both channels that were outside of the acceptance limits. Historically, these IDW samples have had low surrogate recoveries indicating the low recoveries are likely attributable to a matrix effect. Since these deviations have been previously discussed with Rick Purdy, and he concluded that these samples did not need to be reextracted, no further action was taken.

There were no other protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples of Katahdin Work Order SI0230 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIA, III, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

TCLP Extraction (EPA Method 1311)

Katahdin Sample Number S10230 –1 is a soil sample that was subjected to TCLP extraction on 01/14/15 in accordance with USEPA Method 1311. The TCLP fluid blank identified as PBT1222A is associated with this extract. The measured concentrations of contaminants in this TCLP fluid blank are listed in Form 3P in the accompanying data package. The measured barium (70.4 ug/L) concentration in TCLP fluid blank PBT1222A is above the laboratory's reporting limit. However, because the concentrations of this element in the TCLP blank and in the associated TCLP extract are well below regulatory limits, reanalysis was not required.

The TCLP extract is identified throughout the raw data and on sample preparation and analysis run logs by the suffix "T" appended to the Katahdin Sample Number, e.g. "SI0230 -001T".

Inductively-Coupled Plasma Atomic Emission Spectroscopic Analysis (ICP)

Aqueous-matrix TCLP extraction blank PBT1222A was digested for ICP analysis on 01/07/15 (QC Batch IA07ICW2) in accordance with USEPA Method 3010A.

Aqueous-matrix Katahdin Sample Numbers SI0230 – (2-4) were digested for ICP analysis on 01/14/15 (QC Batch IA14ICW2) in accordance with USEPA Method 3010A. Katahdin Sample Number SI0230-4 was prepared with duplicate matrix spiked aliquots.

Aqueous-matrix TCLP extraction of SI0230 -1 was digested for ICP analysis on 01/16/15 (QC

Batch IA16ICW1) in accordance with USEPA Method 3010A.

ICP analyses of Katahdin Work Order SI0230 sample digestates were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010C. All samples were analyzed within holding times and all analytical run QC criteria were met.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Aqueous TCLP extraction blank PBT1222A was digested for mercury analysis on 01/07/15 (QC Batch IA07HGW1) in accordance with USEPA Method 7470A.

Aqueous-matrix Katahdin Sample Numbers of SI0230 – (2-4) were digested for mercury analysis on 01/14/15 (QC Batch IA14HGW2) in accordance with USEPA Method 7470A.

Aqueous-matrix TCLP extraction of SI0230-1 was digested for mercury analysis on 01/16/15 (QC Batch IA16HGW1) in accordance with USEPA Method 7470A.

Mercury analysis of the Katahdin Work Order S10230 sample digestates were performed using a Cetac M6100 automated mercury analyzer in accordance with USEPA Methods 7470A. All analytical run QC criteria were met and all samples were analyzed within holding times.

Matrix QC Summary

The measured recoveries of aluminum, antimony, calcium, iron, and magnesium in one or both of the matrix-spiked aliquots of Katahdin Sample Number SI0230 -4 are outside the project acceptance criteria (80% - 120% recovery of the added element, if the native concentration is less than four times the amount added). For aluminum and iron, this may be attributed to the native concentration in the sample being significantly higher than the spike amount added.

The matrix-spike duplicate analysis of Katahdin Sample Number SI0230 -4 are within the laboratory's acceptance limit (<20% relative difference between duplicate matrix-spiked aliquots) for all analytes.

The serial dilution analysis of Katahdin Sample Number SI0230 -4 is within the project acceptance limit (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for all analytes.

The measured recoveries of all analytes in the post-digestion spiked aliquot of Katahdin Sample Number SI0230 -4 are within the acceptance criteria (75% - 125% recovery of the added element, if the native concentration is less than four times the amount added).

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are

flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs, and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the measured concentration is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order SI0230 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for reactive cyanide, ignitability, reactive sulfide, paint filter liquids, and pH in soil were performed according to "Test Methods for Evaluating Solid Wastes: Physical/Chemical Methods." SW-846. 2nd edition, 1982 (revised 1984), 3rd edition, 1986, and Updates I, II, IIIA, IIIA and IIIB 1996, 1998 & 2004, Office of Solid Waste and Emergency Response, U.S. EPA.

Analyses for total solids and pH in water were performed according to "Standard Methods for the Examination of Water and Wastewater", 15th, 16th, 17th, 18th, 19th, and 20th editions, 1980, 1985, 1989, 1992, 1995, 1999. APHA-AWWA-WPCF.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times. All quality control criteria were met.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Operations Manager or the Quality Assurance Officer as verified by the following signature.

Leslie Dimond

Oa.0215

Leslie Dimond

Quality Assurance Officer

Sample Receipt Condition Report Katahdin Analytical Services, Inc. Sampled By: C C → + SION AECOM Jo Client: KAS PM: KIMS Entry By: 6~ Delivered By: FedEx Project: SI6230 KAS Work Order#: KIMS Review By: Received By: SDG #: Cooler: of Date/Time Rec.: 1-714-15 09.00 Υ EX* NA Comments and/or Resolution Receipt Criteria Custody seals present / intact? 2. Chain of Custody present in cooler? 3. Chain of Custody signed by client? 4. Chain of Custody matches samples? 5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun. Samples received at <6 °C w/o freezing? Note: Not required for metals analysis. The lack of ice or ice packs (i.e. no attempt to Ice packs or ice present? begin cooling process) or insufficient ice may not meet certain regulatory requirements and If yes, was there sufficient ice to meet may invalidate certain data. temperature requirements? If temp, out, has the cooling process begun (i.e. ice or packs present) and sample Note: No cooling process required for metals collection times <6hrs., but samples are not analysis. yet cool? 6. Volatiles: Aqueous: No bubble larger than a pea? Soil/Sediment: Received in airtight container? Received in methanol? Methanol covering soil? D.I. Water - Received within 48 hour HT? Air: Refer to KAS COC for canister/flow √if air included controller requirements. 7. Trip Blank present in cooler? 8. Proper sample containers and volume? 9. Samples within hold time upon receipt? 10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH - pH <2 Sulfide - >9 Cvanide - pH >12 * Log-In Notes to Exceptions: document any problems with samples or discrepancies or pH adjustments Soil jars received broken

520230

		;						•		2	TALL.		•	ر مورد د	فتحتو	5	· · · · · · · · · · · · · · · · · · ·		
				₹ }					+						,		,		
		Project Name:	NW R	State of					Δ.	PO No.				Project No.		76539609	(Phase	g	
		Site Location:	なるがれ							Samp	ile Ant	Nysis	Rednes	Sample Analysis Requested (Enter number of containers for	er numb.	er of coi	ntainers	for ea.	, ag - 21
CONSULTANTS		CTO No.	2	RC Project Manager:	ص ت:	Caldwall			<u>ث</u> ************************************	(3)→		^	^>	- SERVERY	,	new.		5	<u> </u>
Sampler/Site Phone#	1	SE O	~ ~ ~	425 Y	00 3 5 7							300	-2	Message of Street, Str	1	3/	<u></u>	1	dsw/
Lab Name:	Karandin	idin		Tu	Turnaround Time(specify):	(specify):								Dra Parky M		ļ	,		IOF MS
Lab ID Sar	Sample ID (sys_samp_code)	(;		Location ID (sys_loc_code)	Date (mm/dd/yy)	Time (Military) (hhmm)	Matrix S Code	Sample Fi	Field Filtered (Y/N)	Total No. of Cor	llmm i pist	8)0	468	M WILLIAM IN (1760)	H 4 SUSC, PC (IRIM QUIR	414 400	105 144) ON 72/	HOLD Extra Volume 1
	1 WS - Q 2	215110-5150-5mal	S		315110	138	Š			55				weepen.	gange.			7	
2	in Can	21 2110 - 81 18 - WID 15	55	enarc.	San	9	J		<u> </u>	[*		~ (4	M						
	3 Jak	DWGW-FOM37-WDWD	SISIM-	9#	91315	130	300		*	7+	DOM:	~	<u>~</u>						
ż	MOW	10wGW- EG333	515110		5 6	1300	30		*	+		-6	<u>~</u>						
			-											·) 		
									2002-01-01-01-01-01-01-01-01-01-01-01-01-01-										
										. Si katamatan da katalan									

Field Comments:	الله سم	Sample all	As the Figure	- Fe - Fe	water from from	Lab Comments:	ments:							<u>.</u>	Sample Shipment and Delivery Details	hipment	and De	livery [Setails
Case Care	+	E	- 1	(t+0/										N	Number of coolers in shipment:	coolers i	in shipm	ent:	200
Relinquished by (signature)	y (signature	The state of the s	ă	Date G/D/S	Time	Received by (signature) 1	by (signatu	ıre)			Date	B	Time	<u>⊼</u> Sa	Samples Iced?(check) Yes _t . Method of Shipment:	ed?(check;	Yes, t:	Sy No	0
			-			7	The				1-16	1-14-12	04.00		Airbill No:				
						3									Date Shipped: 🗳 🔢 🖔 🗓	ġ.	ر المحادث المحادث المحادث		

SC=Cement/Concrete, SE=Sediment, SL=Sludge, SO=Soil, SQ=Soil/Soild quality control, SSD=Subsurface sediment, SU=Surface soil (<6 in), SW=Swab or wipe, TA=Animal tissue, TP=Plant tissue, TQ=Tissue quality control, WG=Ground water, WU=Storm water, WW=Waste water, WP=Drinking water, WQ=Water quality control, WR=Ground water effluent, WS=Surface water, WU=Storm water, WW=Waste water

(2) Sample Type: AB=Ambient Blk, EB=Equipment Blk, FB=Field Blk, FD=Field Duplicate Sample, IDW=Investigative-Derived Waste, MIS=Incremental Sampling Methodology, N=Normal Environmental Sample, TB=Trip Blk

(3) Preservative added: HA=Hydrochloric Acid, SI=Sodium Hydroxide, SA=Suffuric Acid, ME=Methanol, SB=sodium bisulfate, ST=Sodium Thiosulfate, if NO preservative added leave blank

Rev 5/12

Katahdin Analytical Services

Login Chain of Custody Report (Ino1)

Jan. 14, 2015 01:04 PM

Login Number: Sl0230 Quote/Incoming: AECOM-BETHPAGE

Account: ENSAFE001

NoWeb **ENSAFE**

Project: AECOM-BETHPAGE

NWIRP Bethpage, NY

CHECK NO.

SDG ID

ANALYSIS INSTRUCTIONS : Follow DoD QSM Version 4.2 using DoD limits.

"U" LOD. "J" flag between DL and LOQ. Must

Page: 1 of 3

Primary Report Address:

Dana Miller EnSafe

5724 Summer Trees Drive

Memphis, TN 38134 Primary invoice Address:

Accounts Payable

EnSafe

5724 Summer Trees Drive

Memphis,TN 38134

Report CC Addresses:

Login Information:

use soxhlet for PCB extraction.

CLIENT PO# : 16518

CLIENT PROJECT MANAGE: Brian Caldwell CONTRACT : 60266526

COOLER TEMPERATURE : 4.0 DELIVERY SERVICES : FedEx

EDD FORMAT : KAS135QC-CSV

:

: GN LOGIN INITIALS PM : JO

PROJECT NAME : Navy Clean WE15-03-06 NWIRP Bethpage, NY

QC LEVEL REGULATORY LIST

REPORT INSTRUCTIONS : Send HC and CD to Dana. Email invoice to

purchasing@ensafe.com

Invoice CC Addresses:

SDG STATUS

Laborator Sample ID		Collect r Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SI0230-2	IDWGW-3178-01131	5 13-JAN-15 12:00	14-JAN-15		19-JAN-15	02-FEB-15	
Matrix	Product	Hold Date (shortest)	Bottle Type	***************************************	Bottle Co.	unt	Comments
Aqueous	S E624-S	27-JAN-15	40mL Viai+H	CI			Frac Tank #7
Aqueous	S SM4500HB-PH	14-JAN-15	125mL Plastic	C			
Aqueous	S SW8082	12-FEB-15	1L N-Amber (Glass			
Aqueous	P TAL-METALS-SW846						
SW3010-	-PREP	SW6010-ALUMINUM	SW6010-ANTIM	ONY			
SW6010-	-ARSENIC	SW6010-BARIUM	SW6010-BERYL	LIUM			
SW6010-	-CADMIUM	SW6010-CALCIUM	SW6010-CHRO	MIUM			
SW6010-	-COBALT	SW6010-COPPER	SW6010-IRON				
SW6010-	-LEAD	SW6010-MAGNESIUM	SW6010-MANG	ANESE			
SW6010-	-NICKEL	SW6010-POTASSIUM	SW6010-SELEN	IIUM			
SW6010-	SILVER	SW6010-SODIUM	SW6010-THALL	JUM.			
SW6010-	-VANADIUM	SW6010-ZINC	SW7470-MERC	URY			
SI0230-3	IDWGW-F0A37-0113	315 13-JAN-15 12:30	14-JAN-15		19-JAN-15	02-FEB-15	
Matrix	Product	Hold Date (shortest)	Bottle Type		Bottle Co	unt	Comments
Aqueous	S E624-S	27-JAN-15	40mL Vial+H0	CI			Frac Tank #6
Aqueous	S SM4500HB-PH	14-JAN-15	125mL Plastic	2			
Aqueous	S SW8082	12-FEB-15	1L N-Amber (Glass			
Aqueous	P TAL-METALS-SW846						
SW3010-	-PREP	SW6010-ALUMINUM	SW6010-ANTIM	ONY			
SW6010-	ARSENIC	SW6010-BARIUM	SW6010-BERYL				
SW6010-	-CADMIUM	SW6010-CALCIUM	SW6010-CHRO				
SW6010-	COBALT	SW6010-COPPER	SW6010-IRON				
SW6010-	LEAD	SW6010-MAGNESIUM	SW6010-MANG	ANESE			
SW6010-	NICKEL	SW6010-POTASSIUM	SW6010-SELEN				
SW6010-	SILVER	SW6010-SODIUM	SW6010-THALL				
	-VANADIUM	SW6010-ZINC	SW7470-MERC				

01.14.16

Katahdin Analytical Services

Login Chain of Custody Report (Ino1)

Jan. 14, 2015 01:04 PM

Quote/Incoming: AECOM-BETHPAGE

Login Number: SI0230

NoWeb

Account: ENSAFE001 **ENSAFE**

Project: AECOM-BETHPAGE NWIRP Bethpage, NY

Laboratory Sample ID		Client Sample Number		Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SI0230-4	IE	DWGW-EG332-011315	5	13-JAN-15 13:00	14-JAN-15		19-JAN-15	02-FEB-15	
Matrix		Product		Hold Date (shortest)	Bottle Type		Bottle Co	unt	Comments
Aqueous	s	E624-S		27-JAN-15	40mL Vial+H0	H			Frac Tank #1
Aqueous	S	SM4500HB-PH		14-JAN-15	125mL Plastic	:			
Aqueous	S	SW8082		12-FEB-15	1L N-Amber (Biass			
Aqueous	Р	TAL-METALS-SW846							
SW3010-P	REF	· s	W6010-AL	UM!NUM	SW6010-ANTIM	ONY			
SW6010-A	RSE	ENIC S	W6010-BA	RIUM	SW6010-BERYL	LIUM			
SW6010-C	ADI	MIUM S	W6010-CA	LCIUM	SW6010-CHRO	MUIN			
SW6010-C	OB,	ALT S	W6010-CO	PPER	SW6010-IRON				
SW6010-L	EAE	9	W6010-MA	GNESIUM	SW6010-MANG	ANESE			
SW6010-N	ICK	EL S	W6010-PO	TASSIUM	SW6010-SELEN	IIUM			
SW6010-S	LVI	ER S	W6010-SO	DIUM	SW6010-THALL	IUM			
SW6010-V	ANA	ADIUM S	W6010-ZIN	IC	SW7470-MERC	JRY			

23

Total Samples: 4 Total Analyses:

0000025

Page: 2 of 3

Katahdin Analytical Services

Login Chain of Custody Report (Ino1)

Jan. 14, 2015 01:04 PM

Login Number: SI0230

Account: ENSAFE001 NoWeb **ENSAFE**

NWIRP Bethpage, NY

Project: AECOM-BETHPAGE

CHECK NO.

SDG ID

ANALYSIS INSTRUCTIONS : Follow DoD QSM Version 4.2 using DoD limits.

Primary Report Address:

Dana Miller EnSafe

5724 Summer Trees Drive

Memphis, TN 38134

Primary invoice Address:

Accounts Payable

EnSafe

5724 Summer Trees Drive

Memphis, TN 38134

Login Information:

Quote/Incoming: AECOM-BETHPAGE

"U" LOD. "J" flag between DL and LOQ. Must

Page: 3 of 3

use soxhlet for PCB extraction.

CLIENT PO# : 16518

CLIENT PROJECT MANAGE: Brian Caldwell

CONTRACT 60266526

COOLER TEMPERATURE : 4.0 DELIVERY SERVICES FedEx

EDD FORMAT : KAS135QC-CSV

LOGIN INITIALS GN

: JO

PROJECT NAME : Navy Clean WE15-03-06 NWIRP Bethpage, NY

QC LEVEL

REGULATORY LIST

: Send HC and CD to Dana. Email invoice to REPORT INSTRUCTIONS

purchasing@ensafe.com

Report CC Addresses:

Invoice CC Addresses: SDG STATUS

Laborator Sample ID	-	Client Sample Number		Collect Date/Time	Receive Date	PR	Verbal Date	Due Date	Mailed
SI0230-1	10	DWS-0312-011315		13-JAN-15 11:30	14-JAN-15		20-JAN-15	02-FEB-15	
Matrix		Product	T****	Hold Date (shortest)	Bottle Type	·····	Bottle Co	unt	Comments
Solid	\$	SW1010-IGNITABILITY		27-JAN-15	250mL Plastic	3			Roll off 0316
Solid	S	SW7.3.4-REAC CYANIDE		27-JAN-15	500mL P+ZnA	Ac/NaOH			
Solid	S	SW7.3.4-REAC SULFIDE		20-JAN-15	100g Glass				
Solid	S	SW8015M-TPH		27-JAN-15	100g Glass				
Solid	S	SW8082		12-FEB-15	100g Glass				
Solid	S	SW8260TCL		27-JAN-15	40 mL Vial+D	+MEOH			
Solid	S	SW8270BNA		27-JAN-15	1L N-Amber (Slass			
Solid	S	SW9045C-PH SOIL		10-FEB-15	100g Glass				
Solid	S	SW9095A-PNTFILTRTEST	-	10-FEB-15	50g Glass				
Solid	Ρ	TCLP-METALS							
SW1311	-EXT		SW3010-PREP		TCLP-ARSENIC				
TCLP-B/	ARIUM	1	TCLP-CADMIU	Vf	TCLP-CHROMIL	JM			
TCLP-LE	AD		TCLP-MERCUR	RY	TCLP-SELENIU	М			
TCLP-SI	LVER								
Solid	s	TS		12-FEB-15	4oz Glass				

Total Samples:

Total Analyses:

23

01.14.16

Samplenum SI0230-1

pambienom prozpo-r				
Container Id SI023(Product SW8260TCL)-1A	Containertype	40 mL Vial+DI	+MEOH Matrix SL
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N
Container Id SI0230		Containertype	40 mL Vial+DI	
Product SW8260TCL		concanner cype	TO MID VIGITALI	THE PARTY OF THE P
Transferdate	From	То	Analyst	Custody Break Comments
19-JAN-15 15:02	VOA_FREEZER1	GC/MS	RCROCKER	Y This container has not been properly returned to CUSTODY! It was last assigned to GNICKERSON for department LOGIN on 01/14/15 09:43.
20-JAN-15 12:06	GC/MS	VOA_FREEZER1	RCROCKER	N
Container Id SI0230	0-1C	Containertype	40 mL Vial+DI	+MEOH Matrix SL
Product SW8260TCL				
Transferdate	From	То	Analyst	Custody Break Comments
19-JAN-15 15:02	VOA_FREEZER1	GC/MS	RCROCKER	Y This container has not been properly returned to CUSTODY! It was last assigned to GNICKERSON for department LOGIN on 01/14/15 09:43.
20-JAN-15 12:06	GC/MS	VOA_FREEZER1	RCROCKER	N
Container Id SI0236		Containertype	250mL Plastic	-
Product TCLP-SILVER,	TCLP-SELENIUM, T	CLP-LEAD, TCLP-MERC	URY, TCLP-BARIUM,	TCLP-ARSENIC, TCLP-CADMIUM, TCLP-CHROMIUM
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 17:11	ORGANIC PREP	WALK-IN	AZAZZARA	Y This container has not been properly returned to CUSTODY! It was last assigned to GNICKERSON for department CUSTODY on 01/14/15 10:16.
15-JAN-15 11:22	WALK-IN	WET CHEMISTRY	AZAZZARA	N
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 17:11	ORGANIC PREP	WALK~IN	AZAZZARA	Y This container has not been properly returned to CUSTODY! It was last assigned to GNICKERSON for department CUSTODY on 01/14/15 10:16.
15-JAN-15 11:22	WALK-IN	WET CHEMISTRY	AZAZZARA	N
Container Id SI023	-	Containertype	250mL Plastic	-
Product TCLP-SILVER,	TCLP-MERCURY, TC	LP-CADMIUM, TCLP-CHI	ROMIUM, TCLP-LEAD,	TCLP-SELENIUM, TCLP-BARIUM, TCLP-ARSENIC
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 12:38	WALK-IN	METALS PREP	EMORGAN	N
14-JAN-15 17:41	METALS PREP	WALK-IN	EMORGAN	N
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 12:38 14-JAN-15 17:41	WALK-IN	METALS PREP	EMORGAN	N
Container Id SI023	METALS PREP	WALK-IN Containertype	EMORGAN 250mL Plastic	N : Matrix AQ
				IIC, TCLP-CADMIUM, TCLP-LEAD, TCLP-MERCURY
Transferdate	From	То	Analyst	Custody Break Comments
14~JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 10:39	WALK-IN	WET CHEMISTRY	ROLIVER	N
14-JAN-15 13:56	WET CHEMISTRY	WALK-IN	ROLIVER	N.
19-JAN-15 09:30	WALK-IN	ORGANIC PREP	JSPEARIN	N
19-JAN-15 12:53	ORGANIC PREP	WALK-IN	JSPEARIN	N
20-JAN-15 14:13	WALK-IN	WET CHEMISTRY	AZAZZARA	N
20-JAN-15 17:14	WET CHEMISTRY	WALK-IN	DWRIGHT	N
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14 JAN 15 10:39	WALK-IN	WET CHEMISTRY	ROLIVER	N
14-JAN-15 13:56 19-JAN-15 09:30	WET CHEMISTRY	WALK-IN	ROLIVER	N N
19-JAN-15 12:53	WALK-IN ORGANIC PREP	ORGANIC PREP WALK-IN	JSPEARIN JSPEARIN	N N

Katahdin Analytical Services, Inc.

Container Transfer History for SI0230

Samplenum SI0230-1

<u>-</u>						
Container Id SI0230	-1G	Containertype	250mL Plastic		Matr	ix SL
Product SW9095A-PNTFI SULFIDE, SW904	LTRTEST, SW1010-IG 5C-PH SOIL	ENITABILITY, SW8270	BNA, SW8082, SW801	5М-ТРН,	SW7.3.4-	REAC CYANIDE, SW7.3.4-REAC
Transferdate	From	То	Analyst	Custody	/ Break	Comments
20-JAN-15 14:13	WALK-IN	WET CHEMISTRY	AZAZZARA	N		
20-JAN-15 17:14	WET CHEMISTRY	WALK-IN	DWRIGHT	N		
Container Id SI0230	-1H	Containertype	250mL Plastic		Matr	ix SL
Product SW1010-IGNITA	BILITY					
Transferdate	From	То	Analyst	Custody	/ Break	Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N		
Samplenum SI0230-2		FIREAGE WAT	CHI CIGILOUN	И		
Container Id SI0230	-2A	Containertype	40mL Vial+HCl		Matr	ix AQ
Product E624-S						
Transferdate	From	То	Analyst	Custody	/ Break	Comments
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N		
15-JAN-15 13:01	GC/MS	GC/MS	RCROCKER	N		
16-JAN-15 10:10	GC/MS	WALK-IN	RCROCKER	N		
Container Id SI0230	-2B	Containertype	40mL Vial+HCl		Matr	ix AO
Product E624-S		•				
Transferdate	From	То	Analyst	Custody	/ Break	Comments
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N		
Container Id SI0230	-2C	Containertype		-1	Matr	ix AO
Product E624-S					-	-
Transferdate	From	То	Analyst	Custody	/ Break	Comments
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N		// // // // // // // // // // // // //
Container Id SI0230		Containertype		N	Mate	ix AO
Product SM4500HB-PH	2 D	concarnercype	TOME VIRITACI		Mati	ix AQ
Transferdate	From	То	3	G	1	
			Analyst		/ Break	Comments
14-JAN-15 10:16 14-JAN-15 12:33	LOGIN WALK-IN	WALK-IN WALK-IN	GNICKERSON	N m		
			EMORGAN	ret ass:	urned to igned to	ner has not been properly CUSTODY! It was last GNICKERSON for department 01/14/15 10:16 .
Container Id SI0230		Containertype				ix AQ
SW6010-ALUMINU CALCIUM, SW601	M, SW6010-ANTIMONY	7, SW6010-ARSENIC, D-COBALT, SW6010-CO	SW6010-BARIUM, SW6	010-BER SW6010-	YLLIUM, S -LEAD, S	5010-ZINC, SW6010-SELENIUM, SW6010-CADMIUM, SW6010- N6010-MAGNESIUM, SW6010- Comments
					DIEGN	Commence
14-JAN-15 10:16 16-JAN-15 15:12	LOGIN WALK-IN	WALK-IN WET CHEMISTRY	GNICKERSON	N		
16-JAN-15 17:06	WET CHEMISTRY	WALK-IN	AZAZZARA DWRIGHT	n n		
Container Id SI0230		Containertype		N	Mat-	ix AQ
Product SW8082		oomounici o, pc	TOMES VIGITIES		Macı	IN NO
Transferdate	Prom	m _o	3 m = 3 +	G	***************************************	
	From	То	Analyst		/ Break	Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N		
Container Id SI0230	-26	Containertype	40mL Vial+HCl		Matr	ix AQ
Product SW8082						
Transferdate	From	То	Analyst	Custody	/ Break	Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N		
Samplenum SI0230-3						
Container Id SI0230	-3A	Containertype	40mL Vial+HCl		Matr	ix AQ
Product E624-S						
Transferdate	From	То	Analyst	Custody	/ Break	Comments
- PARTICULAR PARTICULAR PROGRAMA CONTROLLA CON	errodramas kalden er skera filmere da mennas krennens sansan er er er er er er er er	intian sett est istelliste trateriorista i tancente man remertariam socio es secono es si co	et till transportering for transportering for the transportering for	Manual de la companya del companya del companya de la companya de	namentaria manya tarihir a	

Katahdin Analytical Services, Inc. Container Transfer History for SI0230

Samplenum SI0230-3

Samplenum SI0230-3					
Container Id SI0230	-3A	Containertype	40mL Vial+HCl	Matrix AQ	
Product E624-S					
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N	
15-JAN-15 13:01	GC/MS	GC/MS	RCROCKER	N	
16-JAN-15 10:10	GC/MS	WALK-IN	RCROCKER	N	
Container Id SI0230	-3B	Containertype	40mL Vial+HCl	Matrix AQ	
Product E624-S					
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:17	LOGIN	VOA FRIDGE1	GNICKERSON	N	
15-JAN-15 13:01	GC/MS	GC/MS	RCROCKER	N	
16-JAN-15 10:10	GC/MS	WALK-IN	RCROCKER	N	
Container Id SI0230	-3C	Containertype	40mL Vial+HCl	Matrix AQ	
Product E624-S					
Transferdate	From	To	Analyst	Custody Break Comments	
14-JAN-15 10:17	LOGIN	VOA_FRIDGE1	GNICKERSON	N	
Container Id SI0230	-3D	Containertype	40mL Vial+HCl	Matrix AQ	
Product SM4500HB-PH					
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N	
14-JAN-15 12:33	WALK-IN	WALK-IN	EMORGAN	Y This container has not been properly	v
				returned to CUSTODY! It was last	•
				assigned to GNICKERSON for department CUSTODY on 01/14/15 10:16 .	nt
Container Id SI0230	-3E	Containertype	40mL Vial+HCl	Matrix AQ	
Product SW7470-MERCUR	Y, SW6010-VANADIU	M, SW6010-SILVER, S	W6010-SODIUM, SW60	10-THALLIUM, SW6010-ZINC, SW6010-SELENI	IJΜ,
SW6010-CHROMIU	M, SW6010-COBALT,	SW6010-COPPER, SW6	010-IRON, SW6010-L	EAD, SW6010-MAGNESIUM, SW6010-MANGANESE	
	SW6010-POTASSIUM 010-CADMIUM, SW60	·	SW6010-ANTIMONY, S	W6010-ARSENIC, SW6010-BARIUM, SW6010-	
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N	
16-JAN-15 15:12	WALK-IN	WET CHEMISTRY	AZAZZARA	N	
16-JAN-15 17:06	WET CHEMISTRY	WALK-IN	DWRIGHT	N	
Container Id SI0230	-3F	Containertype	40mL Vial+HCl	Matrix AQ	
Product SW8082					
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N	
Container Id SI0230	-3G	Containertype	40mL Vial+HCl	Matrix AQ	
Product SW8082					
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N	
Samplenum SI0230-4				"	
Container Id SI0230	_4 x	Containortimo	40mL Vial+HCl	Matrix AQ	
Product E624-S	- ***	concarnercype	TORIL VIAITACI	Matrix Ay	

Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:17	LOGIN	VOA_FRIDGE1	GNICKERSON	N 	
15-JAN-15 13:01 16-JAN-15 10:10	GC/MS GC/MS	GC/MS WALK-IN	RCROCKER RCROCKER	N N	
Container Id SI0230		Containertype	40mL Vial+HCl	Matrix AQ	
Product E624-S		concarner cybe	TOME TEATTHCE	meer in My	
	Even	TIO.	Amplicate	Chartedy Dynals Comments	
Transferdate	From	То	Analyst	Custody Break Comments	
14-JAN-15 10:17	LOGIN	VOA_FRIDGE1	GNICKERSON	N	
16-JAN-15 11:57 19-JAN-15 08:51	VOA_FRIDGE1 GC/MS	GC/MS WALK-IN	RCROCKER RCROCKER	N N	
Container Id SI0230		Containertype	40mL Vial+HCl	Matrix AQ	
		comparate of he	- Vanu	where with	

Katahdin Analytical Services, Inc. Container Transfer History for SI0230

Samplenum SI0230-4

Container Id SI023 Product E624-S	30-4C	Containertype	40mL Vial+HCl	Matrix AQ
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:17	LOGIN	VOA_FRIDGE1	GNICKERSON	N
Container Id SI023 Product SM4500HB-PH		Containertype	40mL Vial+HCl	Matrix AQ
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
14-JAN-15 12:33	WALK-IN	WALK-IN	emorgan	Y This container has not been properly returned to CUSTODY! It was last assigned to GNICKERSON for department CUSTODY on 01/14/15 10:16.
Container Id SI023	30-4E	Containertype	40mL Vial+HCl	Matrix AQ

Product SW7470-MERCURY, SW6010-VANADIUM, SW6010-SODIUM, SW6010-SELENIUM, SW6010-NICKEL, SW6010-MAGNESIUM, SW6010-IRON, SW6010-ALUMINUM, SW6010-ANTIMONY, SW6010-ARSENIC, SW6010-BARIUM, SW6010-BERYLLIUM, SW6010-CADMIUM, SW6010-CALCIUM, SW6010-CHROMIUM, SW6010-COBALT, SW6010-COPPER, SW6010-LEAD, SW6010-MANGANESE, SW6010-POTASSIUM, SW6010

SILVER, SW6010	O-THALLIUM, SW6010	-ZINC		
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
16-JAN-15 15:12	WALK-IN	WET CHEMISTRY	AZAZZARA	N
16-JAN-15 17:06	WET CHEMISTRY	WALK-IN	DWRIGHT	N
Container Id SI0230	-4F	Containertype	40mL Vial+HCl	Matrix AQ
Product SW8082				
Transferdate	From	То	Analyst	Custody Break Comments
14-JAN-15 10:16	LOGIN	WALK-IN	GNICKERSON	N
Container Id SI0230	-4G	Containertype	40mL Vial+HCl	Matrix AQ
Product SW8082				
110ddcc Swoodz				
Transferdate	From	То	Analyst	Custody Break Comments

VOLATILES DATA BY EPA METHOD 624

QC Summary Section

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: AQ

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID BFB	# DBF	# DCA	# TOL	#
IDWGW-3178-011315	SI0230-2	89.5	99.8	114.	89.1	
IDWGW-F0A37-011315	SI0230-3	92.3	98.7	114.	99.8	
IDWGW-EG332-011315	SI0230-4RA	99.8	112.	131.	101.	
Laboratory Control S	WG157009-1	101.	101.	106.	98.3	
Method Blank Sample	WG157009-2	97.9	107.	124.	98.9	
Laboratory Control S	WG157065-1	98.7	102.	112.	96.7	
Method Blank Sample	WG157065-2	101.	108.	128.	101.	

		QC Limits
DBF	DIBROMOFLUOROMETHANE	68-128
BFB	P-BROMOFLUOROBENZENE	56-133
TOL	TOLUENE-D8	65-128
DCA	1,2-DICHLOROETHANE-D4	67-135

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services SDG: SI0230

Project : Navy Clean WE15-03-06 NWIRP Bethpage, **Lab Sample ID :** WG157009-2 **Lab File ID :** C1003A.D **Date Analyzed :** 15-JAN-15

Instrument ID : GCMS-C **Time Analyzed :** 14:30

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG157009-1	C0998.D	01/15/15	11:33
IDWGW-3178-011315	SI0230-2	C1013.D	01/16/15	07:44
IDWGW-F0A37-011315	SI0230-3	C1014.D	01/16/15	08:43

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services SDG: SI0230

Project : Navy Clean WE15-03-06 NWIRP Bethpage, **Lab Sample ID :** WG157065-2 **Lab File ID :** C1020.D **Date Analyzed :** 16-JAN-15

Instrument ID : GCMS-C **Time Analyzed :** 12:57

Heated Purge: No

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG157065-1	C1017.D	01/16/15	11:08
IDWGW-EG332-011315	SI0230-4RA	C1021.D	01/16/15	13:28

Form 5 Volatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical Services **SDG :** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, **Date Analyzed :** 29-DEC-14

Lab File ID : CB983A.DTime Analyzed : 15:06Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	23.8	
75	30.0 - 60.0% of mass 95	51.9	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.4	0.55
174	Greater than 50.0% of mass 95	76.2	
175	5.0 - 9.0% of mass 174	4.6	6.04
176	95.0 - 101.0% of mass 174	75.0	98.49
177	5.0 - 9.0% of mass 176	5.4	7.23

1-Value is % mass 174

2-Value is % mass 176

0/ 10 1 4

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG157320-4	C0792A.D	12/29/14	15:30
Initial Calibration	WG157320-3	C0793A.D	12/29/14	16:02
Initial Calibration	WG157320-2	C0794A.D	12/29/14	16:34
Initial Calibration	WG157320-1	C0795A.D	12/29/14	17:05
Initial Calibration	WG157320-6	C0796A.D	12/29/14	17:37
Initial Calibration	WG157320-5	C0797A.D	12/29/14	18:10
Independent Source	WG157320-7	C0800.D	12/29/14	19:52

Form 5 Volatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical Services SDG : SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, **Date Analyzed :** 15-JAN-15

Lab File ID : CB993A.DTime Analyzed : 08:44Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	24.8	
75	30.0 - 60.0% of mass 95	55.3	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	8.6	
173	Less than 2.0% of mass 174	0.4	0.63
174	Greater than 50.0% of mass 95	64.0	
175	5.0 - 9.0% of mass 174	4.8	7.52
176	95.0 - 101.0% of mass 174	63.5	99.25
177	5.0 - 9.0% of mass 176	4.4	6.99

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG157009-4	C0996.D	01/15/15	10:29
Laboratory Control S	WG157009-1	C0998.D	01/15/15	11:33
Method Blank Sample	WG157009-2	C1003A.D	01/15/15	14:30
IDWGW-3178-011315	SI0230-2	C1013.D	01/16/15	07:44
IDWGW-F0A37-011315	SI0230-3	C1014.D	01/16/15	08:43

Form 5 Volatile Organic Instrument Performance Check

Lab Name: Katahdin Analytical Services SDG: SI0230

Project: Navy Clean WE15-03-06 NWIRP Bethpage, Date Analyzed: 16-JAN-15

Lab File ID : CB994.DTime Analyzed : 09:54Instrument ID : GCMS-CHeated Purge : No

m/e	Ion Abundance Criteria	% Rel Abund	
50	15.0 - 40.0% of mass 95	23.8	
75	30.0 - 60.0% of mass 95	54.5	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	6.8	
173	Less than 2.0% of mass 174	0.0	0.0
174	Greater than 50.0% of mass 95	63.7	
175	5.0 - 9.0% of mass 174	4.7	7.30
176	95.0 - 101.0% of mass 174	62.3	97.70
177	5.0 - 9.0% of mass 176	4.6	7.46

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG157065-4	C1016.D	01/16/15	10:24
Laboratory Control S	WG157065-1	C1017.D	01/16/15	11:08
Method Blank Sample	WG157065-2	C1020.D	01/16/15	12:57
IDWGW-EG332-011315	SI0230-4RA	C1021.D	01/16/15	13:28

Form 8 Internal Standard Area and RT Summary

SDG: SI0230

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Lab ID :WG157320-3 Analytical Date: 12/29/14 16:02
Lab File ID :C0793A.D Instrument ID: GCMS-C

		PENTAFLUOROBENZENE		1,4-DIFLUOROBENZENE		CHLOROBE	NZENE-D5
		Area #	RT #	Area #	RT #	Area #	RT #
	Std.	516207	8.04	840628	8.71	849470	12.19
	Upper Limit	1032414	8.54	1681256	9.21	1698940	12.69
	Lower Limit	258103.5	7.54	420314	8.21	424735	11.69
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG157009-4	426057	8.04	735895	8.70	757120	12.19
Laboratory Control S	WG157009-1	459323	8.04	780858	8.71	810293	12.19
Method Blank Sample	WG157009-2	381289	8.04	686259	8.71	707120	12.19
IDWGW-3178-011315	SI0230-2	343501	8.04	603703	8.70	615008	12.19
IDWGW-F0A37-01131	SI0230-3	426384	8.04	716147	8.70	700052	12.19
Continuing Calibrati	WG157065-4	401630	8.04	676311	8.70	699338	12.19
Laboratory Control S	WG157065-1	406564	8.04	695036	8.70	707793	12.19
Method Blank Sample	WG157065-2	347102	8.04	607945	8.71	639998	12.19
IDWGW-EG332-01131	SI0230-4RA	332638	8.04	597642	8.70	623155	12.19

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Lab ID :WG157320-3 **Lab File ID :**C0793A.D

SDG: SI0230 Analytical Date: 12/29/14 16:02 Instrument ID: GCMS-C

	1,4-DICHLO	ROI	BENZE	ENE-D4
	Area	#	RT	#
Std.	466438		15.52	
Upper Limit	932876		16.02	
Lower Limit	233219		15.02	
Lab Sample ID				
WG157009-4	417579		15.52	
WG157009-1	462944		15.52	
WG157009-2	373696		15.52	
SI0230-2	342616		15.52	
SI0230-3	364750		15.52	
WG157065-4	402358		15.52	
WG157065-1	402103		15.52	
WG157065-2	343663		15.52	
SI0230-4RA	333150		15.52	
	Upper Limit Lower Limit Lab Sample ID WG157009-4 WG157009-1 WG157009-2 SI0230-2 SI0230-3 WG157065-4 WG157065-1 WG157065-2	Std . 466438 Upper Limit 932876 Lower Limit 233219 Lab Sample ID WG157009-4 417579 WG157009-1 462944 WG157009-2 373696 SI0230-2 342616 SI0230-3 364750 WG157065-4 402358 WG157065-1 402103 WG157065-2 343663	Std .	Std . 466438 15.52 Upper Limit 932876 16.02 Lower Limit 233219 15.02 Lab Sample ID WG157009-4 417579 15.52 WG157009-1 462944 15.52 WG157009-2 373696 15.52 SI0230-2 342616 15.52 SI0230-3 364750 15.52 WG157065-4 402358 15.52 WG157065-1 402103 15.52 WG157065-2 343663 15.52

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Sample Data Section

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-2

Client ID: IDWGW-3178-011315

Project: Navy Clean WE15-03-06 NWIRP Beth_I Extracted By: REC SDG: SI0230 Extraction Method

SDG: S10230

Lab File ID: C1013.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15

Extract Date: 16-JAN-15

Extraction Method: EPA 624

Lab Prep Batch: WG157009

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	5	5.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	5	5.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	5	5.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	5	5.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	10	10.	1.1	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.25	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	5	5.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	5	5.0	0.22	0.50
Benzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Trichloroethene		7.8	ug/L	1	5	5.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	5	5.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.19	0.50
Toluene	U	0.50	ug/L	1	5	5.0	0.27	0.50
trans-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	5	5.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	5	5.0	0.30	0.50
Chlorobenzene	U	0.50	ug/L	1	5	5.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Bromoform	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	5	5.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.15	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Freon-113	U	0.50	ug/L	1	5	5.0	0.31	0.50
Acetone	J	7.4	ug/L	1	10	10.	2.2	2.5
Carbon Disulfide	U	0.50	ug/L	1	5	5.0	0.25	0.50

Page 1 of 2

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-2

Client ID: IDWGW-3178-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: REC

SDG: SI0230

Lab File ID: C1013.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15 Extract Date: 16-JAN-15

Extract Date: 16-JAN-15

Extraction Method: EPA 624 **Lab Prep Batch:** WG157009

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Methyl tert-butyl Ether	U	0.50	ug/L	1	5	5.0	0.36	0.50
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	10	10.	0.21	1.0
2-Butanone	U	2.5	ug/L	1	10	10.	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	5	5.0	0.31	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
1,2-Dibromoethane	U	0.50	ug/L	1	5	5.0	0.22	0.50
Xylenes (Total)	U	1.5	ug/L	1	15	15.	0.25	1.5
M+P-Xylenes	U	1.0	ug/L	1	10	10.	0.59	1.0
o-Xylene	U	0.50	ug/L	1	5	5.0	0.25	0.50
Styrene	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,2-Dibromo-3-Chloropropane	U	0.50	ug/L	1	5	5.0	0.50	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	5	5.0	0.37	0.50
Isopropylbenzene	U	0.50	ug/L	1	5	5.0	0.23	0.50
Methyl Acetate	U	0.75	ug/L	1	5	5.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	5	5.0	0.30	0.50
1,2-Dichloroethane-D4		114.	%					
Toluene-D8		89.1	%					
P-Bromofluorobenzene		89.5	%					
Dibromofluoromethane		99.8	%					

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1013.D

Report Date: 16-Jan-2015 14:21

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011515.b\C1013.D

Lab Smp Id: SI0230-2 Client Smp ID: IDWGW-3178-011315 Inj Date : 16-JAN-2015 07:44 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : SI0230-2 Misc Info : WG157009,WG156347-4 Inst ID: gcms-c.i

Comment

Method : \TARGET_SERVER\GG\chem\gcms-c.i\C011515.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D

Als bottle: 20

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12 Processing Host: GCMS-D

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description DF 1.000 Dilution Factor 5.000 sample purged Vo Local Compound Variable Cpnd Variable

						CONCENTRA	ATIONS	
		QUANT SIG				ON-COLUMN	FINAL	
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=		====	====		======	======	======	========
	15 Acetone	43	4.770	4.752 (0.593)	11189	7.37446	7.4(M)	м9
\$	37 Dibromofluoromethane	113	7.400	7.404 (0.920)	159596	49.9029	49.9	
*	42 Pentafluorobenzene	168	8.044	8.039 (1.000)	343501	50.0000		
\$	45 1,2-Dichloroethane-D4	65	8.094	8.090 (1.006)	231812	57.2558	57.2	
	48 Trichloroethene	95	8.651	8.654 (0.994)	29519	7.75643	7.8	
*	49 1,4-Difluorobenzene	114	8.701	8.705 (1.000)	603703	50.0000		\ (
\$	55 Toluene-D8	98	10.324	10.320 (1.186)	517635	44.5325	44.5	\ r K7
*	66 Chlorobenzene-D5	117	12.189	12.193 (1.000)	615008	50.0000		W'
\$	76 P-Bromofluorobenzene	95	13.841	13.837 (1.591)	233490	44.7383	44.7	1.45 nm lon 24 2015
*	91 1,4-Dichlorobenzene-D4	152	15.520	15.517 (1.000)	342616	50.0000		1:45 pm, Jan 21, 2015

QC Flag Legend

M - Compound response manually integrated.

Instrument: gcms-c.i

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1013.D

Date : 16-JAN-2015 07:44 Client ID: IDWGW-3178-011315

Instrument: gcms-c.i

Sample Info: SI0230-2

Concentration: 7.4 ug/l

48 Trichloroethene

Concentration: 7.8 ug/l

BEFORE MANUAL INTEGRATION

Compound: Acetone CAS Number: 67-64-1

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1013.D Injection Date: 16-JAN-2015 07;44 Instrument: gcms-c.i Client Sample ID: IDWGW-3178-011315

Compound: Acetone CAS Number: 67-64-1

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-3

Client ID: IDWGW-F0A37-011315

Project: Navy Clean WE15-03-06 NWIRP Betht **Extracted By:** REC **SDG:** SI0230 **Extraction Method**

SDG: S10230

Lab File ID: C1014.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15

Extract Date: 16-JAN-15

Extraction Method: EPA 624

Lab Prep Batch: WG157009

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	5	5.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	5	5.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	5	5.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	5	5.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	10	10.	1.1	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.25	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	5	5.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	5	5.0	0.22	0.50
Benzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Trichloroethene	J	0.32	ug/L	1	5	5.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	5	5.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.19	0.50
Toluene	U	0.50	ug/L	1	5	5.0	0.27	0.50
trans-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	5	5.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	5	5.0	0.30	0.50
Chlorobenzene	U	0.50	ug/L	1	5	5.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Bromoform	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	5	5.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.15	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Freon-113	U	0.50	ug/L	1	5	5.0	0.31	0.50
Acetone		14	ug/L	1	10	10.	2.2	2.5
Carbon Disulfide	U	0.50	ug/L	1	5	5.0	0.25	0.50

Page 1 of 2

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-3

Client ID: IDWGW-F0A37-011315

Project: Navy Clean WE15-03-06 NWIRP Beth Extracted By: REC **SDG:** SI0230

Lab File ID: C1014.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15

Extract Date: 16-JAN-15

Extraction Method: EPA 624 Lab Prep Batch: WG157009

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Methyl tert-butyl Ether	U	0.50	ug/L	1	5	5.0	0.36	0.50
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	10	10.	0.21	1.0
2-Butanone	U	2.5	ug/L	1	10	10.	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	5	5.0	0.31	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
1,2-Dibromoethane	U	0.50	ug/L	1	5	5.0	0.22	0.50
Xylenes (Total)	U	1.5	ug/L	1	15	15.	0.25	1.5
M+P-Xylenes	U	1.0	ug/L	1	10	10.	0.59	1.0
o-Xylene	U	0.50	ug/L	1	5	5.0	0.25	0.50
Styrene	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,2-Dibromo-3-Chloropropane	U	0.50	ug/L	1	5	5.0	0.50	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	5	5.0	0.37	0.50
Isopropylbenzene	U	0.50	ug/L	1	5	5.0	0.23	0.50
Methyl Acetate	U	0.75	ug/L	1	5	5.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	5	5.0	0.30	0.50
1,2-Dichloroethane-D4		114.	%					
Toluene-D8		99.8	%					
P-Bromofluorobenzene		92.3	%					
Dibromofluoromethane		98.7	%					

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1014.D

Report Date: 16-Jan-2015 14:21

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011515.b\C1014.D

Lab Smp Id: SI0230-3 Client Smp ID: IDWGW-F0A37-011315 Inj Date : 16-JAN-2015 08:43 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : SI0230-3 Misc Info : WG157009, WG156347-4 Inst ID: gcms-c.i

Comment

Method : \TARGET_SERVER\GG\chem\gcms-c.i\C011515.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D

Als bottle: 21

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12 Processing Host: GCMS-D

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name	Value	Description
DF Vo		Dilution Factor sample purged
Cpnd Variable		Local Compound Variable

		QUANT SIG				ON-COLUMN	FINAL	
C	ompounds	MASS	RT	EXP RT REL R	T RESPONSE	(ug/1)	(ug/l)	REVIEW CODE
=:	=======================================	====	====		== ======	======	======	========
	15 Acetone	43	4.761	4.752 (0.592)	25816	13.7074	13.7(M)	M10
\$	37 Dibromofluoromethane	113	7.406	7.404 (0.921)	195910	49.3500	49.4	
*	42 Pentafluorobenzene	168	8.042	8.039 (1.000)	426384	50.0000		
\$	45 1,2-Dichloroethane-D4	65	8.092	8.090 (1.006)	285398	56.7887	56.8	
	48 Trichloroethene	95	8.650	8.654 (0.994)	1439	0.31874	0.32(a)	
*	49 1,4-Difluorobenzene	114	8.700	8.705 (1.000)	716147	50.0000		
\$	55 Toluene-D8	98	10.322	10.320 (1.187)	688196	49.9099	49.9	s 2"
*	66 Chlorobenzene-D5	117	12.188	12.193 (1.000)	700052	50.0000		1 1
\$	76 P-Bromofluorobenzene	95	13.839	13.837 (1.591)	285599	46.1306	46.1	1/1/1/
*	91 1,4-Dichlorobenzene-D4	152	15.519	15.517 (1.000)	364750	50.0000		V -

1:45 pm, Jan 21, 2015

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

CONCENTRATIONS

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1014.D

Date : 16-JAN-2015 08:43 Client ID: IDWGW-F0A37-011315

Client ID: IDWGW-F0A37-011315 Instrument: gcms-c.i

Sample Info: SI0230-3

48 Trichloroethene Concentration: 0.32 ug/l

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1014.D Injection Date: 16-JAN-2015 08:43 Instrument: gcms-c.i Client Sample ID: IDWGW-F0A37-011315

Compound: Acetone CAS Number: 67-64-1

Compound: Acetone CAS Number: 67-64-1

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-4RA

Client ID: IDWGW-EG332-011315

Project: Navy Clean WE15-03-06 NWIRP Beth Extracted By: REC

SDG: SI0230

Lab File ID: C1021.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15 Extract Date: 16 JAN-15

Extract Date: 16-JAN-15

Extraction Method: EPA 624 Lab Prep Batch: WG157065 **Analysis Date:** 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	5	5.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	5	5.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	5	5.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	5	5.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	10	10.	1.1	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.25	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	5	5.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	5	5.0	0.22	0.50
Benzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	5	5.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	5	5.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.19	0.50
Toluene	U	0.50	ug/L	1	5	5.0	0.27	0.50
trans-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	5	5.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	5	5.0	0.30	0.50
Chlorobenzene	U	0.50	ug/L	1	5	5.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Bromoform	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	5	5.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.15	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Freon-113	U	0.50	ug/L	1	5	5.0	0.31	0.50
Acetone	J	2.8	ug/L	1	10	10.	2.2	2.5
Carbon Disulfide	U	0.50	ug/L	1	5	5.0	0.25	0.50

Page 1 of 2

Report of Analytical Results

Client: ENSAFE **Lab ID:** SI0230-4RA

Client ID: IDWGW-EG332-011315

Project: Navy Clean WE15-03-06 NWIRP Beth Extracted By: REC

SDG: SI0230

Lab File ID: C1021.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15 Extract Date: 16-JAN-15

Extraction Method: EPA 624 Lab Prep Batch: WG157065

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Methyl tert-butyl Ether	U	0.50	ug/L	1	5	5.0	0.36	0.50
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	10	10.	0.21	1.0
2-Butanone	U	2.5	ug/L	1	10	10.	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	5	5.0	0.31	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
1,2-Dibromoethane	U	0.50	ug/L	1	5	5.0	0.22	0.50
Xylenes (Total)	U	1.5	ug/L	1	15	15.	0.25	1.5
M+P-Xylenes	U	1.0	ug/L	1	10	10.	0.59	1.0
o-Xylene	U	0.50	ug/L	1	5	5.0	0.25	0.50
Styrene	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,2-Dibromo-3-Chloropropane	U	0.50	ug/L	1	5	5.0	0.50	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	5	5.0	0.37	0.50
Isopropylbenzene	U	0.50	ug/L	1	5	5.0	0.23	0.50
Methyl Acetate	U	0.75	ug/L	1	5	5.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	5	5.0	0.30	0.50
1,2-Dichloroethane-D4		131.	%					
Toluene-D8		101.	%					
P-Bromofluorobenzene		99.8	%					
Dibromofluoromethane		112.	%					

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1021.D

Report Date: 16-Jan-2015 14:19

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011615.b\C1021.D

Lab Smp Id: SI0230-4RA Client Smp ID: IDWGW-EG332-011315 Inj Date : 16-JAN-2015 13:28 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : SI0230-4RA Misc Info : WG157065,WG156347-4 Inst ID: gcms-c.i

Comment

Method : \\target_server\gg\chem\gcms-c.i\C011615.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D

Als bottle: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12 Processing Host: T6-0360

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vo	5.000	sample purged

Cpnd Variable Local Compound Variable

						CONCENTRA	ALLONS	
		QUANT SIG				ON-COLUMN	FINAL	
Com	pounds	MASS	RT	EXP RT REL R	T RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
===	=======================================	====	====	=======	== ======	======	======	========
	15 Acetone	43	4.777	4.752 (0.594)	4073	2.77211	2.8(aM)	м9
\$	37 Dibromofluoromethane	113	7.407	7.404 (0.921)	173297	55.9566	56.0	
*	42 Pentafluorobenzene	168	8.043	8.039 (1.000)	332638	50.0000		
\$	45 1,2-Dichloroethane-D4	65	8.093	8.090 (1.006)	257254	65.6148	65.6	
*	49 1,4-Difluorobenzene	114	8.701	8.705 (1.000)	597642	50.0000		
\$	55 Toluene-D8	98	10.324	10.320 (1.186)	579629	50.3716	50.4	
*	66 Chlorobenzene-D5	117	12.189	12.193 (1.000)	623155	50.0000		, <u>k</u>
\$	76 P-Bromofluorobenzene	95	13.840	13.837 (1.591)	257755	49.8885	49.9	/// //
*	91 1,4-Dichlorobenzene-D4	152	15.520	15.517 (1.000)	333150	50.0000		V V

1:45 pm, Jan 21, 2015

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

CONCENTRATIONS

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1021.D

Date : 16-JAN-2015 13:28 Client ID: IDWGW-EG332-011315

lient ID: IDWGW-EG332-011315 Instrument: gcms-c.i

Sample Info: SI0230-4RA

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1021.D Injection Date: 16-JAN-2015 13:28 Instrument: gcms-c.i Client Sample ID: IDWGW-EG332-011315

Compound: Acetone CAS Number: 67-64-1

AFTER MANUAL INTEGRATION

Compound: Acetone CAS Number: 67-64-1

Standards Data Section

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, **1 Instrument ID:** GCMS-C

Lab File IDs: C0795A.D C0794A.D C0793A.D Column ID:

C0792A.D C0797A.D C0796A.D Calibration Date(s): 29-DEC-14 15:30

29-DEC-14 18:10

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max	
	1.0000	5.0000	20.0000	50.0000	100.0000	200.0000	New	b	m1	m2	%RSD	%RSD	
Dichlorodifluoromethane	0.76118	0.76060	0.72517	0.64669	0.63614	0.61995	AVG		0.69162		9.36052	35.00000	О
Chloromethane	1.28177	1.12575	0.93927	0.75729	0.80857	0.78618	AVG		0.94980		22.33676	35.00000	О
Vinyl chloride	0.74404	0.76780	0.72718	0.61403	0.61111	0.59918	AVG		0.67722		11.36500	35.00000	О
Bromomethane	0.33174	0.27937	0.29998	0.31751	0.36967	0.36163	AVG		0.32665		10.71953	35.00000	О
Chloroethane	0.36741	0.37345	0.29461	0.24003	0.21887	0.22390	AVG		0.28638		24.60483	35.00000	О
Trichlorofluoromethane	1.12623	1.01669	0.95983	0.87863	0.88273	0.88182	AVG		0.95766		10.39173	35.00000	О
1,1-Dichloroethene	0.46950	0.47380	0.46643	0.37584	0.45879	0.47662	AVG		0.45349		8.49909	35.00000	О
Carbon Disulfide	1.45808	1.33667	1.41714	1.23675	1.37940	1.32442	AVG		1.35875		5.72482	35.00000	О
Freon-113	0.33078	0.33091	0.31426	0.27965	0.29559	0.30090	AVG		0.30868		6.62077	35.00000	О
Methylene Chloride	0.76118	0.64183	0.60397	0.51131	0.54746	0.54666	AVG		0.60207		15.07495	35.00000	О
Acetone	0.20444	0.22886	0.24232	0.22567	0.21352	0.21030	AVG		0.22085		6.34747	35.00000	О
trans-1,2-Dichloroethene	0.51545	0.52638	0.52724	0.42789	0.49132	0.49261	AVG		0.49681		7.50208	35.00000	О
Methyl tert-butyl ether	1.06025	1.14799	1.22696	1.12396	1.22475	1.13630	AVG		1.15337		5.53359	35.00000	О
1,1-Dichloroethane	0.98173	1.02757	0.98949	0.85637	0.92157	0.90304	AVG		0.94663		6.73003	35.00000	О
cis-1,2-Dichloroethene	0.57233	0.56102	0.54738	0.47364	0.55203	0.54560	AVG		0.54200		6.44303	35.00000	О
1,2-Dichloroethylene (total	+++++	+++++	+++++	+++++	+++++	+++++	AVG		0.000e+00		0.000e+(35.00000	М
Chloroform	1.11263	1.04487	0.98238	0.85931	0.91449	0.89199	AVG		0.96761		10.07171	35.00000	О
Carbon Tetrachloride	0.36563	0.40736	0.42301	0.37219	0.43818	0.42213	AVG		0.40475		7.28773	35.00000	О
1,1,1-Trichloroethane	0.81409	0.90125	0.87370	0.76296	0.84920	0.82998	AVG		0.83853		5.76029	35.00000	О
2-Butanone	0.20911	0.29201	0.32860	0.30366	0.29618	0.27573	AVG		0.28422		14.30467	35.00000	О
Benzene	1.23212	1.28110	1.29305	1.07728	1.20810	1.08257	AVG		1.19570		7.94041	35.00000	О
Cyclohexane	0.75089	0.88993	0.89407	0.78975	0.83880	0.82223	AVG		0.83095		6.74503	35.00000	О
1,2-Dichloroethane	0.50368	0.46218	0.44831	0.40002	0.42333	0.41817	AVG		0.44261		8.41002	35.00000	О
Trichloroethene	0.31518	0.34028	0.33062	0.27325	0.32135	0.31051	AVG		0.31520		7.35405	35.00000	О
1,2-Dichloropropane	0.27713	0.32400	0.31093	0.28334	0.31262	0.30399	AVG		0.30200		6.01080	35.00000	О
Bromodichloromethane	0.38759	0.39509	0.43224	0.39981	0.45060	0.44471	AVG		0.41834		6.55379	35.00000	О
cis-1,3-dichloropropene	0.42003	0.46432	0.52121	0.48398	0.53893	0.52122	AVG		0.49162		9.06004	35.00000	О
Toluene	0.72461	0.75636	0.80384	0.69006	0.78744	0.73043	AVG		0.74879		5.65124	35.00000	О
4-methyl-2-pentanone	0.23691	0.33549	0.37000	0.32571	0.31507	0.25809	AVG		0.30688		16.29375	35.00000	О
Tetrachloroethene	0.21082	0.26786	0.26771	0.23822	0.29285	0.29146	AVG		0.26149		12.17695	35.00000	О
trans-1,3-Dichloropropene	0.32872	0.38922	0.44303	0.41397	0.47072	0.46027	AVG		0.41765		12.67277	35.00000	О
1,1,2-Trichloroethane	0.24501	0.23995	0.24772	0.22337	0.25015	0.24193	AVG		0.24135		3.96061	35.00000	О
Dibromochloromethane	0.26595	0.27936	0.30634	0.29677	0.34807	0.33409	AVG		0.30510		10.31673	35.00000	О
1,2-Dibromoethane	0.32987	0.29550	0.30269	0.27813	0.32245	0.31948	AVG		0.30802		6.32149	35.00000	О
2-Hexanone	0.16244	0.23092	0.27356	0.25111	0.24011	0.19806	AVG		0.22603		17.62543	35.00000	О
Chlorobenzene	1.00150	0.97135	0.92782	0.80998	0.87892	0.77033	AVG		0.89332		10.1690€	35.00000	О
Ethylbenzene	0.43514	0.48703	0.48568	0.42292	0.48807	0.44894	AVG		0.46130		6.34468	35.00000	О

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Nature ID: GCMS-C

Lab File IDs: C0795A.D C0794A.D C0793A.D Column ID:

C0792A.D C0797A.D C0796A.D **Calibration Date(s):** 29-DEC-14 15:30

29-DEC-14 18:10

Xylenes (total)	+++++	+++++	+++++	+++++	+++++	+++++	AVG	0.000e+00	0.000e+(35.00000	М
m+p-Xylenes	0.48308	0.61361	0.62385	0.54074	0.59843	0.51740	AVG	0.56285	10.20077	35.00000	О
o-Xylene	0.43979	0.55140	0.62060	0.54139	0.62157	0.56173	AVG	0.55608	11.99492	35.00000	О
Styrene	0.60817	0.89319	0.95194	0.86661	0.95751	0.83250	AVG	0.85165	15.11579	35.00000	О
Bromoform	0.13850	0.16488	0.19501	0.19948	0.24614	0.24038	AVG	0.19740	21.20441	35.00000	О
Isopropylbenzene	2.37229	2.84068	2.99780	2.53794	2.68730	2.30252	AVG	2.62309	10.29735	35.00000	О
1,1,2,2-Tetrachloroethane	0.88700	0.84886	0.83362	0.73105	0.79665	0.74667	AVG	0.80731	7.50960	35.00000	О
1,3-Dichlorobenzene	1.39918	1.44682	1.42888	1.25434	1.37621	1.29670	AVG	1.36702	5.56662	35.00000	О
1,4-Dichlorobenzene	1.61402	1.42301	1.36900	1.20800	1.34925	1.25828	AVG	1.37026	10.39847	35.00000	О
1,2-Dichlorobenzene	1.12304	1.27585	1.28696	1.15197	1.28114	1.21315	AVG	1.22201	5.83167	35.00000	О
1,2-Dibromo-3-Chloropropane	0.14981	0.11509	0.14495	0.13272	0.15758	0.15614	AVG	0.14271	11.38329	35.00000	О
1,2,4-Trichlorobenzene	0.57469	0.64168	0.70199	0.62700	0.76670	0.74829	AVG	0.67672	11.05140	35.00000	О
Methyl Acetate	0.55937	0.42687	0.48170	0.44758	0.48595	0.49799	AVG	0.48324	9.47023	35.00000	О
Methylcyclohexane	0.66798	0.78009	0.82013	0.77519	0.81981	0.84983	AVG	0.78551	8.14374	35.00000	О
Dibromofluoromethane	0.42633	0.47485	0.50305	0.45795	0.44794	0.48300	AVG	0.46552	5.84663	35.00000	
1,2-Dichloroethane-D4	0.63553	0.65686	0.62247	0.54848	0.52202	0.55061	AVG	0.58933	9.44504	35.00000	
Toluene-D8	0.83706	1.01763	1.09417	0.95660	0.96299	0.90778	AVG	0.96271	9.19046	35.00000	
P-Bromofluorobenzene	0.38983	0.43408	0.46502	0.42052	0.43642	0.44763	AVG	0.43225	5.91504	35.00000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0800.D

Report Date: 21-Jan-2015 13:22

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa02236

Sample Matrix: LIQUID Fraction: VOA

Lab Smp Id: WG157320-7

Level: LOW Operator: REC Data Type: MS DATA SpikeList File: E624_IND.spk SampleType: LCS Quant Type: ISTD

Sublist File: all.sub
Method File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Misc Info: WG157320, WG157320-3, SI230-2

SPIKE COMPOUND	CONC ADDED ug/l	CONC RECOVERED ug/l	% RECOVERED	LIMITS
1 Dichlorodifluorome 2 Chloromethane 3 Vinyl chloride 4 Bromomethane 5 Chloroethane 6 Trichlorofluoromet 7 Diethyl Ether 8 Tertiary-butyl alc 9 1,1-Dichloroethene 10 Carbon Disulfide 11 Freon-113 12 Iodomethane 13 Acrolein 14 Methylene Chloride 15 Acetone 16 Isobutyl Alcohol 17 trans-1,2-Dichloro 18 Allyl Chloride 19 Methyl tert-butyl 20 Acetonitrile 21 Di-isopropyl ether 22 Chloroprene 23 Propionitrile 24 Methacrylonitrile 25 1,1-Dichloroethane 26 Acrylonitrile 27 Ethyl tertiary-but 28 Vinyl Acetate 29 cis-1,2-Dichloroet M 30 1,2-Dichloroethyle 31 Methyl Methacrylat 32 2,2-Dichloropropan 33 Bromochloromethane 34 Chloroform 35 Carbon Tetrachlori 36 Tetrahydrofuran 38 1,1,1-Trichloroeth 39 1,1-Dichloropropen 40 2-Butanone 41 Benzene	20.0 20.0	21.1 19.6 19.9 20.2 17.4 18.9 19.8 11.8 17.5 22.8 20.4 21.3 108 18.3 21.0 474 18.2 20.8 43.6 199 21.7 21.5 232 233 19.2 111 22.1 20.0 19.0 37.3 24.0 17.4 19.8 18.5 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	105.38 97.93 99.51 100.77 86.88 94.48 98.97 294.05* 87.65 113.89 101.92 106.55 271.41* 91.71 105.15 118.57 91.26 103.98 109.58 107.74 115.95 116.67 110.39 100.11 95.19 93.23 120.02* 87.08 98.86 99.95 101.91	80-120 80-120

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0800.D Report Date: 21-Jan-2015 13:22

1		CONC	CONC	%	<u> </u>
SPIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
	00112	ug/l	ug/l	11200 121122	
İ					İ
	Cyclohexane	20.0	19.6	98.12	80-120
	Ethyl Methacrylate	20.0	21.4	106.93	80-120
	Tertiary-amyl meth	20.0	20.6	103.20	80-120
	1,2-Dichloroethane	20.0	18.6	93.13	80-120
	Trichloroethene	20.0	18.9	94.63	80-120
	Dibromomethane L,2-Dichloropropan	20.0 20.0	18.5 20.0	92.37 99.88	80-120 80-120
	Bromodichlorometha	20.0	19.6	97.87	80-120
	cis-1,3-dichloropr	20.0	18.5	92.37	80-120
	l,4-Dioxane	400	550	137.40*	80-120
56 2	2-Chloroethylvinyl	20.0	23.4	117.08	80-120
1	Toluene	20.0	20.3	101.54	80-120
	1-methyl-2-pentano	20.0	22.2	110.86	80-120
	Tetrachloroethene	20.0	19.9	99.53	80-120
	trans-1,3-Dichloro 1,1,2-Trichloroeth	20.0 20.0	20.0 19.2	99.98 95.81	80-120 80-120
	Dibromochlorometha	20.0	19.2	96.24	80-120
1	L,3-Dichloropropan	20.0	20.5	102.65	80-120
	L,2-Dibromoethane	20.0	18.3	91.30	80-120
	2-Hexanone	20.0	21.4	106.91	80-120
	Chlorobenzene	20.0	19.6	97.95	80-120
	L-Chlorohexane	20.0	19.3	96.36	80-120
	Ethylbenzene	20.0	20.7	103.62	80-120
	l,1,1,2-Tetrachlor Kylenes (total)	20.0 60.0	20.3 62.4	101.48 103.94	80-120 80-120
	n+p-Xylenes	40.0	41.9	104.68	80-120
	o-Xylene	20.0	20.5	102.47	80-120
	Styrene	20.0	21.6	107.76	80-120
	Bromoform	20.0	19.4	97.01	80-120
	Isopropylbenzene cis-1,4-Dichloro-2	20.0	21.0	104.88	80-120
	crans-1,4-Dichloro	20.0 20.0	20.4 21.0	101.89 105.15	80-120 80-120
	Bromobenzene	20.0	19.8	98.92	80-120
	N-Propylbenzene	20.0	21.4	107.00	80-120
	L,1,2,2-Tetrachlor	20.0	19.5	97.64	80-120
	1,3,5-Trimethylben	20.0	21.3	106.63	80-120
	2-Chlorotoluene	20.0	19.9	99.56	80-120
	l,2,3-Trichloropro H-Chlorotoluene	20.0	19.4 20.3	96.83	80-120
	tert-Butylbenzene	20.0 20.0	21.0	101.73 105.11	80-120 80-120
	Pentachloroethane	20.0	20.4	101.78	80-120
	1,2,4-Trimethylben	20.0	22.0	109.82	80-120
89 F	?-Isopropyltoluene	20.0	23.0	115.29	80-120
	1,3-Dichlorobenzen	20.0	19.5	97.65	80-120
	1,4-Dichlorobenzen	20.0	19.7	98.73	80-120
	N-Butylbenzene	20.0 20.0	24.0	119.93 111.84	80-120 80-120
	sec-Butylbenzene L,2-Dichlorobenzen	20.0	22.4 19.8	99.15	80-120
	L,2-Dibromo-3-Chlo	20.0	19.0	95.30	80-120
	1,3,5-Trichloroben	20.0	22.7	113.67	80-120
98 H	Hexachlorobutadien	20.0	22.7	113.48	80-120
	1,2,4-Trichloroben	20.0	22.3	111.55	80-120
	1,2,3-Trimethylben	20.0	22.2	110.83	80-120
1 101 1	Naphthalene	20.0	23.5	117.55	80-120
I	l			·	I ——

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0800.D Report Date: 21-Jan-2015 13:22

SPIKE COMPOUND	CONC ADDED ug/l	CONC RECOVERED ug/l	% RECOVERED	LIMITS
102 1,2,3-Trichloroben	20.0	22.2		80-120
103 Methyl Acetate	20.0	21.9		80-120
104 Methylcyclohexane	20.0	22.6		80-120
M 153 Total Alkylbenzene	140	176		80-120

SURROGATE COMPOUND	AMOUNT ADDED ug/l	AMOUNT RECOVERED ug/l	% RECOVERED	LIMITS
\$ 37 Dibromofluorometha	50.0	50.0	99.95	68-128
\$ 45 1,2-Dichloroethane	50.0	48.0	96.05	67-135
\$ 55 Toluene-D8	50.0	53.7	107.34	65-128
\$ 76 P-Bromofluorobenze	50.0	51.1	102.26	56-133

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0792A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0792A.D

Lab Smp Id: WG157320-4 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 15:30 Operator : REC Smp Info : WG157320-4 Inst ID: gcms-c.i

Misc Info: Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792.D

Als bottle: 1 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description

1.000 Dilution Factor
5.000 sample purged
Local Compound V Vo

Cpnd Variable Local Compound Variable

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.993	1.993 (0.248)	372789	50.0000	46.8	
2 Chloromethane	50	2.228	2.229 (0.277)	436544	50.0000	39.9	
3 Vinyl chloride	62	2.328	2.329 (0.290)	353961	50.0000	45.3	
4 Bromomethane	94	2.729	2.729 (0.339)	183031	50.0000	48.6	
5 Chloroethane	64	2.879	2.879 (0.358)	138364	50.0000	41.9	
6 Trichlorofluoromethane	101	3.058	3.058 (0.380)	506494	50.0000	45.9	
7 Diethyl Ether	59	3.494	3.494 (0.435)	205695	50.0000	46.0	
8 Tertiary-butyl alcohol	59	5.352	5.353 (0.666)	115619	250.000	234	
9 1,1-Dichloroethene	96	3.751	3.751 (0.467)	216657	50.0000	41.4	
10 Carbon Disulfide	76	3.787	3.787 (0.471)	712934	50.0000	45.5	
11 Freon-113	151	3.808	3.809 (0.474)	161204	50.0000	45.3	
12 Iodomethane	142	3.958	3.959 (0.492)	195759	50.0000	55.6	
13 Acrolein	56	4.266	4.266 (0.531)	232849	250.000	235	
14 Methylene Chloride	84	4.652	4.652 (0.579)	294750	50.0000	42.5	
15 Acetone	43	4.752	4.752 (0.591)	650445	250.000	255	
16 Isobutyl Alcohol	43	8.254	8.255 (1.027)	252900	1000.00	1060	
17 trans-1,2-Dichloroethene	96	4.916	4.917 (0.611)	246660	50.0000	43.1	
18 Allyl Chloride	41	4.473	4.473 (0.556)	447633	50.0000	49.6	
19 Methyl tert-butyl ether	73	5.130	5.131 (0.638)	1295830	100.000	97.4	
20 Acetonitrile	39	5.545	5.546 (0.690)	107468	500.000	414	
21 Di-isopropyl ether	45	5.788	5.789 (0.720)	881019	50.0000	51.4	
22 Chloroprene	53	5.910	5.910 (0.735)	421702	50.0000	50.0	
23 Propionitrile	54	7.968	7.969 (0.991)	530128	500.000	503	
24 Methacrylonitrile	41	7.990	7.990 (0.994)	1972174	500.000	500	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0792A.D$ Report Date: 21-Jan-2015 13:20

								AMOUN	ITS	
			QUANT SIG					CAL-AMT	ON-COL	
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
==	====	=======================================	====	====	======	: ======	=======	======	======	========
	25	1,1-Dichloroethane	63	5.953	5.953	(0.740)	493662	50.0000	45.2	
	26	Acrylonitrile	52	6.045	6.046	(0.752)	560170	250.000	243	
	27	Ethyl tertiary-butyl ether	59	6.353	6.353	(0.790)	710016	50.0000	50.5	
	28	Vinyl Acetate	43	6.374	6.375	(0.732)	706086	50.0000	51.5	
	29	cis-1,2-Dichloroethene	96	6.760	6.761	(0.841)	273032	50.0000	43.7	
M	30	1,2-Dichloroethylene (total)	96				519692	50.0000	(a)	
	31	Methyl Methacrylate	41	9.569	9.570	(1.099)	275961	50.0000	55.0	
	32	2,2-Dichloropropane	77	6.910	6.911	(0.860)	391099	50.0000	46.6	
	33	Bromochloromethane	128	7.039	7.040	(0.876)	121281	50.0000	44.0	
	34	Chloroform	83	7.153	7.154	(0.890)	495352	50.0000	44.4	
	35	Carbon Tetrachloride	117	7.318	7.318	(0.841)	354616	50.0000	46.0	
	36	Tetrahydrofuran	42	7.361	7.361	(0.916)	525831	250.000	257	
\$	37	Dibromofluoromethane	113	7.404	7.404	(0.921)	263986	50.0000	49.2	
	38	1,1,1-Trichloroethane	97	7.418	7.418	(0.923)	439814	50.0000	45.5	
	39	1,1-Dichloropropene	75	10.870	10.871	(1.249)	394418	50.0000	49.6	
	40	2-Butanone	43	7.582	7.583	(0.943)	875240	250.000	267	
	41	Benzene	78	7.911	7.912	(0.909)	1026408	50.0000	45.0	
*	42	Pentafluorobenzene	168	8.040	8.039	(1.000)	576456	50.0000		
	43	Cyclohexane	56	7.025	7.025	(0.874)	455258	50.0000	47.5	
	44	Ethyl Methacrylate	69	11.056	11.057	(1.270)	355277	50.0000	54.2	
\$	45	1,2-Dichloroethane-D4	65	8.090	8.090	(1.006)	316175	50.0000	46.5	
	46	Tertiary-amyl methyl ether	73	8.083	8.083	(1.005)	619781	50.0000	51.1	
	47	1,2-Dichloroethane	62	8.176	8.176	(0.939)	381126	50.0000	45.2	
	48	Trichloroethene	95	8.654	8.654	(0.994)	260346	50.0000	43.3	
*	49	1,4-Difluorobenzene	114	8.704	8.705	(1.000)	952776	50.0000		
	50	Dibromomethane	93	9.162	9.162	(1.053)	167373	50.0000	44.7	
	51	1,2-Dichloropropane	63	9.283	9.284	(1.067)	269958	50.0000	46.9	
	52	Bromodichloromethane	83	9.369	9.370	(1.076)	380928	50.0000	47.8	
	53	cis-1,3-dichloropropene	75	10.113	10.113	(1.162)	461126	50.0000	49.2	
	54	1,4-Dioxane	88	9.612	9.613	(1.104)	61625	1000.00	614	
\$	55	Toluene-D8	98	10.320	10.320	(1.186)	911427	50.0000	49.7	
	56	2-Chloroethylvinylether	63	10.048	10.049	(1.154)	134551	50.0000	62.3	
	57	Toluene	92	10.377	10.378	(1.192)	657469	50.0000	46.1	
	58	4-methyl-2-pentanone	43	10.827	10.828	(1.244)	1551650	250.000	265	
	59	Tetrachloroethene	164	10.820	10.821	(0.887)	230160	50.0000	45.6	
	60	trans-1,3-Dichloropropene	75	10.870	10.871	(1.249)	394418	50.0000	49.6	
	61	1,1,2-Trichloroethane	83	11.056	11.057	(1.270)	212823	50.0000	46.3	
	62	Dibromochloromethane	129	11.271	11.271	(0.924)	286734	50.0000	48.6	
	63	1,3-Dichloropropane	76	11.385	11.385	(0.934)	439838	50.0000	47.4	
	64	1,2-Dibromoethane	107	11.557	11.557	(1.328)	264992	50.0000	45.1	
	65	2-Hexanone	43	11.835	11.836	(0.971)	1213052	250.000	278	
*	66	Chlorobenzene-D5	117	12.193	12.193	(1.000)	966169	50.0000		
	67	Chlorobenzene	112	12.214	12.215	(1.002)	782575	50.0000	45.3	
	152	1-Chlorohexane	91	12.186	12.186	(0.999)	439670	50.0000	45.8	
	68	Ethylbenzene	106	12.250	12.250	(1.005)	408609	50.0000	45.8	
	69	1,1,1,2-Tetrachloroethane	131	12.293	12.293	(1.008)	274025	50.0000	48.7	
М	70	Xylenes (total)	106				1567970	150.000	(a)	
	71	m+p-Xylenes	106	12.436	12.436	(1.020)	1044892	100.000	96.1	
	72	o-Xylene	106	13.008	13.008	(1.067)	523078	50.0000	48.7	
	73	Styrene	104	13.079	13.080	(1.073)	837288	50.0000	50.9	
	74	Bromoform	173	13.115	13.115	(1.076)	192735	50.0000	50.5	
	75	Isopropylbenzene	105	13.436	13.437	(0.866)	1358580	50.0000	48.4	
\$	76	P-Bromofluorobenzene	95	13.837	13.837	(1.590)	400661	50.0000	48.6	
	77	cis-1,4-Dichloro-2-Butene	53	13.937	13.937	(0.898)	148879	50.0000	52.0	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0792A.D$ Report Date: 21-Jan-2015 13:20

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.401	14.402 (0.928)	117859	50.0000	52.6	
79 Bromobenzene	156	13.987	13.987 (0.901)	331667	50.0000	45.8	
80 N-Propylbenzene	91	14.030	14.030 (0.904)	1673789	50.0000	48.2	
81 1,1,2,2-Tetrachloroethane	83	14.137	14.137 (0.911)	391336	50.0000	45.3	
82 1,3,5-Trimethylbenzene	105	14.316	14.316 (0.923)	1177625	50.0000	49.8	
83 2-Chlorotoluene	91	14.251	14.252 (0.918)	1028277	50.0000	47.3	
84 1,2,3-Trichloropropane	75	14.330	14.330 (0.924)	322728	50.0000	45.5	
85 4-Chlorotoluene	91	14.502	14.502 (0.935)	1056528	50.0000	47.9	
86 tert-Butylbenzene	119	14.795	14.795 (0.953)	1226179	50.0000	48.6	
87 Pentachloroethane	117	14.823	14.824 (0.955)	267296	50.0000	50.4	
88 1,2,4-Trimethylbenzene	105	14.902	14.902 (0.960)	1150141	50.0000	49.1	
89 P-Isopropyltoluene	119	15.295	15.295 (0.986)	1286747	50.0000	49.6	
90 1,3-Dichlorobenzene	146	15.402	15.403 (0.993)	671462	50.0000	45.9	
* 91 1,4-Dichlorobenzene-D4	152	15.517	15.517 (1.000)	535309	50.0000		
92 1,4-Dichlorobenzene	146	15.545	15.546 (1.002)	646655	50.0000	44.1	
93 N-Butylbenzene	91	15.967	15.967 (1.029)	1249067	50.0000	49.5	
94 sec-Butylbenzene	105	15.066	15.067 (0.971)	1572311	50.0000	48.4	
95 1,2-Dichlorobenzene	146	16.217	16.218 (1.045)	616659	50.0000	47.1	
96 1,2-Dibromo-3-Chloropropane	75	17.568	17.569 (1.132)	71046	50.0000	46.5	
97 1,3,5-Trichlorobenzene	180	17.625	17.626 (1.136)	454623	50.0000	45.5	
98 Hexachlorobutadiene	225	18.726	18.726 (1.207)	192472	50.0000	41.0	
99 1,2,4-Trichlorobenzene	180	18.762	18.762 (1.209)	335641	50.0000	46.3	
100 1,2,3-Trimethylbenzene	105	15.588	15.589 (1.005)	1153868	50.0000	48.8	
101 Naphthalene	128	19.348	19.348 (1.247)	819939	50.0000	53.9	
102 1,2,3-Trichlorobenzene	180	19.684	19.684 (1.269)	265692	50.0000	46.4	
103 Methyl Acetate	43	4.973	4.974 (0.619)	258013	50.0000	46.3	
104 Methylcyclohexane	83	8.626	8.625 (1.073)	446862	50.0000	49.3	
M 153 Total Alkylbenzenes	100			10694439	50.0000	(a)	

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0793A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0793A.D

Lab Smp Id: WG157320-3 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 16:02 Operator : REC Smp Info : WG157320-3 Inst ID: gcms-c.i

Misc Info: Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 16:02 Cal File: C0793.D

Als bottle: 2 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Value Description Name

DF 1.000 Dilution Factor
Vo 5.000 sample purged
Cpnd Variable Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.993	1.993 (0.248)	149735	20.0000	22.4	
2 Chloromethane	50	2.229	2.229 (0.277)	193943	20.0000	24.8	
3 Vinyl chloride	62	2.329	2.329 (0.290)	150151	20.0000	23.7	
4 Bromomethane	94	2.729	2.729 (0.339)	61940	20.0000	18.9	
5 Chloroethane	64	2.886	2.879 (0.359)	60831	20.0000	24.5	
6 Trichlorofluoromethane	101	3.058	3.058 (0.380)	198189	20.0000	21.8	
7 Diethyl Ether	59	3.494	3.494 (0.435)	77918	20.0000	21.2	
8 Tertiary-butyl alcohol	59	5.345	5.353 (0.665)	45943	100.000	111	
9 1,1-Dichloroethene	96	3.751	3.751 (0.467)	96309	20.0000	24.8	
10 Carbon Disulfide	76	3.787	3.787 (0.471)	292616	20.0000	22.9	
11 Freon-113	151	3.815	3.809 (0.475)	64889	20.0000	22.5	
12 Iodomethane	142	3.958	3.959 (0.492)	61527	20.0000	17.5	
13 Acrolein	56	4.273	4.266 (0.531)	92528	100.000	111	
14 Methylene Chloride	84	4.652	4.652 (0.579)	124710	20.0000	23.6	
15 Acetone	43	4.752	4.752 (0.591)	250179	100.000	107	
16 Isobutyl Alcohol	43	8.254	8.255 (1.027)	82932	400.000	366	
17 trans-1,2-Dichloroethene	96	4.923	4.917 (0.612)	108866	20.0000	24.6	
18 Allyl Chloride	41	4.480	4.473 (0.557)	178972	20.0000	22.3	
19 Methyl tert-butyl ether	73	5.131	5.131 (0.638)	506692	40.0000	43.7	
20 Acetonitrile	39	5.545	5.546 (0.690)	46963	200.000	244	
21 Di-isopropyl ether	45	5.788	5.789 (0.720)	333742	20.0000	21.2	
22 Chloroprene	53	5.910	5.910 (0.735)	163885	20.0000	21.7	
23 Propionitrile	54	7.968	7.969 (0.991)	213458	200.000	225	
24 Methacrylonitrile	41	7.990	7.990 (0.994)	826125	200.000	234	

Data File: $\t server \g cms-c.i\C122914B.b\C0793A.D$ Report Date: 21-Jan-2015 13:20

							AMOUN	ITS	
		QUANT SIG					CAL-AMT	ON-COL	
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
==	=======================================	====	====	======	=======	======	======	======	========
	25 1,1-Dichloroethane	63	5.953	5.953	(0.740)	204313	20.0000	23.1	
	26 Acrylonitrile	52	6.046	6.046	(0.752)	221019	100.000	110	
	27 Ethyl tertiary-butyl ether	59	6.353		(0.790)	262781	20.0000	20.7	
	28 Vinyl Acetate	43	6.374	6.375	(0.732)	259013	20.0000	20.8	
	29 cis-1,2-Dichloroethene	96	6.760	6.761	(0.841)	113024	20.0000	23.1	
M	30 1,2-Dichloroethylene (total)	96				221890	20.0000	(a)	
	31 Methyl Methacrylate	41	9.570	9.570	(1.099)	96849	20.0000	19.9	
	32 2,2-Dichloropropane	77	6.911	6.911	(0.860)	156696	20.0000	22.4	
	33 Bromochloromethane	128	7.039	7.040	(0.876)	50125	20.0000	23.1	
	34 Chloroform	83	7.161	7.154	(0.891)	202844	20.0000	22.9	
	35 Carbon Tetrachloride	117	7.318	7.318	(0.841)	142237	20.0000	22.7	
	36 Tetrahydrofuran	42	7.361	7.361	(0.916)	202150	100.000	107	
\$	37 Dibromofluoromethane	113	7.404	7.404	(0.921)	103872	20.0000	22.0	
	38 1,1,1-Trichloroethane	97	7.418	7.418	(0.923)	180404	20.0000	22.9	
	39 1,1-Dichloropropene	75	10.871	10.871	(1.249)	148968	20.0000	21.4	
	40 2-Butanone	43	7.582	7.583	(0.943)	339255	100.000	108	
	41 Benzene	78	7.911	7.912	(0.909)	434790	20.0000	24.0	
*	42 Pentafluorobenzene	168	8.040	8.039	(1.000)	516207	50.0000		
	43 Cyclohexane	56	7.025	7.025	(0.874)	184610	20.0000	22.6	
	44 Ethyl Methacrylate	69	11.056	11.057	(1.270)	127108	20.0000	20.3	
\$	45 1,2-Dichloroethane-D4	65	8.090	8.090	(1.006)	128530	20.0000	22.7	
	46 Tertiary-amyl methyl ether	73	8.083	8.083	(1.005)	221405	20.0000	19.9	
	47 1,2-Dichloroethane	62	8.176	8.176	(0.939)	150744	20.0000	22.4	
	48 Trichloroethene	95	8.655	8.654	(0.994)	111172	20.0000	24.2	
*	49 1,4-Difluorobenzene	114	8.705	8.705	(1.000)	840628	50.0000		
	50 Dibromomethane	93	9.162	9.162	(1.053)	67270	20.0000	22.8	
	51 1,2-Dichloropropane	63	9.284	9.284	(1.067)	104549	20.0000	21.9	
	52 Bromodichloromethane	83	9.369	9.370	(1.076)	145340	20.0000	21.6	
	53 cis-1,3-dichloropropene	75	10.113	10.113	(1.162)	175259	20.0000	21.5	
	54 1,4-Dioxane	88	9.613	9.613	(1.104)	36352	400.000	668	
\$	55 Toluene-D8	98	10.320	10.320	(1.186)	367917	20.0000	22.9	
·	56 2-Chloroethylvinylether	63	10.049	10.049	(1.154)	43419	20.0000	18.3	
	57 Toluene	92		10.378		270293	20.0000	23.3	
	58 4-methyl-2-pentanone	43	10.828	10.828		622063	100.000	114	
	59 Tetrachloroethene	164		10.821		90964	20.0000	22.5	
	60 trans-1,3-Dichloropropene	75		10.871		148968	20.0000	21.4	
	61 1,1,2-Trichloroethane	83		11.057		83297	20.0000	22.2	
	62 Dibromochloromethane	129		11.271		104089	20.0000	20.6	
	63 1,3-Dichloropropane	76		11.385		169754	20.0000	21.9	
	64 1,2-Dibromoethane	107		11.557		101781	20.0000	21.8	
	65 2-Hexanone	43		11.836		464765	100.000	109	
*	66 Chlorobenzene-D5	117		12.193		849470	50.0000	109	
	67 Chlorobenzene	112		12.193			20.0000	22.9	
	152 1-Chlorohexane	91		12.215		315262		22.6	
						177786	20.0000		
	68 Ethylbenzene 69 1,1,1,2-Tetrachloroethane	106		12.250		165028	20.0000	23.0	
3.4		131	12.293	12.293	(1.009)	105181	20.0000	21.8	
M	70 Xylenes (total)	106	10 435	10 436	(1 001)	634830	60.0000	(a)	
	71 m+p-Xylenes	106		12.436		423956	40.0000	46.1	
	72 o-Xylene	106		13.008		210874	20.0000	22.9	
	73 Styrene	104		13.080		323459	20.0000	22.0	
	74 Bromoform	173		13.115		66261	20.0000	19.6	
	75 Isopropylbenzene	105		13.437		559315	20.0000	23.6	
\$	76 P-Bromofluorobenzene	95		13.837		156363	20.0000	22.1	
	77 cis-1,4-Dichloro-2-Butene	53	13.937	13.937	(0.898)	51892	20.0000	20.0	

Data File: $\t server \g cms-c.i\C122914B.b\C0793A.D$ Report Date: 21-Jan-2015 13:20

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/1)	(ug/l)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.402	14.402 (0.928)	41932	20.0000	20.4	
79 Bromobenzene	156	13.987	13.987 (0.901)	129194	20.0000	22.4	
80 N-Propylbenzene	91	14.030	14.030 (0.904)	705612	20.0000	24.2	
81 1,1,2,2-Tetrachloroethane	83	14.137	14.137 (0.911)	155533	20.0000	22.8	
82 1,3,5-Trimethylbenzene	105	14.316	14.316 (0.923)	476434	20.0000	23.2	
83 2-Chlorotoluene	91	14.252	14.252 (0.918)	424031	20.0000	23.7	
84 1,2,3-Trichloropropane	75	14.330	14.330 (0.924)	128641	20.0000	22.9	
85 4-Chlorotoluene	91	14.502	14.502 (0.935)	425199	20.0000	23.1	
86 tert-Butylbenzene	119	14.795	14.795 (0.953)	490668	20.0000	23.0	
87 Pentachloroethane	117	14.823	14.824 (0.955)	97140	20.0000	20.8	
88 1,2,4-Trimethylbenzene	105	14.902	14.902 (0.960)	468721	20.0000	23.4	
89 P-Isopropyltoluene	119	15.295	15.295 (0.986)	520837	20.0000	23.2	
90 1,3-Dichlorobenzene	146	15.402	15.403 (0.993)	266594	20.0000	22.8	
* 91 1,4-Dichlorobenzene-D4	152	15.517	15.517 (1.000)	466438	50.0000		
92 1,4-Dichlorobenzene	146	15.538	15.546 (1.001)	255422	20.0000	22.7	
93 N-Butylbenzene	91	15.967	15.967 (1.029)	517709	20.0000	23.8	
94 sec-Butylbenzene	105	15.066	15.067 (0.971)	663068	20.0000	24.2	
95 1,2-Dichlorobenzene	146	16.217	16.218 (1.045)	240114	20.0000	22.3	
96 1,2-Dibromo-3-Chloropropane	75	17.568	17.569 (1.132)	27044	20.0000	21.8	
97 1,3,5-Trichlorobenzene	180	17.618	17.626 (1.135)	180690	20.0000	22.8	
98 Hexachlorobutadiene	225	18.726	18.726 (1.207)	81525	20.0000	24.3	
99 1,2,4-Trichlorobenzene	180	18.762	18.762 (1.209)	130973	20.0000	22.4	
100 1,2,3-Trimethylbenzene	105	15.581	15.589 (1.004)	458319	20.0000	22.8	
101 Naphthalene	128	19.348	19.348 (1.247)	304451	20.0000	21.3	
102 1,2,3-Trichlorobenzene	180	19.684	19.684 (1.269)	100997	20.0000	21.8	
103 Methyl Acetate	43	4.981	4.974 (0.620)	99462	20.0000	21.5	
104 Methylcyclohexane	83	8.633	8.625 (1.074)	169343	20.0000	21.2	
M 153 Total Alkylbenzenes	100			4402364	20.0000	(a)	

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0794A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0794A.D

Lab Smp Id: WG157320-2 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 16:34 Operator : REC Smp Info : WG157320-2 Inst ID: gcms-c.i

Misc Info : Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 16:34 Cal File: C0794.D

Als bottle: 3 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description

1.000 Dilution Factor
5.000 sample purged
Local Compound V Vo

Cpnd Variable Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.993	1.993 (0.248)	37634	5.00000	5.5	
2 Chloromethane	50	2.229	2.229 (0.277)	55701	5.00000	6.6	
3 Vinyl chloride	62	2.329	2.329 (0.290)	37990	5.00000	5.7	
4 Bromomethane	94	2.730	2.729 (0.340)	13823	5.00000	4.5	
5 Chloroethane	64	2.887	2.879 (0.359)	18478	5.00000	7.0	
6 Trichlorofluoromethane	101	3.066	3.058 (0.381)	50305	5.00000	5.5	
7 Diethyl Ether	59	3.487	3.494 (0.434)	20574	5.00000	5.7	
8 Tertiary-butyl alcohol	59	5.346	5.353 (0.665)	9477	25.0000	22.6	
9 1,1-Dichloroethene	96	3.752	3.751 (0.467)	23443	5.00000	5.6	
10 Carbon Disulfide	76	3.788	3.787 (0.471)	66137	5.00000	5.0	
11 Freon-113	151	3.816	3.809 (0.475)	16373	5.00000	5.6	
12 Iodomethane	142	3.966	3.959 (0.493)	11347	5.00000	3.6	
13 Acrolein	56	4.274	4.266 (0.532)	20147	25.0000	23.9	
14 Methylene Chloride	84	4.652	4.652 (0.579)	31757	5.00000	5.8	
15 Acetone	43	4.760	4.752 (0.592)	56618	25.0000	24.4	
16 Isobutyl Alcohol	43	8.262	8.255 (1.028)	15537	100.000	74.7	
17 trans-1,2-Dichloroethene	96	4.917	4.917 (0.612)	26045	5.00000	5.5	
18 Allyl Chloride	41	4.481	4.473 (0.557)	41994	5.00000	5.2	
19 Methyl tert-butyl ether	73	5.131	5.131 (0.638)	113603	10.0000	9.8	
20 Acetonitrile	39	5.553	5.546 (0.691)	11692	50.0000	57.1	
21 Di-isopropyl ether	45	5.789	5.789 (0.720)	69960	5.00000	4.5	
22 Chloroprene	53	5.910	5.910 (0.735)	37267	5.00000	4.9	
23 Propionitrile	54	7.969	7.969 (0.991)	49308	50.0000	51.0	
24 Methacrylonitrile	41	7.991	7.990 (0.994)	199423	50.0000	54.3	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0794A.D$ Report Date: 21-Jan-2015 13:20

		QUANT SIG					CAL-AMT	ON-COL	
Comp	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
====	=======================================	====	====			======	======	======	========
2	5 1,1-Dichloroethane	63	5.946	5.953	(0.740)	50843	5.00000	5.6	
2	6 Acrylonitrile	52	6.053	6.046	(0.753)	51316	25.0000	25.4	
2	7 Ethyl tertiary-butyl ether	59	6.354	6.353	(0.790)	56484	5.00000	4.6	
2	8 Vinyl Acetate	43	6.382	6.375	(0.733)	55407	5.00000	4.4	
2	9 cis-1,2-Dichloroethene	96	6.761	6.761	(0.841)	27759	5.00000	5.5	
M 3	0 1,2-Dichloroethylene (total)	96				53804	5.00000	(a)	
3	1 Methyl Methacrylate	41	9.577	9.570	(1.100)	17632	5.00000	3.7	
3	2 2,2-Dichloropropane	77	6.911	6.911	(0.860)	37534	5.00000	5.3	
3	3 Bromochloromethane	128	7.040	7.040	(0.876)	13684	5.00000	6.1	
3	4 Chloroform	83	7.154	7.154	(0.890)	51699	5.00000	5.7	
3	5 Carbon Tetrachloride	117	7.319	7.318	(0.841)	33528	5.00000	5.1	
3	6 Tetrahydrofuran	42	7.369	7.361	(0.916)	47420	25.0000	25.3	
\$ 3	7 Dibromofluoromethane	113	7.404	7.404	(0.921)	23495	5.00000	4.9	
3	8 1,1,1-Trichloroethane	97	7.419	7.418	(0.923)	44593	5.00000	5.5	
3	9 1,1-Dichloropropene	75	10.871	10.871	(1.249)	32035	5.00000	4.5	
4	0 2-Butanone	43	7.590	7.583	(0.944)	72242	25.0000	23.1	
4	1 Benzene	78	7.912	7.912	(0.909)	105441	5.00000	5.4	
* 4	2 Pentafluorobenzene	168	8.041	8.039	(1.000)	494791	50.0000		
4	3 Cyclohexane	56	7.018	7.025	(0.873)	44033	5.00000	5.3	
4	4 Ethyl Methacrylate	69	11.064	11.057	(1.271)	24608	5.00000	4.0	
\$ 4	5 1,2-Dichloroethane-D4	65	8.091	8.090	(1.006)	32501	5.00000	5.6	
4	6 Tertiary-amyl methyl ether	73	8.083	8.083	(1.005)	49232	5.00000	4.6	
4	7 1,2-Dichloroethane	62	8.184	8.176	(0.940)	38040	5.00000	5.4	
4	8 Trichloroethene	95	8.655	8.654	(0.994)	28007	5.00000	5.6	
* 4	9 1,4-Difluorobenzene	114	8.705	8.705	(1.000)	823052	50.0000		
5	0 Dibromomethane	93	9.163	9.162	(1.053)	16363	5.00000	5.3	
5	1 1,2-Dichloropropane	63	9.284	9.284	(1.067)	26667	5.00000	5.4	
5	2 Bromodichloromethane	83	9.370	9.370	(1.076)	32518	5.00000	4.7	
5	3 cis-1,3-dichloropropene	75	10.113	10.113	(1.162)	38216	5.00000	4.6	
5	4 1,4-Dioxane	88	9.613	9.613	(1.104)	10718	100.000	151	
\$ 5	5 Toluene-D8	98	10.321	10.320	(1.186)	83756	5.00000	5.0	
5	6 2-Chloroethylvinylether	63	10.049	10.049	(1.154)	8985	5.00000	4.0	
5	7 Toluene	92	10.378	10.378	(1.192)	62252	5.00000	5.1	
5	8 4-methyl-2-pentanone	43	10.828	10.828	(1.244)	138063	25.0000	24.1	
5	9 Tetrachloroethene	164	10.821	10.821	(0.888)	22087	5.00000	5.3	
6	0 trans-1,3-Dichloropropene	75	10.871	10.871	(1.249)	32035	5.00000	4.5	
6	1 1,1,2-Trichloroethane	83	11.057	11.057	(1.270)	19749	5.00000	5.1	
6	2 Dibromochloromethane	129	11.271		(0.925)	23035	5.00000	4.6	
6	3 1,3-Dichloropropane	76	11.386	11.385	(0.934)	41079	5.00000	5.2	
6	4 1,2-Dibromoethane	107	11.557	11.557	(1.328)	24321	5.00000	5.1	
6	5 2-Hexanone	43	11.843	11.836	(0.972)	95206	25.0000	22.0	
* 6	6 Chlorobenzene-D5	117	12.186	12.193	(1.000)	824577	50.0000		
6	7 Chlorobenzene	112	12.215	12.215	(1.002)	80095	5.00000	5.6	\ (
15	2 1-Chlorohexane	91	12.186	12.186	(1.000)	42850	5.00000	5.3	1 1 17
6	8 Ethylbenzene	106	12.244	12.250	(1.005)	40159	5.00000	5.4	W'
6	9 1,1,1,2-Tetrachloroethane	131	12.301	12.293	(1.009)	23760	5.00000	4.8	1:45 nm lan 21 2015
M 7	0 Xylenes (total)	106				146661	15.0000	(a)	1:45 pm, Jan 21, 2015
	1 m+p-Xylenes	106	12.437	12.436	(1.021)	101194	10.0000	10.5	
	2 o-Xylene	106		13.008		45467	5.00000	4.7	
7	3 Styrene	104	13.080	13.080	(1.073)	73650	5.00000	4.9	
	4 Bromoform	173		13.115		13596	5.00000	4.2(M)	Мб
7	5 Isopropylbenzene	105		13.437		126991	5.00000	5.1	
	6 P-Bromofluorobenzene	95		13.837		35727	5.00000	4.9	
т .									

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0794A.D$ Report Date: 21-Jan-2015 13:20

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.402	14.402 (0.928)	8833	5.00000	4.4	
79 Bromobenzene	156	13.988	13.987 (0.901)	30671	5.00000	5.2	
80 N-Propylbenzene	91	14.031	14.030 (0.904)	170478	5.00000	5.5	
81 1,1,2,2-Tetrachloroethane	83	14.138	14.137 (0.911)	37948	5.00000	5.4	
82 1,3,5-Trimethylbenzene	105	14.317	14.316 (0.923)	107311	5.00000	5.0	
83 2-Chlorotoluene	91	14.252	14.252 (0.918)	100225	5.00000	5.3	
84 1,2,3-Trichloropropane	75	14.331	14.330 (0.924)	32132	5.00000	5.6	
85 4-Chlorotoluene	91	14.502	14.502 (0.935)	101020	5.00000	5.3	
86 tert-Butylbenzene	119	14.795	14.795 (0.953)	111731	5.00000	5.1	
87 Pentachloroethane	117	14.824	14.824 (0.955)	18853	5.00000	4.1	
88 1,2,4-Trimethylbenzene	105	14.903	14.902 (0.960)	105094	5.00000	5.0	
89 P-Isopropyltoluene	119	15.296	15.295 (0.986)	119303	5.00000	5.1	
90 1,3-Dichlorobenzene	146	15.403	15.403 (0.993)	64679	5.00000	5.4	
* 91 1,4-Dichlorobenzene-D4	152	15.517	15.517 (1.000)	447044	50.0000		
92 1,4-Dichlorobenzene	146	15.539	15.546 (1.001)	63615	5.00000	5.5	
93 N-Butylbenzene	91	15.968	15.967 (1.029)	114725	5.00000	5.0	
94 sec-Butylbenzene	105	15.067	15.067 (0.971)	152565	5.00000	5.2	
95 1,2-Dichlorobenzene	146	16.218	16.218 (1.045)	57036	5.00000	5.2	
96 1,2-Dibromo-3-Chloropropane	75	17.562	17.569 (1.132)	5145	5.00000	4.1	
97 1,3,5-Trichlorobenzene	180	17.626	17.626 (1.136)	41140	5.00000	5.1	
98 Hexachlorobutadiene	225	18.727	18.726 (1.207)	19856	5.00000	5.6	
99 1,2,4-Trichlorobenzene	180	18.763	18.762 (1.209)	28686	5.00000	4.8	
100 1,2,3-Trimethylbenzene	105	15.582	15.589 (1.004)	103757	5.00000	5.0	
101 Naphthalene	128	19.356	19.348 (1.247)	50140	5.00000	3.5	
102 1,2,3-Trichlorobenzene	180	19.685	19.684 (1.269)	21912	5.00000	4.7	
103 Methyl Acetate	43	4.981	4.974 (0.620)	21121	5.00000	4.6	
104 Methylcyclohexane	83	8.634	8.625 (1.074)	38598	5.00000	4.9	
M 153 Total Alkylbenzenes	100			1008198	5.00000	(a)	

- M Compound response manually integrated.

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0795A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0795A.D

Lab Smp Id: WG157320-1 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 17:05 Operator : REC Smp Info : WG157320-1 Inst ID: gcms-c.i

Misc Info : Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 17:05 Cal File: C0795.D

Als bottle: 4 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description 1.000 Dilution Factor 5.000 sample purged Local Compound Variable Vo Cpnd Variable

1:46 pm, Jan 21, 2015

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.994	1.993 (0.248)	7106	1.00000	1.1	
2 Chloromethane	50	2.237	2.229 (0.278)	11966	1.00000	1.4	
3 Vinyl chloride	62	2.330	2.329 (0.290)	6946	1.00000	1.0	
4 Bromomethane	94	2.730	2.729 (0.340)	3097	1.00000	1.1	
5 Chloroethane	64	2.888	2.879 (0.359)	3430	1.00000	1.2	
6 Trichlorofluoromethane	101	3.066	3.058 (0.381)	10514	1.00000	1.2	
7 Diethyl Ether	59	3.495	3.494 (0.435)	4169	1.00000	1.2	
8 Tertiary-butyl alcohol	59	5.346	5.353 (0.665)	1595	5.00000	4.2(aM)	м9
9 1,1-Dichloroethene	96	3.752	3.751 (0.467)	4383	1.00000	1.1	
10 Carbon Disulfide	76	3.788	3.787 (0.471)	13612	1.00000	1.1	
11 Freon-113	151	3.810	3.809 (0.474)	3088	1.00000	1.1	
12 Iodomethane	142	3.967	3.959 (0.493)	2915	1.00000	1.1	
13 Acrolein	56	4.274	4.266 (0.532)	3995	5.00000	5.1	
14 Methylene Chloride	84	4.653	4.652 (0.579)	7106	1.00000	1.3(a)	
15 Acetone	43	4.760	4.752 (0.592)	9543	5.00000	4.4(a)	
16 Isobutyl Alcohol	43	8.263	8.255 (1.028)	2932	20.0000	16.3(aM)	м9
17 trans-1,2-Dichloroethene	96	4.925	4.917 (0.612)	4812	1.00000	1.0(M)	м9
18 Allyl Chloride	41	4.474	4.473 (0.556)	6791	1.00000	0.88(a)	
19 Methyl tert-butyl ether	73	5.132	5.131 (0.638)	19796	2.00000	1.8	
20 Acetonitrile	39	5.568	5.546 (0.692)	2728	10.0000	13.5(aM)	м9
21 Di-isopropyl ether	45	5.790	5.789 (0.720)	11781	1.00000	0.83(a)	
22 Chloroprene	53	5.918	5.910 (0.736)	5558	1.00000	0.78(a)	
23 Propionitrile	54	7.977	7.969 (0.992)	7103	10.0000	7.7(a)	
24 Methacrylonitrile	41	7.991	7.990 (0.994)	33721	10.0000	9.5(a)	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0795A.D$ Report Date: 21-Jan-2015 13:20

							AMOUN	TS	
	_	QUANT SIG					CAL-AMT	ON-COL	
Compoun		MASS	RT	EXP RT		RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	.,1-Dichloroethane	63	5.947		(0.740)	9165	1.00000	1.0	========
	acrylonitrile	52	6.061		(0.754)	8654	5.00000	4.5(a)	
	Sthyl tertiary-butyl ether	59	6.354		(0.791)	9630	1.00000	0.85(a)	
	inyl Acetate	43	6.390		(0.734)	8807	1.00000	0.77(aM)	M6
	sis-1,2-Dichloroethene	96	6.776		(0.843)	5343	1.00000	1.1(M)	м9
	.,2-Dichloroethylene (total)	96	0.770	0.701	(0.043)	10155	1.00000	(a)	113
	Methyl Methacrylate	41	9.571	9 570	(1.099)	2434	1.00000	0.59(a)	
	2,2-Dichloropropane	77	6.912		(0.860)	6532	1.00000	0.96(a)	
	gromochloromethane	128	7.041		(0.876)	2463	1.00000	1.1	
	thloroform	83	7.162		(0.891)	10387	1.00000	1.2	
	Carbon Tetrachloride	117	7.102		(0.842)	5726	1.00000	0.91(a)	
	etrahydrofuran	42	7.326		(0.917)	5867	5.00000	3.3(a)	
	Dibromofluoromethane	113	7.378		(0.920)	3980	1.00000	0.89(a)	
	.,1,1-Trichloroethane	97	7.398		(0.923)	7600	1.00000	0.89(a) 0.96(a)	
		75	10.872						NC
	,1-Dichloropropene				(1.249)	5148	1.00000	0.79(a)	1.177
	-Butanone Senzene	43	7.598		(0.945)	9761	5.00000	3.4(a)	10
		78	7.913		(0.909)	19296	1.00000	1.0	1:46 pm, Jan 21, 2015
	Pentafluorobenzene	168	8.041		(1.000)	466777	50.0000	0.00(-)	p, ca, _ c
	Cyclohexane	56	7.026		(0.874)	7010	1.00000	0.88(a)	
	Sthyl Methacrylate	69	11.072		(1.272)	3095	1.00000	0.56(a)	
	.,2-Dichloroethane-D4	65	8.091		(1.006)	5933	1.00000	1.0	
	Certiary-amyl methyl ether	73	8.084		(1.005)	8301	1.00000	0.85(a)	
	.,2-Dichloroethane	62	8.184		(0.940)	7888	1.00000	1.2	
	richloroethene	95	8.656		(0.994)	4936	1.00000	1.0	
	,4-Difluorobenzene	114	8.706		(1.000)	783040	50.0000		
	Dibromomethane	93	9.171		(1.053)	3209	1.00000	1.1	
	,2-Dichloropropane	63	9.292		(1.067)	4340	1.00000	0.90(aM)	М6
	Bromodichloromethane	83	9.364		(1.076)	6070	1.00000	0.95(a)	
53 c	is-1,3-dichloropropene	75	10.114	10.113	(1.162)	6578	1.00000	0.86(a)	
54 1	,4-Dioxane	88	9.614	9.613	(1.104)	2177	20.0000	27.5	
\$ 55 Т	Coluene-D8	98	10.321	10.320	(1.186)	13109	1.00000	0.82(a)	
56 2	-Chloroethylvinylether	63	10.057	10.049	(1.155)	1055	1.00000	0.53(a)	
57 T	Coluene	92	10.379	10.378	(1.192)	11348	1.00000	0.97(a)	
58 4	-methyl-2-pentanone	43	10.836	10.828	(1.245)	18551	5.00000	3.4(a)	
59 T	etrachloroethene	164	10.822	10.821	(0.888)	3358	1.00000	0.82(a)	
60 t	rans-1,3-Dichloropropene	75	10.872	10.871	(1.249)	5148	1.00000	0.79(a)	
61 1	,1,2-Trichloroethane	83	11.065	11.057	(1.271)	3837	1.00000	1.0	
62 D	bibromochloromethane	129		11.271		4236	1.00000	0.90(a)	
63 1	,3-Dichloropropane	76	11.387	11.385	(0.934)	7845	1.00000	1.0	
64 1	,2-Dibromoethane	107	11.558	11.557	(1.328)	5166	1.00000	1.1(M)	М6
65 2	-Hexanone	43	11.844	11.836	(0.972)	12937	5.00000	3.2(a)	
* 66 C	Chlorobenzene-D5	117	12.187	12.193	(1.000)	796405	50.0000		
67 C	Chlorobenzene	112	12.216	12.215	(1.002)	15952	1.00000	1.1	
152 1	-Chlorohexane	91	12.187	12.186	(1.000)	7758	1.00000	1.0	
68 E	Sthylbenzene	106	12.244	12.250	(1.005)	6931	1.00000	0.94(a)	
69 1	,1,1,2-Tetrachloroethane	131	12.294	12.293	(1.009)	3633	1.00000	0.78(a)	
м 70 x	Mylenes (total)	106				22394	5.00000	(a)	
71 m	n+p-Xylenes	106	12.437	12.436	(1.021)	15389	2.00000	1.6(a)	
	o-Xylene	106			(1.067)	7005	1.00000	0.77(a)	
	tyrene	104			(1.073)	9687	1.00000	0.67(a)	
	romoform	173			(1.076)	2206	1.00000	0.74(aM)	М6
	sopropylbenzene	105		13.437		19810	1.00000	0.85(a)	
	P-Bromofluorobenzene	95			(1.590)	6105	1.00000	0.89(a)	
	sis-1,4-Dichloro-2-Butene	53			(0.899)	1848	1.00000	0.82(a)	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0795A.D$ Report Date: 21-Jan-2015 13:20

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.396	14.402 (0.928)	1256	1.00000	0.70(a)	
79 Bromobenzene	156	13.988	13.987 (0.901)	5421	1.00000	0.97(a)	
80 N-Propylbenzene	91	14.031	14.030 (0.904)	25398	1.00000	0.85(a)	
81 1,1,2,2-Tetrachloroethane	83	14.138	14.137 (0.911)	7407	1.00000	1.1	
82 1,3,5-Trimethylbenzene	105	14.317	14.316 (0.923)	14870	1.00000	0.75(a)	
83 2-Chlorotoluene	91	14.260	14.252 (0.919)	16224	1.00000	0.90(a)	
84 1,2,3-Trichloropropane	75	14.339	14.330 (0.924)	5903	1.00000	1.0	
85 4-Chlorotoluene	91	14.503	14.502 (0.935)	16776	1.00000	0.92(a)	
86 tert-Butylbenzene	119	14.796	14.795 (0.953)	16429	1.00000	0.80(a)	
87 Pentachloroethane	117	14.825	14.824 (0.955)	3690	1.00000	0.92(a)	
88 1,2,4-Trimethylbenzene	105	14.903	14.902 (0.960)	15874	1.00000	0.81(a)	, k
89 P-Isopropyltoluene	119	15.296	15.295 (0.986)	16365	1.00000	0.75(a)	
90 1,3-Dichlorobenzene	146	15.404	15.403 (0.993)	11684	1.00000	1.0	V
* 91 1,4-Dichlorobenzene-D4	152	15.518	15.517 (1.000)	417529	50.0000		1:46 pm, Jan 21, 2015
92 1,4-Dichlorobenzene	146	15.540	15.546 (1.001)	13478	1.00000	1.2	
93 N-Butylbenzene	91	15.968	15.967 (1.029)	17081	1.00000	0.80(a)	
94 sec-Butylbenzene	105	15.068	15.067 (0.971)	22944	1.00000	0.83(a)	
95 1,2-Dichlorobenzene	146	16.219	16.218 (1.045)	9378	1.00000	0.91(a)	
96 1,2-Dibromo-3-Chloropropane	75	17.570	17.569 (1.132)	1251	1.00000	1.1	
97 1,3,5-Trichlorobenzene	180	17.627	17.626 (1.136)	7460	1.00000	0.98(a)	
98 Hexachlorobutadiene	225	18.728	18.726 (1.207)	4290	1.00000	1.2	
99 1,2,4-Trichlorobenzene	180	18.763	18.762 (1.209)	4799	1.00000	0.87(a)	
100 1,2,3-Trimethylbenzene	105	15.582	15.589 (1.004)	18435	1.00000	0.96(a)	
101 Naphthalene	128	19.357	19.348 (1.247)	6711	1.00000	0.56(a)	
102 1,2,3-Trichlorobenzene	180	19.685	19.684 (1.269)	4296	1.00000	1.0	
103 Methyl Acetate	43	4.989	4.974 (0.620)	5222	1.00000	1.2(M)	М9
104 Methylcyclohexane	83	8.627	8.625 (1.073)	6236	1.00000	0.84(a)	
M 153 Total Alkylbenzenes	100			148771	1.00000	(a)	

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- M Compound response manually integrated.

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0796A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0796A.D

Lab Smp Id: WG157320-6 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 17:37 Operator : REC Smp Info : WG157320-6 Inst ID: gcms-c.i

Misc Info: Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 17:37 Cal File: C0796.D

Als bottle: 5 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Value Description Name

DF 1.000 Dilution Factor
Vo 5.000 sample purged
Cpnd Variable Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.994	1.993 (0.248)	1377863	200.000	171	
2 Chloromethane	50	2.229	2.229 (0.277)	1747325	200.000	153	
3 Vinyl chloride	62	2.329	2.329 (0.289)	1331717	200.000	168	
4 Bromomethane	94	2.730	2.729 (0.339)	803748	200.000	235(A)	
5 Chloroethane	64	2.880	2.879 (0.358)	497634	200.000	140	
6 Trichlorofluoromethane	101	3.051	3.058 (0.379)	1959886	200.000	177	
7 Diethyl Ether	59	3.502	3.494 (0.435)	795158	200.000	179	
8 Tertiary-butyl alcohol	59	5.375	5.353 (0.668)	516580	1000.00	1180(A)	
9 1,1-Dichloroethene	96	3.752	3.751 (0.466)	1059304	200.000	214(A)	
10 Carbon Disulfide	76	3.781	3.787 (0.470)	2943600	200.000	194	
11 Freon-113	151	3.809	3.809 (0.473)	668759	200.000	192	
12 Iodomethane	142	3.959	3.959 (0.492)	678167	200.000	207(A)	
13 Acrolein	56	4.281	4.266 (0.532)	983504	1000.00	1050(A)	
14 Methylene Chloride	84	4.653	4.652 (0.578)	1214979	200.000	174	
15 Acetone	43	4.767	4.752 (0.592)	2337071	1000.00	933	
16 Isobutyl Alcohol	43	8.269	8.255 (1.028)	1092313	4000.00	5350(A)	
17 trans-1,2-Dichloroethene	96	4.917	4.917 (0.611)	1094843	200.000	197	
18 Allyl Chloride	41	4.481	4.473 (0.557)	1491319	200.000	167	
19 Methyl tert-butyl ether	73	5.139	5.131 (0.639)	5050983	400.000	399	
20 Acetonitrile	39	5.553	5.546 (0.690)	452121	2000.00	1730	
21 Di-isopropyl ether	45	5.789	5.789 (0.719)	3346225	200.000	207(A)	
22 Chloroprene	53	5.911	5.910 (0.734)	1658138	200.000	208(A)	
23 Propionitrile	54	7.991	7.969 (0.993)	1880766	2000.00	1820	
24 Methacrylonitrile	41	8.005	7.990 (0.995)	5470116	2000.00	1310	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0796A.D$ Report Date: 21-Jan-2015 13:20

								AMOUN	TS	
			QUANT SIG					CAL-AMT	ON-COL	
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================		=======	====	====	======	======	=======	======	======	========
	25	1,1-Dichloroethane	63	5.953	5.953 ((0.740)	2007064	200.000	187	
	26	Acrylonitrile	52	6.054	6.046 ((0.752)	2184782	1000.00	981	
	27	Ethyl tertiary-butyl ether	59	6.354	6.353 ((0.790)	2864616	200.000	220(A)	
	28	Vinyl Acetate	43	6.375	6.375 ((0.732)	2750063	200.000	223(A)	
	29	cis-1,2-Dichloroethene	96	6.761	6.761 ((0.840)	1212634	200.000	203(A)	
M	30	1,2-Dichloroethylene (total)	96				2307477	200.000	(a)	
	31	Methyl Methacrylate	41	9.570	9.570 ((1.099)	1103346	200.000	260(A)	
	32	2,2-Dichloropropane	77	6.911	6.911 ((0.859)	1630443	200.000	203(A)	
	33	Bromochloromethane	128	7.047	7.040 ((0.876)	491560	200.000	178	
	34	Chloroform	83	7.162	7.154 ((0.890)	1982499	200.000	178	
	35	Carbon Tetrachloride	117	7.319	7.318 ((0.841)	1514104	200.000	215(A)	
	36	Tetrahydrofuran	42	7.362	7.361 ((0.915)	2010374	1000.00	1040(A)	
\$	37	Dibromofluoromethane	113	7.405	7.404 ((0.920)	1073502	200.000	208(A)	
	38	1,1,1-Trichloroethane	97	7.419	7.418 ((0.922)	1844675	200.000	198	
	39	1,1-Dichloropropene	75	10.871	10.871 ((1.249)	1650918	200.000	234(A)	
	40	2-Butanone	43	7.583	7.583 ((0.942)	3064078	1000.00	973	
	41	Benzene	78	7.912	7.912 ((0.909)	3882996	200.000	177	
*	42	Pentafluorobenzene	168	8.048		(1.000)	555639	50.0000		
	43	Cyclohexane	56	7.019	7.025 (1827461	200.000	198	
	44	Ethyl Methacrylate	69	11.064			1444165	200.000	258(A)	
\$		1,2-Dichloroethane-D4	65	8.098		(1.006)	1223760	200.000	179	
·		Tertiary-amyl methyl ether	73	8.084		(1.004)	2495688	200.000	223(A)	
		1,2-Dichloroethane	62	8.184		(0.940)	1499905	200.000	184	
		Trichloroethene	95	8.655		(0.994)	1113761	200.000	197	
*		1,4-Difluorobenzene	114	8.705		(1.000)	896708	50.0000		
		Dibromomethane	93	9.163		(1.053)	706758	200.000	202(A)	
		1,2-Dichloropropane	63	9.284	9.284 (1090367	200.000	203(A)	
		Bromodichloromethane	83	9.370		(1.076)	1595110	200.000	220(A)	
		cis-1,3-dichloropropene	75		10.113 (1869546	200.000	221(A)	
		1,4-Dioxane	88	9.613		(1.104)	250885	4000.00	2530	
\$		Toluene-D8	98		10.320 (3256071	200.000	186	
٧		2-Chloroethylvinylether	63	10.049	10.049 (386731	200.000	193	
		Toluene	92		10.378 (2619922	200.000	196	
		4-methyl-2-pentanone	43		10.828 (4628547	1000.00	814	
		Tetrachloroethene	164		10.821		1152797	200.000	237(A)	
		trans-1,3-Dichloropropene	75		10.871 (1650918	200.000	234(A)	
		1,1,2-Trichloroethane	83		11.057		867777	200.000	202(A)	
		Dibromochloromethane	129		11.271 (1321424	200.000	233(A)	
		1,3-Dichloropropane	76		11.385 (1757403	200.000	183	
		1,2-Dibromoethane	107		11.557 (1145917	200.000	212(A)	
		2-Hexanone	43		11.836		3916905	1000.00	863	
*		Chlorobenzene-D5	117		12.193 (988817	50.0000	003	
		Chlorobenzene	112		12.215 (3046861	200.000	166	
		1-Chlorohexane	91		12.186 (1852602	200.000	201(A)	
		Ethylbenzene	106		12.250 (1775693	200.000	196	
		1,1,1,2-Tetrachloroethane	131		12.293 (1238686	200.000	226(A)	
м		Xylenes (total)	106	12.JUI	10.033	(1 . 0 0)	6314674	600.000	(a)	
1*1		m+p-Xylenes	106	12 444	12.436 ((1 021)	4092889	400.000	366	
		o-Xylene	106		13.008 (2221785	200.000	209(A)	
		Styrene	106		13.008 (3292777	200.000	209(A) 201(A)	
		Bromoform								
			173		13.115 (950782	200.000	276(A)	
4		Isopropylbenzene	105		13.437 (4886160	200.000	171	
\$		P-Bromofluorobenzene	95		13.837 (1605591	200.000	209(A)	
	17	cis-1,4-Dichloro-2-Butene	53	13.938	13.937 ((0.898)	609275	200.000	223(A)	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0796A.D$ Report Date: 21-Jan-2015 13:20

	AMOUNTS						
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		= ======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.402	14.402 (0.928)	482473	200.000	229(A)	
79 Bromobenzene	156	13.988	13.987 (0.901)	1476089	200.000	210(A)	
80 N-Propylbenzene	91	14.031	14.030 (0.904)	5429840	200.000	149	
81 1,1,2,2-Tetrachloroethane	83	14.138	14.137 (0.911)	1584496	200.000	181	
82 1,3,5-Trimethylbenzene	105	14.324	14.316 (0.923)	4252334	200.000	179	
83 2-Chlorotoluene	91	14.259	14.252 (0.919)	3779024	200.000	170	
84 1,2,3-Trichloropropane	75	14.338	14.330 (0.924)	1298827	200.000	180	
85 4-Chlorotoluene	91	14.502	14.502 (0.934)	3799027	200.000	168	
86 tert-Butylbenzene	119	14.796	14.795 (0.953)	4784462	200.000	192	
87 Pentachloroethane	117	14.824	14.824 (0.955)	1148694	200.000	230(A)	
88 1,2,4-Trimethylbenzene	105	14.910	14.902 (0.960)	4146737	200.000	175	
89 P-Isopropyltoluene	119	15.303	15.295 (0.986)	4634937	200.000	178	
90 1,3-Dichlorobenzene	146	15.403	15.403 (0.992)	2751719	200.000	188	
* 91 1,4-Dichlorobenzene-D4	152	15.525	15.517 (1.000)	530523	50.0000		
92 1,4-Dichlorobenzene	146	15.546	15.546 (1.001)	2670183	200.000	179	
93 N-Butylbenzene	91	15.975	15.967 (1.029)	4313214	200.000	167	
94 sec-Butylbenzene	105	15.074	15.067 (0.971)	5310170	200.000	158	
95 1,2-Dichlorobenzene	146	16.218	16.218 (1.045)	2574407	200.000	201(A)	
96 1,2-Dibromo-3-Chloropropane	75	17.569	17.569 (1.132)	331338	200.000	230(A)	
97 1,3,5-Trichlorobenzene	180	17.626	17.626 (1.135)	2046863	200.000	212(A)	
98 Hexachlorobutadiene	225	18.727	18.726 (1.206)	902347	200.000	194	
99 1,2,4-Trichlorobenzene	180	18.763	18.762 (1.209)	1587937	200.000	235(A)	
100 1,2,3-Trimethylbenzene	105	15.589	15.589 (1.004)	4073730	200.000	168	
101 Naphthalene	128	19.349	19.348 (1.246)	3418486	200.000	253(A)	
102 1,2,3-Trichlorobenzene	180	19.685	19.684 (1.268)	1190217	200.000	220(A)	
103 Methyl Acetate	43	4.981	4.974 (0.619)	1106800	200.000	208(A)	
104 Methylcyclohexane	83	8.634	8.625 (1.073)	1888798	200.000	223(A)	
M 153 Total Alkylbenzenes	100			37757854	200.000	(a)	

- a Target compound detected but, quantitated amount
- Below Limit Of Quantitation(BLOQ).

 A Target compound detected but, quantitated amount exceeded maximum amount.

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0797A.D

Report Date: 21-Jan-2015 13:20

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0797A.D

Lab Smp Id: WG157320-5 Client Smp ID: Initial Calibration

Inj Date : 29-DEC-2014 18:10 Operator : REC Smp Info : WG157320-5 Inst ID: gcms-c.i

Misc Info: Comment :

Method : \\target_server\gg\chem\gcms-c.i\C122914B.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 18:10 Cal File: C0797.D

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Value Description Name

DF 1.000 Dilution Factor
Vo 5.000 sample purged
Cpnd Variable Local Compound Variable

				AMOUNTS			
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.989	1.993 (0.247)	742695	100.000	90.5	
2 Chloromethane	50	2.232	2.229 (0.278)	944002	100.000	82.7	
3 Vinyl chloride	62	2.325	2.329 (0.289)	713466	100.000	88.5	
4 Bromomethane	94	2.725	2.729 (0.339)	431582	100.000	116	
5 Chloroethane	64	2.882	2.879 (0.358)	255531	100.000	73.0	
6 Trichlorofluoromethane	101	3.047	3.058 (0.379)	1030583	100.000	90.8	
7 Diethyl Ether	59	3.497	3.494 (0.435)	433570	100.000	95.0	
8 Tertiary-butyl alcohol	59	5.355	5.353 (0.666)	309556	500.000	651	
9 1,1-Dichloroethene	96	3.747	3.751 (0.466)	535634	100.000	101	
10 Carbon Disulfide	76	3.783	3.787 (0.470)	1610445	100.000	102	
11 Freon-113	151	3.804	3.809 (0.473)	345102	100.000	95.0	
12 Iodomethane	142	3.962	3.959 (0.493)	404246	100.000	117	
13 Acrolein	56	4.276	4.266 (0.532)	522286	500.000	525	
14 Methylene Chloride	84	4.648	4.652 (0.578)	639160	100.000	89.3	
15 Acetone	43	4.762	4.752 (0.592)	1246396	500.000	480	
16 Isobutyl Alcohol	43	8.258	8.255 (1.027)	601310	2000.00	2630	
17 trans-1,2-Dichloroethene	96	4.912	4.917 (0.611)	573610	100.000	98.7	
18 Allyl Chloride	41	4.476	4.473 (0.557)	935898	100.000	103	
19 Methyl tert-butyl ether	73	5.134	5.131 (0.638)	2859770	200.000	215	
20 Acetonitrile	39	5.548	5.546 (0.690)	239133	1000.00	894	
21 Di-isopropyl ether	45	5.784	5.789 (0.719)	1864402	100.000	109	
22 Chloroprene	53	5.906	5.910 (0.734)	897621	100.000	106	
23 Propionitrile	54	7.972	7.969 (0.991)	1080531	1000.00	1020	
24 Methacrylonitrile	41	7.993	7.990 (0.994)	3499106	1000.00	855	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0797A.D$ Report Date: 21-Jan-2015 13:20

								AMOUN	TS	
			QUANT SIG					CAL-AMT	ON-COL	
Co	oqmo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
			====	====	======	======	======	======	======	========
	25	1,1-Dichloroethane	63	5.949	5.953	(0.740)	1075925	100.000	96.8	
	26	Acrylonitrile	52	6.049	6.046	(0.752)	1187619	500.000	510	
	27	Ethyl tertiary-butyl ether	59	6.349	6.353	(0.789)	1573856	100.000	113	
	28	Vinyl Acetate	43	6.370	6.375	(0.732)	1480115	100.000	114	
	29	cis-1,2-Dichloroethene	96	6.756	6.761	(0.840)	644488	100.000	102	
M	30	1,2-Dichloroethylene (total)	96				1218098	100.000	(a)	
	31	Methyl Methacrylate	41	9.566	9.570	(1.099)	599958	100.000	130	
	32	2,2-Dichloropropane	77	6.907	6.911	(0.859)	866392	100.000	102	
	33	Bromochloromethane	128	7.042	7.040	(0.876)	258211	100.000	91.0	
	34	Chloroform	83	7.157	7.154	(0.890)	1067660	100.000	93.5	
	35	Carbon Tetrachloride	117	7.314	7.318	(0.841)	808172	100.000	110	
	36	Tetrahydrofuran	42	7.357	7.361	(0.915)	1105892	500.000	540	
\$	37	Dibromofluoromethane	113	7.400	7.404	(0.920)	522968	100.000	95.5	
	38	1,1,1-Trichloroethane	97	7.414	7.418	(0.922)	991440	100.000	102	
	39	1,1-Dichloropropene	75	10.867	10.871	(1.249)	868182	100.000	116	
	40	2-Butanone	43	7.578	7.583	(0.942)	1728959	500.000	525	
	41	Benzene	78	7.907	7.912	(0.909)	2228203	100.000	101	
*	42	Pentafluorobenzene	168	8.043	8.039	(1.000)	583747	50.0000		
	43	Cyclohexane	56	7.021	7.025	(0.873)	979298	100.000	101	
	44	Ethyl Methacrylate	69	11.060	11.057	(1.271)	765660	100.000	126	
\$	45	1,2-Dichloroethane-D4	65	8.093	8.090	(1.006)	609460	100.000	86.6	
	46	Tertiary-amyl methyl ether	73	8.079	8.083	(1.004)	1353400	100.000	112	
	47	1,2-Dichloroethane	62	8.179	8.176	(0.940)	780783	100.000	94.8	
	48	Trichloroethene	95	8.651	8.654	(0.994)	592696	100.000	102	
*	49	1,4-Difluorobenzene	114	8.701	8.705	(1.000)	922193	50.0000		
	50	Dibromomethane	93	9.165	9.162	(1.053)	374245	100.000	104	
	51	1,2-Dichloropropane	63	9.287	9.284	(1.067)	576601	100.000	104	
	52	Bromodichloromethane	83	9.365	9.370	(1.076)	831073	100.000	109	
	53	cis-1,3-dichloropropene	75	10.109	10.113	(1.162)	993996	100.000	112	
	54	1,4-Dioxane	88	9.608	9.613	(1.104)	221811	2000.00	2350	
\$	55	Toluene-D8	98	10.323	10.320	(1.186)	1776127	100.000	100	
	56	2-Chloroethylvinylether	63	10.045	10.049	(1.154)	231236	100.000	113	
	57	Toluene	92	10.380	10.378	(1.193)	1452341	100.000	106	
	58	4-methyl-2-pentanone	43	10.831	10.828	(1.245)	2905529	500.000	516	
	59	Tetrachloroethene	164	10.824	10.821	(0.888)	559653	100.000	115	
	60	trans-1,3-Dichloropropene	75	10.867	10.871	(1.249)	868182	100.000	116	
	61	1,1,2-Trichloroethane	83	11.060	11.057	(1.271)	461366	100.000	104	
	62	Dibromochloromethane	129	11.267	11.271	(0.924)	665191	100.000	117	
	63	1,3-Dichloropropane	76	11.381	11.385	(0.934)	938418	100.000	103	
	64	1,2-Dibromoethane	107	11.553	11.557	(1.328)	594721	100.000	106	
	65	2-Hexanone	43	11.839	11.836	(0.971)	2294341	500.000	538	
*	66	Chlorobenzene-D5	117	12.189	12.193	(1.000)	955544	50.0000		
	67	Chlorobenzene	112	12.210	12.215	(1.002)	1679700	100.000	98.1	
	152	1-Chlorohexane	91	12.182	12.186	(0.999)	975940	100.000	101	
	68	Ethylbenzene	106	12.246	12.250	(1.005)	932748	100.000	107	
	69	1,1,1,2-Tetrachloroethane	131	12.296	12.293	(1.009)	621878	100.000	114	
М	70	Xylenes (total)	106				3475168	300.000	(a)	
	71	m+p-Xylenes	106	12.439	12.436	(1.021)	2287295	200.000	215	
		o-Xylene	106		13.008		1187873	100.000	114	
	73	Styrene	104	13.082	13.080	(1.073)	1829881	100.000	115	
		Bromoform	173		13.115		470399	100.000	131	
	75	Isopropylbenzene	105	13.440	13.437	(0.866)	2892640	100.000	103	
\$	76	P-Bromofluorobenzene	95	13.833	13.837	(1.590)	804934	100.000	101	
	77	cis-1,4-Dichloro-2-Butene	53	13.940	13.937	(0.898)	310260	100.000	110	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0797A.D$ Report Date: 21-Jan-2015 13:20

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====			======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.398	14.402 (0.928)	253995	100.000	116	
79 Bromobenzene	156	13.983	13.987 (0.901)	769998	100.000	107	
80 N-Propylbenzene	91	14.026	14.030 (0.904)	3394178	100.000	96.6	
81 1,1,2,2-Tetrachloroethane	83	14.133	14.137 (0.911)	857529	100.000	98.4	
82 1,3,5-Trimethylbenzene	105	14.319	14.316 (0.923)	2491286	100.000	106	
83 2-Chlorotoluene	91	14.255	14.252 (0.918)	2170686	100.000	99.2	
84 1,2,3-Trichloropropane	75	14.333	14.330 (0.924)	689829	100.000	96.2	
85 4-Chlorotoluene	91	14.505	14.502 (0.935)	2201985	100.000	99.2	
86 tert-Butylbenzene	119	14.791	14.795 (0.953)	2673798	100.000	107	
87 Pentachloroethane	117	14.827	14.824 (0.955)	587296	100.000	112	
88 1,2,4-Trimethylbenzene	105	14.905	14.902 (0.960)	2422439	100.000	104	
89 P-Isopropyltoluene	119	15.298	15.295 (0.986)	2737310	100.000	106	
90 1,3-Dichlorobenzene	146	15.398	15.403 (0.992)	1481372	100.000	101	
* 91 1,4-Dichlorobenzene-D4	152	15.520	15.517 (1.000)	538206	50.0000		
92 1,4-Dichlorobenzene	146	15.541	15.546 (1.001)	1452353	100.000	98.2	
93 N-Butylbenzene	91	15.970	15.967 (1.029)	2574333	100.000	102	
94 sec-Butylbenzene	105	15.070	15.067 (0.971)	3285765	100.000	101	
95 1,2-Dichlorobenzene	146	16.220	16.218 (1.045)	1379031	100.000	106	
96 1,2-Dibromo-3-Chloropropane	75	17.564	17.569 (1.132)	169623	100.000	113	
97 1,3,5-Trichlorobenzene	180	17.621	17.626 (1.135)	1074143	100.000	108	
98 Hexachlorobutadiene	225	18.729	18.726 (1.207)	488253	100.000	104	
99 1,2,4-Trichlorobenzene	180	18.765	18.762 (1.209)	825284	100.000	116	
100 1,2,3-Trimethylbenzene	105	15.584	15.589 (1.004)	2353997	100.000	98.9	
101 Naphthalene	128	19.351	19.348 (1.247)	1965698	100.000	136	
102 1,2,3-Trichlorobenzene	180	19.687	19.684 (1.269)	648639	100.000	116	
103 Methyl Acetate	43	4.977	4.974 (0.619)	567345	100.000	101	
104 Methylcyclohexane	83	8.629	8.625 (1.073)	957124	100.000	105	
M 153 Total Alkylbenzenes	100			22471749	100.000	(a)	

BEFORE MANUAL INTEGRATION

Compound: Bromoform CAS Number: 75-25-2

Compound: Bromoform CAS Number: 75-25-2

AFTER MANUAL INTEGRATION

BEFORE MANUAL INTEGRATION

Compound: trans-1,2-Dichloroethene CAS Number: 156-60-5

AFTER MANUAL INTEGRATION

Compound: trans-1,2-Dichloroethene CAS Number: 156-60-5

BEFORE MANUAL INTEGRATION

Compound: cis-1,2-Dichloroethene CAS Number: 156-59-2

Compound: cis-1,2-Dichloroethene CAS Number: 156-59-2

AFTER MANUAL INTEGRATION

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0795.D Injection Date: 29-DEC-2014 17:05 Instrument: gcms-c.i Client Sample ID:

Compound: 1,2-Dichloropropane CAS Number: 78-87-5

BEFORE MANUAL INTEGRATION

AFTER MANUAL INTEGRATION

Compound: 1,2-Dichloropropane CAS Number: 78-87-5

Compound: 1,2-Dibromoethane CAS Number: 106-93-4

BEFORE MANUAL INTEGRATION

AFTER MANUAL INTEGRATION

Compound: 1,2-Dibromoethane CAS Number: 106-93-4

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\C0795.D Injection Date: 29-DEC-2014 17:05 Instrument: gcms-c.i Client Sample ID:

Compound: Bromoform CAS Number: 75-25-2

BEFORE MANUAL INTEGRATION

Compound: Bromoform CAS Number: 75-25-2

AFTER MANUAL INTEGRATION

Compound: Methyl Acetate CAS Number: 79-20-9

BEFORE MANUAL INTEGRATION

AFTER MANUAL INTEGRATION

Compound: Methyl Acetate CAS Number: 79-20-9

Data File: \target_server\gg\chem\gcms-c.i\C122914B.b\C0800.D

Report Date: 21-Jan-2015 13:22

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-c.i\C122914B.b\C0800.D

Lab Smp Id: WG157320-7

Inj Date : 29-DEC-2014 19:52

Operator : REC Inst ID: gcms-c.i

Smp Info : WG157320-7, SI0230

Misc Info: WG157320, WG157320-3, SI230-2

Comment

Method : \\target_server\gg\chem\gcms-c.i\\C122914B.b\\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date: 29-DEC-2014 15:30 Cal File: C0792A.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12 Processing Host: T6-0360

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description

DF 1.000 Dilution Factor

Vo 5.000 sample purged Cpnd Variable Local Compound Variable

CONCENTRATIONS OUANT SIG ON-COLUMN FINAL RT EXP RT REL RT RESPONSE (ug/l) (ug/l) Compounds MASS REVIEW CODE -----==== ---- ------ ------ ------======== 165306 21.0756 1 Dichlorodifluoromethane 85 1.989 1.993 (0.248) 21.1 2 Chloromethane 50 2.232 2.229 (0.278) 210962 19.5853 19.6 62 19.9 3 Vinyl chloride 2.325 2.329 (0.289) 152858 19.9029 94 20.2 2.725 2.729 (0.339) 74656 20.1531 4 Bromomethane 2.883 2.879 (0.359) 56432 17.3758 17.4 64 5 Chloroethane 101 3.054 3.058 (0.380) 205228 18.8967 6 Trichlorofluoromethane 18.9 7 Diethyl Ether 3.490 3.494 (0.434) 87013 19.7943 59 19.8 57048 117.621 59 5.349 5.353 (0.666) 118(R) 8 Tertiary-butyl alcohol 17.5 96 3.747 3.751 (0.466) 90158 17.5304 9 1,1-Dichloroethene 3.783 3.787 (0.471) 350997 22.7785 76 22.8 10 Carbon Disulfide 71360 20.3848 3.812 3.809 (0.474) 20.4 151 11 Freon-113 3.959 (0.492) 21.3 73733 21.3107 12 Iodomethane 142 3.955 56 4.269 4.266 (0.531) 105761 108.564 108(R) 13 Acrolein 4.648 4.652 (0.578) 125233 18.3414 18.3 14 Methylene Chloride 84 21.0 43 52671 21.0295 15 Acetone 4.762 4.752 (0.593) 16 Isobutyl Alcohol 43 8.258 8.255 (1.028) 110937 474.299 474 17 trans-1,2-Dichloroethene 96 4.920 4.917 (0.612) 102841 18.2529 18 2 4.477 4.473 (0.557) 184436 20.7966 18 Allvl Chloride 41 20.8 73 5.127 5.131 (0.638) 570726 43.6335 19 Methyl tert-butyl ether 43.6 50845 199.168 39 5.542 5.546 (0.690) 20 Acetonitrile 199 5.785 5.789 (0.720) 365851 21.6922 21 Di-isopropyl ether 45 21.7 53 5.906 5.910 (0.735) 178736 21.5471 54 7.965 7.969 (0.991) 240319 231.909 21.5 22 Chloroprene 23 Propionitrile 232

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0800.D$ Report Date: 21-Jan-2015 13:22

							CONCENTRA	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Comp	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
====	=======	====	====	======	=======	======	======	======	========
2	4 Methacrylonitrile	41	7.986	7.990	(0.994)	905140	233.339	233	
2	5 1,1-Dichloroethane	63	5.949	5.953	(0.740)	205827	19.1727	19.2	
2	6 Acrylonitrile	52	6.042	6.046	(0.752)	251296	110.674	111	
2	7 Ethyl tertiary-butyl ether	59	6.349	6.353	(0.790)	305235	22.0784	22.1	
2	8 Vinyl Acetate	43	6.371	6.375	(0.732)	265450	20.0213	20.0	
2	9 cis-1,2-Dichloroethene	96	6.757	6.761	(0.841)	117022	19.0383	19.0	
M 3	0 1,2-Dichloroethylene (total)	96				219863	37.2912	37.3	
3	1 Methyl Methacrylate	41	9.566	9.570	(1.099)	116522	24.0047	24.0(R)	
3	2 2,2-Dichloropropane	77	6.907	6.911	(0.859)	143888	17.4151	17.4	
3	3 Bromochloromethane	128	7.036	7.040	(0.875)	53660	19.7718	19.8	
3	4 Chloroform	83	7.157	7.154	(0.891)	202757	18.4772	18.5	
3	5 Carbon Tetrachloride	117	7.314	7.318	(0.841)	141791	19.0071	19.0	
3	6 Tetrahydrofuran	42	7.371	7.361	(0.917)	37790	18.7563	18.8	
\$ 3	7 Dibromofluoromethane	113	7.400	7.404	(0.921)	263823	49.9729	50.0	
3	8 1,1,1-Trichloroethane	97	7.414	7.418	(0.923)	180054	18.9341	18.9	
3	9 1,1-Dichloropropene	75	10.867	10.871	(1.249)	153925	19.9961	20.0	
4	0 2-Butanone	43	7.586	7.583	(0.944)	66041	20.4892	20.5	
4	1 Benzene	78	7.908	7.912	(0.909)	449326	20.3887	20.4	
* 4	2 Pentafluorobenzene	168	8.036	8.039	(1.000)	567035	50.0000		
4	3 Cyclohexane	56	7.021	7.025	(0.874)	184934	19.6247	19.6	
4	4 Ethyl Methacrylate	69	11.060	11.057	(1.271)	135671	21.3852	21.4	
\$ 4	5 1,2-Dichloroethane-D4	65	8.086	8.090	(1.006)	320964	48.0240	48.0	
4	6 Tertiary-amyl methyl ether	73	8.079	8.083	(1.005)	246321	20.6408	20.6	
4	7 1,2-Dichloroethane	62	8.172	8.176	(0.939)	151949	18.6262	18.6	
4	8 Trichloroethene	95	8.651	8.654	(0.994)	109955	18.9270	18.9	
* 4	9 1,4-Difluorobenzene	114	8.701	8.705	(1.000)	921547	50.0000		
5	0 Dibromomethane	93	9.166	9.162	(1.053)	66928	18.4736	18.5	
5	1 1,2-Dichloropropane	63	9.287	9.284	(1.067)	111190	19.9761	20.0	
5	2 Bromodichloromethane	83	9.366	9.370	(1.076)	150926	19.5744	19.6	
5	3 cis-1,3-dichloropropene	75	10.109	10.113	(1.162)	167393	18.4741	18.5	
5	4 1,4-Dioxane	88	9.609	9.613	(1.104)	53369	549.601	550(R)	
\$ 5	5 Toluene-D8	98	10.316	10.320	(1.186)	952304	53.6704	53.7	
5	6 2-Chloroethylvinylether	63	10.045	10.049	(1.154)	48917	23.4158	23.4	
5	7 Toluene	92	10.381	10.378	(1.193)	280263	20.3076	20.3	
5	8 4-methyl-2-pentanone	43	10.831	10.828	(1.245)	125402	22.1714	22.2	
5	9 Tetrachloroethene	164	10.824	10.821	(0.888)	95585	19.9068	19.9	
6	0 trans-1,3-Dichloropropene	75	10.867	10.871	(1.249)	153925	19.9961	20.0	
6	1 1,1,2-Trichloroethane	83	11.060	11.057	(1.271)	85243	19.1626	19.2	
6	2 Dibromochloromethane	129	11.267	11.271	(0.924)	107831	19.2472	19.2	
6	3 1,3-Dichloropropane	76	11.381	11.385	(0.934)	181020	20.5310	20.5	
6	4 1,2-Dibromoethane	107	11.553	11.557	(1.328)	103667	18.2606	18.3	
6	5 2-Hexanone	43	11.839	11.836	(0.971)	88746	21.3814	21.4	
* 6	6 Chlorobenzene-D5	117	12.189	12.193	(1.000)	918144	50.0000		
6	7 Chlorobenzene	112	12.211	12.215	(1.002)	321338	19.5892	19.6	
15	2 1-Chlorohexane	91	12.182	12.186	(1.516)	181781	19.2725	19.3	
6	8 Ethylbenzene	106	12.246	12.250	(1.005)	175550	20.7243	20.7	
6	9 1,1,1,2-Tetrachloroethane	131	12.296	12.293	(1.009)	108580	20.2966	20.3	
M 7	0 Xylenes (total)	106				642038	62.3658	62.4	
7	1 m+p-Xylenes	106	12.432	12.436	(1.020)	432765	41.8714	41.9	
7	2 o-Xylene	106	13.004	13.008	(1.067)	209273	20.4944	20.5	
7	3 Styrene	104	13.076	13.080	(1.073)	337051	21.5522	21.6	
	4 Bromoform	173	13.111	13.115	(1.076)	70330	19.4023	19.4	
7	4 Bromoform 5 Isopropylbenzene	173 105		13.115 13.437		70330 564948	19.4023 20.9768	19.4 21.0	

Data File: $\t server \g \chem \gcms-c.i\C122914B.b\C0800.D$ Report Date: 21-Jan-2015 13:22

							CONCENTRA	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	=====	====	====	======	======	======	======	======	========
77 cis-1,4-Dichlo	ro-2-Butene	53	13.940	13.937	(0.898)	55933	20.3774	20.4	
78 trans-1,4-Dich	loro-2-Butene	53	14.398	14.402	(0.928)	45210	21.0309	21.0	
79 Bromobenzene		156	13.983	13.987	(0.901)	137394	19.7846	19.8	
80 N-Propylbenzen	е	91	14.026	14.030	(0.904)	713184	21.3996	21.4	
81 1,1,2,2-Tetrac	hloroethane	83	14.133	14.137	(0.911)	161872	19.5287	19.5	
82 1,3,5-Trimethy	lbenzene	105	14.319	14.316	(0.923)	483636	21.3256	21.3	
83 2-Chlorotoluen	e	91	14.255	14.252	(0.918)	414868	19.9116	19.9	
84 1,2,3-Trichlor	opropane	75	14.334	14.330	(0.924)	131591	19.3654	19.4	
85 4-Chlorotoluen	e	91	14.498	14.502	(0.934)	430236	20.3460	20.3	
86 tert-Butylbenz	ene	119	14.791	14.795	(0.953)	508173	21.0229	21.0	
87 Pentachloroeth	ane	117	14.827	14.824	(0.955)	103469	20.3552	20.4	
88 1,2,4-Trimethy	lbenzene	105	14.905	14.902	(0.960)	493000	21.9635	22.0	
89 P-Isopropyltol	uene	119	15.291	15.295	(0.985)	574157	23.0587	23.0	
90 1,3-Dichlorobe	nzene	146	15.399	15.403	(0.992)	274125	19.5306	19.5	
* 91 1,4-Dichlorobe	nzene-D4	152	15.520	15.517	(1.000)	513366	50.0000		
92 1,4-Dichlorobe	nzene	146	15.542	15.546	(1.001)	277813	19.7466	19.7	
93 N-Butylbenzene		91	15.971	15.967	(1.029)	580563	23.9866	24.0	
94 sec-Butylbenze	ne	105	15.063	15.067	(0.971)	696905	22.3690	22.4	
95 1,2-Dichlorobe	nzene	146	16.214	16.218	(1.045)	248794	19.8292	19.8	
96 1,2-Dibromo-3-	Chloropropane	75	17.565	17.569	(1.132)	27928	19.0596	19.0	
97 1,3,5-Trichlor	obenzene	180	17.622	17.626	(1.135)	217620	22.7346	22.7	
98 Hexachlorobuta	diene	225	18.722	18.726	(1.206)	102272	22.6968	22.7	
99 1,2,4-Trichlor	obenzene	180	18.765	18.762	(1.209)	155010	22.3095	22.3	
100 1,2,3-Trimethy	lbenzene	105	15.585	15.589	(1.004)	502456	22.1651	22.2	
101 Naphthalene		128	19.352	19.348	(1.247)	342999	23.5099	23.5	
102 1,2,3-Trichlor	obenzene	180	19.687	19.684	(1.269)	122045	22.2478	22.2	
103 Methyl Acetate		43	4.977	4.974	(0.619)	120218	21.9364	21.9	
104 Methylcyclohex	ane	83	8.630	8.625	(1.074)	201760	22.6488	22.6	
M 153 Total Alkylben	zenes	100				4614566	176.103	176(R)	

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C0996.D

Report Date: 21-Jan-2015 13:31

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa02236

Sample Matrix: LIQUID Fraction: VOA

Lab Smp Id: WG157009-4

Level: LOW Operator: REC Data Type: MS DATA SpikeList File: E624cc.spk SampleType: LCS Quant Type: ISTD

Sublist File: all.sub
Method File: \target_server\gg\chem\gcms-c.i\C011515.b\C624a27.m
Misc Info: WG157009, WG157320-3, SI0230-2

SPIKE COMPOUND	CONC ADDED ug/l	CONC RECOVERED ug/l	% RECOVERED	LIMITS
2 Chloromethane 3 Vinyl chloride 4 Bromomethane 5 Chloroethane 6 Trichlorofluoromet 9 1,1-Dichloroethene 14 Methylene Chloride 17 trans-1,2-Dichloro 25 1,1-Dichloroethane 29 cis-1,2-Dichloroet 34 Chloroform 38 1,1,1-Trichloroeth 35 Carbon Tetrachlori 41 Benzene 47 1,2-Dichloroethane 48 Trichloroethene 51 1,2-Dichloropropan 52 Bromodichlorometha 56 2-Chloroethylvinyl 53 cis-1,3-dichloropr 57 Toluene 60 trans-1,3-Dichloro 61 1,1,2-Trichloroeth 59 Tetrachloroethene 62 Dibromochlorometha 67 Chlorobenzene 68 Ethylbenzene 68 Ethylbenzene 69 I,1-Dichlorobenzen 90 1,3-Dichlorobenzen 91 1,4-Dichlorobenzen 95 1,2-Dichlorobenzen	20.0 20.0	16.0 18.7 13.4 20.0 19.7 18.4 18.7 20.0 18.4 20.8 20.8 20.0 19.4 19.9 18.0 18.7 19.7 24.7 19.7 24.7 19.7 19.1 20.2 18.5 16.8 18.2 17.8 18.1 17.9 17.9 17.9 17.2 18.1	79.81* 93.43* 66.85* 100.27* 98.65* 92.25* 91.88* 93.71* 100.30* 92.12 103.91* 103.82* 100.16* 97.27* 99.37* 89.90* 93.66* 98.49* 123.46* 98.72* 95.33* 100.79* 92.31* 84.23* 90.79* 89.11* 90.65* 90.31* 89.35* 89.35* 89.35*	1-39 3-37 8-32 10-30 10-30 12-28 14-26 15-26 0-100 14-27 15-25 13-27 14-26 13-27 14-26 13-27 15-25 10-30 14-27 13-27 12-28 14-26 12-28 15-25 13-27
	l ———————			l ———— I

SURROGATE COMPOUND	OGATE COMPOUND ADDED ug/1		% RECOVERED	LIMITS
\$ 37 Dibromofluorometha	50.0	49.3	98.68	68-128

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C0996.D Report Date: 21-Jan-2015 13:31

SURROGATE COMPOUND	AMOUNT ADDED ug/l	AMOUNT RECOVERED ug/l	% RECOVERED	LIMITS
\$ 45 1,2-Dichloroethane	50.0	55.6	111.15	67-135
\$ 55 Toluene-D8	50.0	50.1	100.27	65-128
\$ 76 P-Bromofluorobenze	50.0	49.4	98.71	56-133

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C0996.D

Report Date: 21-Jan-2015 13:32

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-c.i\C011515.b\C0996.D

Lab Smp Id: WG157009-4

Inj Date : 15-JAN-2015 10:29 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : WG157009-4,SI0230 Misc Info : WG157009,WG157320-3,SI0230-2 Inst ID: gcms-c.i

Comment

Method : \\target_server\gg\chem\gcms-c.i\C011515.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D Als bottle: 3 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12 Processing Host: V200T1

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description DF 1.000 Dilution Factor Vo

5.000 sample purged Local Compound Variable Cpnd Variable

					CONCENTRA		
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/1)	(ug/l)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.995	1.993 (0.248)	104591	17.7471	17.7	
2 Chloromethane	50	2.231	2.229 (0.277)	129192	15.9626	16.0(R)	
3 Vinyl chloride	62	2.331	2.329 (0.290)	107835	18.6866	18.7(R)	
4 Bromomethane	94	2.731	2.729 (0.340)	37212	13.3691	13.4(R)	
5 Chloroethane	64	2.881	2.879 (0.358)	48938	20.0544	20.0(R)	
6 Trichlorofluoromethane	101	3.053	3.058 (0.380)	161003	19.7300	19.7(R)	
7 Diethyl Ether	59	3.496	3.494 (0.435)	64129	19.4157	19.4	
8 Tertiary-butyl alcohol	59	5.354	5.353 (0.666)	31199	85.6105	85.6	
9 1,1-Dichloroethene	96	3.753	3.751 (0.467)	71294	18.4494	18.4(R)	
10 Carbon Disulfide	76	3.789	3.787 (0.471)	207095	17.8868	17.9	
11 Freon-113	151	3.818	3.809 (0.475)	50422	19.1696	19.2	
12 Iodomethane	142	3.961	3.959 (0.493)	31973	12.2988	12.3	
13 Acrolein	56	4.275	4.266 (0.532)	64549	88.1848	88.2	
14 Methylene Chloride	84	4.654	4.652 (0.579)	94272	18.3755	18.4(R)	
15 Acetone	43	4.754	4.752 (0.591)	162054	86.1111	86.1	
16 Isobutyl Alcohol	43	8.257	8.255 (1.027)	58078	330.468	330	
17 trans-1,2-Dichloroethene	96	4.918	4.917 (0.612)	79344	18.7423	18.7(R)	
18 Allyl Chloride	41	4.475	4.473 (0.556)	139236	20.8949	20.9	
19 Methyl tert-butyl ether	73	5.133	5.131 (0.638)	409209	41.6370	41.6	
20 Acetonitrile	39	5.547	5.546 (0.690)	32670	170.319	170	
21 Di-isopropyl ether	45	5.783	5.789 (0.719)	263482	20.7918	20.8	
22 Chloroprene	53	5.912	5.910 (0.735)	135527	21.7443	21.7	
23 Propionitrile	54	7.963	7.969 (0.990)	148340	190.515	190	

Data File: $\t server \g \chem \gcms-c.i\C011515.b\C0996.D$ Report Date: 21-Jan-2015 13:32

							CONCENTR	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Com	pounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
===		====	====	======	= ======	=======	======	======	========
	24 Methacrylonitrile	41	7.985	7.990	(0.993)	652698	223.937	224	
	25 1,1-Dichloroethane	63	5.948	5.953	(0.740)	161808	20.0596	20.0(R)	
	26 Acrylonitrile	52	6.048	6.046	(0.752)	167662	98.2734	98.3	
	27 Ethyl tertiary-butyl ether	59	6.348	6.353	(0.789)	220562	21.2327	21.2	
	28 Vinyl Acetate	43	6.377	6.375	(0.733)	208816	19.7230	19.7	
	29 cis-1,2-Dichloroethene	96	6.763	6.761	(0.841)	85088	18.4235	18.4	
M	30 1,2-Dichloroethylene (total)	96				164432	37.1657	37.2	
	31 Methyl Methacrylate	41	9.572	9.570	(1.100)	77294	19.9405	19.9	
	32 2,2-Dichloropropane	77	6.906	6.911	(0.859)	134807	21.7148	21.7	
	33 Bromochloromethane	128	7.034	7.040	(0.875)	38386	18.8239	18.8	
	34 Chloroform	83	7.156	7.154	(0.890)	171352	20.7822	20.8(R)	
	35 Carbon Tetrachloride	117	7.313	7.318	(0.841)	119329	20.0315	20.0(R)	
	36 Tetrahydrofuran	42	7.363	7.361	(0.916)	151341	99.9698	100	
\$	37 Dibromofluoromethane	113	7.399	7.404	(0.920)	195722	49.3405	49.3	
	38 1,1,1-Trichloroethane	97	7.413	7.418	(0.922)	148360	20.7635	20.8(R)	
	39 1,1-Dichloropropene	75	10.866	10.871	(1.249)	123913	20.1583	20.2	
	40 2-Butanone	43	7.585	7.583	(0.943)	229912	94.9324	94.9	
	41 Benzene	78	7.906		(0.909)	342360	19.4542	19.4(R)	
*	42 Pentafluorobenzene	168	8.042		(1.000)	426057	50.0000	,	
	43 Cyclohexane	56	7.020		(0.873)	147681	20.8571	20.8	
	44 Ethyl Methacrylate	69	11.059		(1.271)	98744	19.4912	19.5	
	45 1,2-Dichloroethane-D4	65	8.092		(1.006)	279074	55.5729	55.6	
	46 Tertiary-amyl methyl ether	73	8.085		(1.005)	173799	19.3827	19.4	
	47 1,2-Dichloroethane	62	8.178		(0.940)	129464	19.8737	19.9(R)	
	48 Trichloroethene	95	8.650		(0.994)	83412	17.9803	18.0(R)	
*	49 1,4-Difluorobenzene	114	8.700		(1.000)	735895	50.0000	10.0(10)	
	50 Dibromomethane	93	9.164		(1.053)	50691	17.5217	17.5	
		63	9.286		(1.053)	83257	18.7312	18.7(R)	
	51 1,2-Dichloropropane 52 Bromodichloromethane	83	9.372			121277	19.6972		
		75			(1.077)			19.7(R)	
	53 cis-1,3-dichloropropene		10.108		(1.162)	142858	19.7439	19.7(R)	
4	54 1,4-Dioxane	88	9.615		(1.105)	21902	282.452	282	
	55 Toluene-D8	98		10.320		710350	50.1341	50.1	
	56 2-Chloroethylvinylether	63	10.051		(1.155)	41192	24.6924	24.7(R)	
	57 Toluene	92		10.378		210122	19.0663	19.1(R)	
	58 4-methyl-2-pentanone	43		10.828		478699	105.987	106	
	59 Tetrachloroethene	164		10.821		66699	16.8452	16.8(R)	
	60 trans-1,3-Dichloropropene	75		10.871		123913	20.1583	20.2(R)	
	61 1,1,2-Trichloroethane	83		11.057		65580	18.4616	18.5(R)	
	62 Dibromochloromethane	129		11.271		83890	18.1585	18.2(R)	
	63 1,3-Dichloropropane	76	11.380		(0.934)	139213	19.1474	19.1	
	64 1,2-Dibromoethane	107		11.557		80282	17.7090	17.7	
	65 2-Hexanone	43		11.836		344604	100.682	101	
*	66 Chlorobenzene-D5	117		12.193		757120	50.0000		
	67 Chlorobenzene	112	12.209	12.215	(1.002)	241085	17.8226	17.8(R)	
1	52 1-Chlorohexane	91	12.181	12.186	(1.515)	134929	19.0387	19.0	
	68 Ethylbenzene	106	12.245	12.250	(1.005)	126642	18.1302	18.1(R)	
	69 1,1,1,2-Tetrachloroethane	131	12.295	12.293	(1.009)	83522	18.9330	18.9	
M	70 Xylenes (total)	106				482217	56.8041	56.8	
	71 m+p-Xylenes	106	12.438	12.436	(1.021)	324561	38.0810	38.1	
	72 o-Xylene	106	13.010	13.008	(1.067)	157656	18.7231	18.7	
	73 Styrene	104	13.081	13.080	(1.073)	245869	19.0654	19.1	
	74 Bromoform	173	13.117	13.115	(1.076)	53987	18.0613	18.1(R)	
	75 Isopropylbenzene	105	13.439	13.437	(0.866)	441628	20.1593	20.2	
	76 P-Bromofluorobenzene	95	12 020	13.837	(1 501)	314002	49.3573	49.4	

Data File: $\t server \g \chem \gcms-c.i\C011515.b\C0996.D$ Report Date: 21-Jan-2015 13:32

QUANT SIG ON-COLUMN FINAL	
Compounds MASS RT EXP RT REL RT RESPONSE (ug/l) (ug/l)	REVIEW CODE
	========
77 cis-1,4-Dichloro-2-Butene 53 13.939 13.937 (0.898) 44424 19.8970 19.9	
78 trans-1,4-Dichloro-2-Butene 53 14.397 14.402 (0.928) 34604 19.7897 19.8	
79 Bromobenzene 156 13.989 13.987 (0.901) 98417 17.4228 17.4	
80 N-Propylbenzene 91 14.025 14.030 (0.904) 558366 20.5974 20.6	
81 1,1,2,2-Tetrachloroethane 83 14.139 14.137 (0.911) 120480 17.8692 17.9(R)	
82 1,3,5-Trimethylbenzene 105 14.318 14.316 (0.923) 380118 20.6058 20.6	
83 2-Chlorotoluene 91 14.254 14.252 (0.918) 336689 19.8661 19.9	
84 1,2,3-Trichloropropane 75 14.332 14.330 (0.924) 101914 18.4384 18.4	
85 4-Chlorotoluene 91 14.504 14.502 (0.935) 349685 20.3300 20.3	
86 tert-Butylbenzene 119 14.790 14.795 (0.953) 381872 19.4217 19.4	
87 Pentachloroethane 117 14.826 14.824 (0.955) 78767 19.0501 19.0	
88 1,2,4-Trimethylbenzene 105 14.904 14.902 (0.960) 366851 20.0924 20.1	
89 P-Isopropyltoluene 119 15.297 15.295 (0.986) 413485 20.4152 20.4	
90 1,3-Dichlorobenzene 146 15.405 15.403 (0.993) 203987 17.8673 17.9(R)	
* 91 1,4-Dichlorobenzene-D4 152 15.519 15.517 (1.000) 417579 50.0000	
92 1,4-Dichlorobenzene 146 15.540 15.546 (1.001) 197239 17.2354 17.2(R)	
93 N-Butylbenzene 91 15.969 15.967 (1.029) 427650 21.7219 21.7	
94 sec-Butylbenzene 105 15.069 15.067 (0.971) 528615 20.8594 20.8	
95 1,2-Dichlorobenzene 146 16.219 16.218 (1.045) 184568 18.0847 18.1(R)	
96 1,2-Dibromo-3-Chloropropane 75 17.570 17.569 (1.132) 20849 17.4923 17.5	
97 1,3,5-Trichlorobenzene 180 17.628 17.626 (1.136) 139572 17.9256 17.9	
98 Hexachlorobutadiene 225 18.728 18.726 (1.207) 67430 18.3971 18.4	
99 1,2,4-Trichlorobenzene 180 18.764 18.762 (1.209) 98976 17.5125 17.5	
100 1,2,3-Trimethylbenzene 105 15.583 15.589 (1.004) 368975 20.0104 20.0	
101 Naphthalene 128 19.350 19.348 (1.247) 202812 17.0899 17.1	
102 1,2,3-Trichlorobenzene 180 19.686 19.684 (1.269) 72044 16.1456 16.1	
103 Methyl Acetate 43 4.976 4.974 (0.619) 78434 19.0477 19.0	
104 Methylcyclohexane 83 8.628 8.625 (1.073) 142559 21.2984 21.3	
M 153 Total Alkylbenzenes 100 3498585 163.873 164	

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1016.D

Report Date: 21-Jan-2015 13:37

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa02236

Sample Matrix: LIQUID Fraction: VOA

Lab Smp Id: WG157065-4

Level: LOW Operator: REC Data Type: MS DATA SpikeList File: E624cc.spk SampleType: LCS Quant Type: ISTD

Sublist File: all.sub
Method File: \TARGET_SERVER\GG\chem\gcms-c.i\C011615.b\C624a27.m

Misc Info: WG157065, WG157320-3, SI0230-4

SPIKE COMPOUND	CONC ADDED	CONC RECOVERED	% RECOVERED	LIMITS
	ug/l	ug/1	1.200,22	
2 Chloromethane 3 Vinyl chloride 4 Bromomethane 5 Chloroethane 6 Trichlorofluoromet 9 1,1-Dichloroethene 14 Methylene Chloride 17 trans-1,2-Dichloro 25 1,1-Dichloroethane 29 cis-1,2-Dichloroet 34 Chloroform 38 1,1,1-Trichloroeth 35 Carbon Tetrachlori 41 Benzene 47 1,2-Dichloroethane 48 Trichloroethene 51 1,2-Dichloropropan 52 Bromodichlorometha 56 2-Chloroethylvinyl 53 cis-1,3-dichloropr 57 Toluene 60 trans-1,3-Dichloro 61 1,1,2-Trichloroeth 59 Tetrachloroethene 62 Dibromochlorometha	ADDED	RECOVERED	RECOVERED 71.36* 80.26* 50.73* 97.94* 94.66* 84.74* 87.76* 87.33* 97.78* 86.61 102.01* 107.80* 103.03* 93.17* 105.30* 96.34* 92.60* 102.31* 47.79* 95.84* 95.71* 97.14* 88.09* 87.39* 93.08*	1-39 3-37 8-32 10-30 10-30 12-28 14-26 15-26 0-100 14-27 15-25 13-27 14-26 13-27 7-33 13-27 0-45 5-35 15-25 10-30 14-26 15-25
67 Chlorobenzene 68 Ethylbenzene 74 Bromoform	20.0 20.0 20.0	17.8 18.4 17.6	89.21* 92.05* 88.21*	13-27 12-28 14-26
81 1,1,2,2-Tetrachlor 90 1,3-Dichlorobenzen 92 1,4-Dichlorobenzen 95 1,2-Dichlorobenzen	20.0 20.0 20.0 20.0 20.0	16.6 17.8 17.0 17.7	83.03* 88.76* 85.28* 88.57*	12-28 15-25

SURROGATE COMPOUND	AMOUNT ADDED ug/l	AMOUNT RECOVERED ug/l	% RECOVERED	LIMITS
\$ 37 Dibromofluorometha	50.0	51.0	102.02	68-128

Data File: $\t server \g \chem \gcms-c.i\C011615.b\C1016.D$ Report Date: 21-Jan-2015 13:37

SURROGATE COMPOUND	AMOUNT ADDED ug/l	AMOUNT RECOVERED ug/l	% RECOVERED	LIMITS
\$ 45 1,2-Dichloroethane	50.0	56.9	113.89	67-135
\$ 55 Toluene-D8	50.0	49.5	99.00	65-128
\$ 76 P-Bromofluorobenze	50.0	50.0	99.99	56-133

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1016.D

Report Date: 21-Jan-2015 13:35

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011615.b\C1016.D

Lab Smp Id: WG157065-4

Inj Date : 16-JAN-2015 10:24 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : WG157065-4,SI0230 Misc Info : WG157065,WG157320-3,SI0230-4 Inst ID: gcms-c.i

Comment:

Method: \TARGET_SERVER\GG\chem\gcms-c.i\C011615.b\C624a27.m

Meth Date: 21-Jan-2015 13:35 gcms-c.i Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description 1.000 Dilution Factor 5.000 sample purged Vo

Cpnd Variable Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.994	1.993 (0.248)	81106	20.0000	14.6	
2 Chloromethane	50	2.230	2.229 (0.277)	108893	20.0000	14.3	
3 Vinyl chloride	62	2.330	2.329 (0.290)	87325	20.0000	16.0	
4 Bromomethane	94	2.731	2.729 (0.340)	26619	20.0000	10.1	
5 Chloroethane	64	2.881	2.879 (0.358)	45059	20.0000	19.6	
6 Trichlorofluoromethane	101	3.059	3.058 (0.380)	145637	20.0000	18.9	
7 Diethyl Ether	59	3.495	3.494 (0.435)	52361	20.0000	16.8	
8 Tertiary-butyl alcohol	59	5.347	5.353 (0.665)	20489	100.000	59.6	
9 1,1-Dichloroethene	96	3.753	3.751 (0.467)	61740	20.0000	16.9	
10 Carbon Disulfide	76	3.789	3.787 (0.471)	179717	20.0000	16.5	
11 Freon-113	151	3.810	3.809 (0.474)	44583	20.0000	18.0	
12 Iodomethane	142	3.960	3.959 (0.492)	26094	20.0000	10.6	
13 Acrolein	56	4.267	4.266 (0.531)	46961	100.000	68.0	
14 Methylene Chloride	84	4.653	4.652 (0.579)	84884	20.0000	17.6	
15 Acetone	43	4.761	4.752 (0.592)	133989	100.000	75.5	
16 Isobutyl Alcohol	43	8.256	8.255 (1.027)	35793	400.000	216	
17 trans-1,2-Dichloroethene	96	4.918	4.917 (0.612)	69704	20.0000	17.5	
18 Allyl Chloride	41	4.475	4.473 (0.556)	112479	20.0000	17.9	
19 Methyl tert-butyl ether	73	5.132	5.131 (0.638)	347088	40.0000	37.5	
20 Acetonitrile	39	5.547	5.546 (0.690)	26423	200.000	146	
21 Di-isopropyl ether	45	5.790	5.789 (0.720)	219292	20.0000	18.4	
22 Chloroprene	53	5.912	5.910 (0.735)	121639	20.0000	20.7	
23 Propionitrile	54	7.963	7.969 (0.990)	116999	200.000	159	
24 Methacrylonitrile	41	7.992	7.990 (0.994)	544006	200.000	198	

Data File: $\t server \g \chem \gcms-c.i\C011615.b\C1016.D$ Report Date: 21-Jan-2015 13:35

							AMOUN	TS	
		QUANT SIG					CAL-AMT	ON-COL	
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
==		====	====			======	======	======	========
	25 1,1-Dichloroethane	63	5.947	5.953	(0.740)	148709	20.0000	19.6	
	26 Acrylonitrile	52	6.047	6.046	(0.752)	129837	100.000	80.7	
	27 Ethyl tertiary-butyl ether	59	6.355	6.353	(0.790)	183439	20.0000	18.7	
	28 Vinyl Acetate	43	6.376	6.375	(0.733)	177410	20.0000	18.2	
	29 cis-1,2-Dichloroethene	96	6.762	6.761	(0.841)	75414	20.0000	17.3	
M	30 1,2-Dichloroethylene (total)	96				145118	20.0000	(a)	
	31 Methyl Methacrylate	41	9.571	9.570	(1.100)	61368	20.0000	17.2	
	32 2,2-Dichloropropane	77	6.905	6.911	(0.859)	122202	20.0000	20.9	
	33 Bromochloromethane	128	7.034	7.040	(0.875)	34553	20.0000	18.0	
	34 Chloroform	83	7.155	7.154	(0.890)	158566	20.0000	20.4	
	35 Carbon Tetrachloride	117	7.320	7.318	(0.841)	112810	20.0000	20.6	
	36 Tetrahydrofuran	42	7.370	7.361	(0.916)	119240	100.000	83.6	
\$	37 Dibromofluoromethane	113	7.405	7.404	(0.921)	190743	20.0000	51.0	
	38 1,1,1-Trichloroethane	97	7.413	7.418	(0.922)	145223	20.0000	21.6	
	39 1,1-Dichloropropene	75	10.872	10.871	(1.250)	109758	20.0000	19.4	
	40 2-Butanone	43	7.584	7.583	(0.943)	195083	100.000	85.4	
	41 Benzene	78	7.913	7.912	(0.910)	301367	20.0000	18.6	
*	42 Pentafluorobenzene	168	8.042	8.039	(1.000)	401630	50.0000		
	43 Cyclohexane	56	7.019	7.025	(0.873)	127125	20.0000	19.0	
	44 Ethyl Methacrylate	69	11.058	11.057	(1.271)	84507	20.0000	18.2	
\$	45 1,2-Dichloroethane-D4	65	8.092	8.090	(1.006)	269568	20.0000	56.9	
	46 Tertiary-amyl methyl ether	73	8.085	8.083	(1.005)	154367	20.0000	18.3	
	47 1,2-Dichloroethane	62	8.177	8.176	(0.940)	126086	20.0000	21.1	
	48 Trichloroethene	95	8.649		(0.994)	82145	20.0000	19.3	
*	49 1,4-Difluorobenzene	114	8.699		(1.000)	676311	50.0000		
	50 Dibromomethane	93	9.164	9.162	(1.053)	46884	20.0000	17.6	
	51 1,2-Dichloropropane	63	9.285		(1.067)	75653	20.0000	18.5	
	52 Bromodichloromethane	83	9.371		(1.077)	115784	20.0000	20.5	
	53 cis-1,3-dichloropropene	75	10.115	10.113		127456	20.0000	19.2	
	54 1,4-Dioxane	88	9.607		(1.104)	8678	400.000	122	
Ś	55 Toluene-D8	98		10.320		644546	20.0000	49.5	
7	56 2-Chloroethylvinylether	63	10.050	10.049		14655	20.0000	9.6	
	57 Toluene	92	10.379	10.378		193867	20.0000	19.1	
	58 4-methyl-2-pentanone	43	10.829	10.828		399862	100.000	96.3	
	59 Tetrachloroethene	164		10.821		63921	20.0000	17.5	
	60 trans-1,3-Dichloropropene	75		10.871		109758	20.0000	19.4	
	61 1,1,2-Trichloroethane	83		11.057		57519	20.0000	17.6	
	62 Dibromochloromethane	129		11.271		79443	20.0000	18.6	
	63 1,3-Dichloropropane	76		11.385		127632	20.0000	19.0	
	64 1,2-Dibromoethane	107		11.557		70250	20.0000	16.9	
	65 2-Hexanone	43		11.836		284678	100.000	90.0	
*	66 Chlorobenzene-D5						50.0000	90.0	
•		117		12.193		699338		17 0	
	67 Chlorobenzene	112		12.215		222922	20.0000	17.8	
	152 1-Chlorohexane	91		12.186		120363	20.0000	18.0	
	68 Ethylbenzene	106		12.250		118777	20.0000	18.4	
	69 1,1,1,2-Tetrachloroethane	131	12.295	12.293	(1.009)	76859	20.0000	18.9	
M	70 Xylenes (total)	106	10 10-	10 405	(1 001)	442122	60.0000	(a)	
	71 m+p-Xylenes	106		12.436		300818	40.0000	38.2	
	72 o-Xylene	106		13.008		141304	20.0000	18.2	
	73 Styrene	104		13.080		228871	20.0000	19.2	
	74 Bromoform	173		13.115		48707	20.0000	17.6	
	75 Isopropylbenzene	105		13.437		411807	20.0000	19.5	
\$	76 P-Bromofluorobenzene	95		13.837		292296	20.0000	50.0	
	77 cis-1,4-Dichloro-2-Butene	53	13.939	13.937	(0.898)	36656	20.0000	17.0	

Data File: $\t server \g \chem \gcms-c.i\C011615.b\C1016.D$ Report Date: 21-Jan-2015 13:35

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
=======================================	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.396	14.402 (0.928)	30310	20.0000	18.0	
79 Bromobenzene	156	13.989	13.987 (0.901)	93537	20.0000	17.2	
80 N-Propylbenzene	91	14.032	14.030 (0.904)	520536	20.0000	19.9	
81 1,1,2,2-Tetrachloroethane	83	14.139	14.137 (0.911)	107876	20.0000	16.6	
82 1,3,5-Trimethylbenzene	105	14.318	14.316 (0.923)	356987	20.0000	20.1	
83 2-Chlorotoluene	91	14.253	14.252 (0.918)	320878	20.0000	19.6	
84 1,2,3-Trichloropropane	75	14.332	14.330 (0.924)	93452	20.0000	17.5	
85 4-Chlorotoluene	91	14.503	14.502 (0.935)	328767	20.0000	19.8	
86 tert-Butylbenzene	119	14.796	14.795 (0.953)	362323	20.0000	19.1	
87 Pentachloroethane	117	14.825	14.824 (0.955)	70539	20.0000	17.7	
88 1,2,4-Trimethylbenzene	105	14.904	14.902 (0.960)	348235	20.0000	19.8	
89 P-Isopropyltoluene	119	15.297	15.295 (0.986)	383128	20.0000	19.6	
90 1,3-Dichlorobenzene	146	15.404	15.403 (0.993)	195275	20.0000	17.8	
* 91 1,4-Dichlorobenzene-D4	152	15.518	15.517 (1.000)	402358	50.0000		
92 1,4-Dichlorobenzene	146	15.540	15.546 (1.001)	188077	20.0000	17.0	
93 N-Butylbenzene	91	15.969	15.967 (1.029)	379389	20.0000	20.0	
94 sec-Butylbenzene	105	15.068	15.067 (0.971)	480257	20.0000	19.7	
95 1,2-Dichlorobenzene	146	16.219	16.218 (1.045)	174195	20.0000	17.7	
96 1,2-Dibromo-3-Chloropropane	75	17.570	17.569 (1.132)	18727	20.0000	16.3	
97 1,3,5-Trichlorobenzene	180	17.620	17.626 (1.135)	122664	20.0000	16.4	
98 Hexachlorobutadiene	225	18.728	18.726 (1.207)	53871	20.0000	15.2	
99 1,2,4-Trichlorobenzene	180	18.764	18.762 (1.209)	87944	20.0000	16.1	
100 1,2,3-Trimethylbenzene	105	15.583	15.589 (1.004)	333563	20.0000	18.8	
101 Naphthalene	128	19.357	19.348 (1.247)	184257	20.0000	16.1	
102 1,2,3-Trichlorobenzene	180	19.686	19.684 (1.269)	69460	20.0000	16.2	
103 Methyl Acetate	43	4.982	4.974 (0.620)	59395	20.0000	15.3	
104 Methylcyclohexane	83	8.628	8.625 (1.073)	119283	20.0000	18.9	
M 153 Total Alkylbenzenes	100			3242662	20.0000	(a)	

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Date : 29-DEC-2014 15:06

Client ID: Instrument: gcms-c.i

Sample Info: WG157320-8,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

Data File: \\target_server\gg\chem\gcms-c.i\C122914B.b\CB983A.D

Date : 29-DEC-2014 15:06

Client ID: Instrument: gcms-c.i

Sample Info: WG157320-8,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

1 bfb

Date : 29-DEC-2014 15:06

Client ID: Instrument: gcms-c.i

Sample Info: WG157320-8,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

L		of Maximum of points	: 95.00	ans 173-17	0 (0,00/	, Daongi o	und ocarr i		
	m/z	Υ.	m/z	Υ.	m/z	Y	m/z	Υ.	
1	37.00		60.00	+ 83 ا	77,00		 I 96.00	1415 I	•
1	38,00	1072 I	61,00	1089 I	79,00	810	106,00	112 I	
1	39,00	398 I	62,00	1118 I	80,00	86	140,00	104 I	
-1	45,00	235 I	63,00	887 I	81.00	814	141.00	79 I	
ı	47,00	331 I	68,00	2447 I	82,00	80	143,00	225	
+-		+		+			+	+	•
ı	49,00	1133 I		2355 I			I 173.00	86 I	
I	50,00	4939 I	70,00	92 I	88,00	1001	I 174.00	15773 I	
ı	51,00	1473 I	73.00	953 I	92,00	551	I 175.00	953 I	
ı	52,00	70 I	74.00	3971 l	93,00	949	I 176.00	15535 I	
- 1	56,00	347 I	75,00	10757 I	94.00	2745	177,00	1123 I	
+-		+		+			+	+	

Date : 15-JAN-2015 08:44

Client ID: Instrument: gcms-c.i

Sample Info: WG157009-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\CB993A.D

| 177 | 5.00 - 9.00% of mass 176

Date : 15-JAN-2015 08:44

Client ID: Instrument: gcms-c.i

Sample Info: WG157009-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

1 bfb

4,43 (6,99)

Date : 15-JAN-2015 08:44

Client ID: Instrument: gcms-c.i

Sample Info: WG157009-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

		Data File Spectrum		υ ans 172–17	4 (3,57)	, Backgrou	und Scan 1	63	
L	ocation.	of Maximum	95.00						
	Number	of points	: 44						
	m/z	Υ .	m/z	Υ .	m/z	Y	m/z	Υ	
1	36,00	261 I	57,00	570 I	77.00	76	96,00	1557	-
I	37.00	1066 I	60,00	238 I	78.00	84	141.00	73	
I	38.00	925 I	61.00	1041 I	79.00	648	143.00	297	
1	39,00	426 I	62,00	918 I	80,00	68	173.00	73	l
1		27			81,00		174.00		
1	44,00		68,00		82,00	,		873	
1	47.00	210	69.00	2354 I	87.00	602	176.00	11524	l
1	48,00	86 I	72,00	88 I	88.00	780	177.00	805	l
I	49,00	985 I	73.00	846 I	92.00	456	l		l
1	50,00		74.00		93.00	788			l
1	51,00	+ 1304 l	75,00	10043 I		2317			-
ı	56.00	200 I	76.00	819 I	95.00	18152	I		

Date : 16-JAN-2015 09:54

Client ID: Instrument: gcms-c.i

Sample Info: WG157065-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

Date : 16-JAN-2015 09:54

Client ID: Instrument: gcms-c.i

Sample Info: WG157065-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

1 bfb

Date : 16-JAN-2015 09:54

Client ID: Instrument: gcms-c.i

Sample Info: WG157065-3,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

L	ocation c	•	m: m:	Avg. Sca 95.00	ns 172–1	74	(3,57),	Backgro	ur	nd Scan 10	54	
	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
1	36,00	80	+-·	56,00	 343	+- I	76,00	801	1	95,00	17768	+
-1	37,00	974	ı	57,00	639	ı	79,00	578	I	96.00	1210	I
-1	38.00	751	I	61.00	1013	I	80.00	101	I	117.00	71	I
-1	39,00	421	I	62,00	814	I	81,00	528	I	141,00	175	I
1	40.00	23	l	63,00	686	I	82,00	151	I	143,00	173	l
1	45.00	158	+-·	68.00	1945	+- I	87,00	812	1	174.00	11324	+
-1	47,00	68	ı	69.00	2020	ı	88.00	577	I	175,00	827	I
-1	49,00	913	I	73.00	689	I	92,00	502	I	176.00	11064	I
- 1	50,00	4225	I	74.00	3222	I	93.00	838	I	177.00	825	I
1	51,00	1235	ı	75,00	9689	ı	94.00	2015	ı			I

Raw QC Data Section

Report of Analytical Results

Client:

Lab ID: WG157009-2

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: C1003A.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By: REC

Extraction Method: EPA 624 **Lab Prep Batch:** WG157009

Analysis Date: 15-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	5	5.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	5	5.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	5	5.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	5	5.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	10	10.	1.1	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.25	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	5	5.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	5	5.0	0.22	0.50
Benzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	5	5.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	5	5.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.19	0.50
Toluene	U	0.50	ug/L	1	5	5.0	0.27	0.50
trans-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	5	5.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	5	5.0	0.30	0.50
Chlorobenzene	U	0.50	ug/L	1	5	5.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Bromoform	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	5	5.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.15	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Freon-113	U	0.50	ug/L	1	5	5.0	0.31	0.50
Acetone	U	2.5	ug/L	1	10	10.	2.2	2.5

Page 1 of 2

Report of Analytical Results

Client:

Lab ID: WG157009-2

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: C1003A.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By: REC Extraction Method: EPA 624

Lab Prep Batch: WG157009

Analysis Date: 15-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Carbon Disulfide	U	0.50	ug/L	1	5	5.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	5	5.0	0.36	0.50
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	10	10.	0.21	1.0
2-Butanone	U	2.5	ug/L	1	10	10.	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	5	5.0	0.31	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
1,2-Dibromoethane	U	0.50	ug/L	1	5	5.0	0.22	0.50
Xylenes (Total)	U	1.5	ug/L	1	15	15.	0.25	1.5
M+P-Xylenes	U	1.0	ug/L	1	10	10.	0.59	1.0
o-Xylene	U	0.50	ug/L	1	5	5.0	0.25	0.50
Styrene	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,2-Dibromo-3-Chloropropane	U	0.50	ug/L	1	5	5.0	0.50	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	5	5.0	0.37	0.50
Isopropylbenzene	U	0.50	ug/L	1	5	5.0	0.23	0.50
Methyl Acetate	U	0.75	ug/L	1	5	5.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	5	5.0	0.30	0.50
1,2-Dichloroethane-D4		124.	%					
Toluene-D8		98.9	%					
P-Bromofluorobenzene		97.9	%					
Dibromofluoromethane		107.	%					

Data File: \target_server\gg\chem\gcms-c.i\C011515.b\C1003A.D

Report Date: 21-Jan-2015 13:51

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-c.i\C011515.b\C1003A.D

Lab Smp Id: WG157009-2 Client Smp ID: WG157009-Blank

Inj Date : 15-JAN-2015 14:30 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Inst ID: gcms-c.i

Smp Info : WG157009-2, SI0230

Misc Info: WG157009, WG157320-3, SI0230-2

Comment :

Method : \\target_server\\gg\chem\\gcms-c.i\\C011515.b\\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date: 29-DEC-2014 15:30 Cal File: C0792A.D Als bottle: 10 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name	Value	Description
DF Vo		Dilution Factor sample purged
Cpnd Variable		Local Compound Variable

CONCENTRATIONS OUANT SIG ON-COLUMN FINAL MASS RT EXP RT REL RT RESPONSE (ug/l) (ug/l) REVIEW CODE Compounds ---- ------ ------ -----------======== 189786 53.4616 7.404 7.404 (0.921) 113 \$ 37 Dibromofluoromethane 53.5 168 8.041 8.039 (1.000) 381289 50.0000 * 42 Pentafluorobenzene \$ 45 1,2-Dichloroethane-D4 8.091 8.090 (1.006) 279671 62.2307 65 62.2 114 * 49 1,4-Difluorobenzene 8.705 8.705 (1.000) 686259 50.0000 49.4 \$ 55 Toluene-D8 98 10.321 10.320 (1.186) 653418 49.4515 12.194 12.193 (1.000) 707120 50.0000 * 66 Chlorobenzene-D5 117 95 13.838 13.837 (1.... 152 15.517 15.517 (1.000) 373696 50.0000 225 18.734 18.726 (1.207) 1743 0.53139 0.53(a) \$ 76 P-Bromofluorobenzene * 91 1,4-Dichlorobenzene-D4 98 Hexachlorobutadiene

QC Flag Legend

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C1003A.D

Date : 15-JAN-2015 14:30 Client ID: WG157009-Blank

Sample Info: WG157009-2,SI0230

98 Hexachlorobutadiene

Concentration: 0.53 ug/l

Instrument: gcms-c.i

Report of Analytical Results

Client:

Lab ID: WG157065-2

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: C1020.D

Sample Date: Received Date:

Extract Date: 16-JAN-15

Extracted By: REC

Extraction Method: EPA 624 **Lab Prep Batch:** WG157065

Analysis Date: 16-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	5	5.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	5	5.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	5	5.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	5	5.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	5	5.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.35	0.50
Methylene Chloride	U	2.5	ug/L	1	10	10.	1.1	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.25	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	5	5.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	5	5.0	0.22	0.50
Benzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	5	5.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	5	5.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	5	5.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.19	0.50
Toluene	U	0.50	ug/L	1	5	5.0	0.27	0.50
trans-1,3-Dichloropropene	U	0.50	ug/L	1	5	5.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	5	5.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	5	5.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	5	5.0	0.30	0.50
Chlorobenzene	U	0.50	ug/L	1	5	5.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Bromoform	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	5	5.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	5	5.0	0.15	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	5	5.0	0.21	0.50
Freon-113	U	0.50	ug/L	1	5	5.0	0.31	0.50
Acetone	U	2.5	ug/L	1	10	10.	2.2	2.5

Page 1 of 2

Report of Analytical Results

Client:

Lab ID: WG157065-2

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: C1020.D

Sample Date: Received Date:

Extract Date: 16-JAN-15

Extracted By:REC

Extraction Method: EPA 624 Lab Prep Batch: WG157065

Analyst: REC

Analysis Date: 16-JAN-15

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Carbon Disulfide	U	0.50	ug/L	1	5	5.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	5	5.0	0.36	0.50
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	10	10.	0.21	1.0
2-Butanone	U	2.5	ug/L	1	10	10.	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	5	5.0	0.31	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
1,2-Dibromoethane	U	0.50	ug/L	1	5	5.0	0.22	0.50
Xylenes (Total)	U	1.5	ug/L	1	15	15.	0.25	1.5
M+P-Xylenes	U	1.0	ug/L	1	10	10.	0.59	1.0
o-Xylene	U	0.50	ug/L	1	5	5.0	0.25	0.50
Styrene	U	0.50	ug/L	1	5	5.0	0.23	0.50
1,2-Dibromo-3-Chloropropane	U	0.50	ug/L	1	5	5.0	0.50	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	5	5.0	0.37	0.50
Isopropylbenzene	U	0.50	ug/L	1	5	5.0	0.23	0.50
Methyl Acetate	U	0.75	ug/L	1	5	5.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	5	5.0	0.30	0.50
1,2-Dichloroethane-D4		128.	%					
Toluene-D8		101.	%					
P-Bromofluorobenzene		101.	%					
Dibromofluoromethane		108.	%					

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1020.D

Report Date: 21-Jan-2015 13:35

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011615.b\C1020.D

Client Smp ID: WG157065-Blank Lab Smp Id: WG157065-2

Inj Date : 16-JAN-2015 12:57 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : WG157065-2,SI0230 Misc Info : WG157065,WG157320-3,SI0230-4 Inst ID: gcms-c.i

Comment

: \\target_server\gg\chem\gcms-c.i\C011615.b\C624a27.m Method

Meth Date: 21-Jan-2015 13:35 gcms-c.i Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D Als bottle: 5 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vo	5.000	sample purged

Cpnd Variable Local Compound Variable

						CONCENTR.	ATIONS	
		QUANT SIG				ON-COLUMN	FINAL	
C	ompounds	MASS	RT	EXP RT REL	RT RESPONSE	(ug/1)	(ug/l)	REVIEW CODE
=	========	====	====			======	======	========
\$	37 Dibromofluoromethane	113	7.405	7.404 (0.921	173736	53.7606	53.8	
*	42 Pentafluorobenzene	168	8.041	8.039 (1.000	347102	50.0000		
\$	45 1,2-Dichloroethane-D4	65	8.091	8.090 (1.006	262322	64.1194	64.1	
*	49 1,4-Difluorobenzene	114	8.706	8.705 (1.000	607945	50.0000		
\$	55 Toluene-D8	98	10.321	10.320 (1.186	5) 593440	50.6978	50.7	
*	66 Chlorobenzene-D5	117	12.194	12.193 (1.000	639998	50.0000		
\$	76 P-Bromofluorobenzene	95	13.838	13.837 (1.589	265524	50.5212	50.5	
*	91 1,4-Dichlorobenzene-D4	152	15.518	15.517 (1.000	343663	50.0000		

Instrument: gcms-c.i

LCS Recovery Report

Client:

Lab ID: WG157009-1 **Client ID:** LCS

Project: SDG: SI0230

LCS File ID: C0998.D

Sample Date: Analysis Date: 15-JAN-15
Received Date: Analyst: REC

Extract Date: 15-JAN-15 Analysis Method: EPA 624

Extracted By: REC Matrix: AQ
Extraction Method: EPA 624 % Solids: NA

Lab Prep Batch: WG157009 **Report Date:** 21-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Dichlorodifluoromethane	71.0	20.0	14.2	ug/L	29-164
Chloromethane	70.5	20.0	14.1	ug/L	0-273
Vinyl Chloride	82.5	20.0	16.5	ug/L	0-251
Bromomethane	50.0	20.0	10.0	ug/L	0-242
Chloroethane	90.0	20.0	18.0	ug/L	14-230
Trichlorofluoromethane	92.0	20.0	18.4	ug/L	17-181
1,1-Dichloroethene	76.0	20.0	15.2	ug/L	0-234
Methylene Chloride	80.5	20.0	16.1	ug/L	0-221
trans-1,2-Dichloroethene	79.5	20.0	15.9	ug/L	54-156
1,1-Dichloroethane	93.0	20.0	18.6	ug/L	59-155
Chloroform	91.5	20.0	18.3	ug/L	51-138
1,1,1-Trichloroethane	93.0	20.0	18.6	ug/L	52-162
Carbon Tetrachloride	90.5	20.0	18.1	ug/L	70-140
Benzene	87.0	20.0	17.4	ug/L	37-151
1,2-Dichloroethane	97.0	20.0	19.4	ug/L	49-155
Trichloroethene	87.0	20.0	17.4	ug/L	71-157
1,2-Dichloropropane	87.5	20.0	17.5	ug/L	0-210
Bromodichloromethane	94.5	20.0	18.9	ug/L	35-155
cis-1,3-Dichloropropene	85.5	20.0	17.1	ug/L	0-227
Toluene	90.5	20.0	18.1	ug/L	47-150
trans-1,3-Dichloropropene	94.5	20.0	18.9	ug/L	17-183
1,1,2-Trichloroethane	86.0	20.0	17.2	ug/L	52-150
Tetrachloroethene	78.5	20.0	15.7	ug/L	64-148
Dibromochloromethane	85.0	20.0	17.0	ug/L	53-149
Chlorobenzene	82.0	20.0	16.4	ug/L	37-160
Ethylbenzene	84.0	20.0	16.8	ug/L	37-162
Bromoform	84.5	20.0	16.9	ug/L	45-169
1,1,2,2-Tetrachloroethane	82.5	20.0	16.5	ug/L	46-157
1,3-Dichlorobenzene	81.5	20.0	16.3	ug/L	59-156
1,4-Dichlorobenzene	82.0	20.0	16.4	ug/L	18-190
1,2-Dichlorobenzene	83.5	20.0	16.7	ug/L	18-190
cis-1,2-Dichloroethene	* 85.0	20.0	17.0	ug/L	85-123
Freon-113	92.0	20.0	18.4	ug/L	73-126
Acetone	92.0	20.0	18.4	ug/L	62-172
Carbon Disulfide	94.0	20.0	18.8	ug/L	71-129

Page 1 of 2

LCS Recovery Report

Client:

Lab ID: WG157009-1 Client ID: LCS

Project: SDG: SI0230

LCS File ID: C0998.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By: REC Extraction Method: EPA 624

Lab Prep Batch: WG157009

Analysis Date: 15-JAN-15

Analyst: REC

Analysis Method: EPA 624

Matrix: AQ % Solids: NA

Report Date: 21-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Methyl tert-butyl Ether	101.	40.0	40.5	ug/L	81-125
1,2-Dichloroethylene (Total)	* 82.2	40.0	32.9	ug/L	84-121
2-Butanone	76.0	20.0	15.2	ug/L	71-132
Cyclohexane	91.0	20.0	18.2	ug/L	71-133
4-Methyl-2-Pentanone	86.0	20.0	17.2	ug/L	83-122
2-Hexanone	* 79.0	20.0	15.8	ug/L	80-124
1,2-Dibromoethane	85.5	20.0	17.1	ug/L	84-116
Xylenes (Total)	* 89.0	60.0	53.4	ug/L	89-116
M+P-Xylenes	90.0	40.0	36.0	ug/L	88-116
o-Xylene	* 87.0	20.0	17.4	ug/L	90-116
Styrene	95.0	20.0	19.0	ug/L	88-117
1,2-Dibromo-3-Chloropropane	74.5	20.0	14.9	ug/L	67-124
1,2,4-Trichlorobenzene	90.0	20.0	18.0	ug/L	76-126
Isopropylbenzene	* 89.0	20.0	17.8	ug/L	96-136
Methyl Acetate	92.0	20.0	18.4	ug/L	70-132
Methylcyclohexane	104.	20.0	20.9	ug/L	73-125
1,2-Dichloroethane-D4	106.				67-135
Toluene-D8	98.3				65-128
P-Bromofluorobenzene	101.				56-133
Dibromofluoromethane	101.				68-128

Data File: \\target_server\gg\chem\gcms-c.i\C011515.b\C0998.D

Report Date: 21-Jan-2015 13:56

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011515.b\C0998.D

Lab Smp Id: WG157009-1

Inj Date : 15-JAN-2015 11:33 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : WG157009-1,SI0230 Misc Info : WG157009,WG157320-3,SI0230-2 Inst ID: gcms-c.i

Comment : Method : \TARGET_SERVER\GG\chem\gcms-c.i\C011515.b\C624a27.m

Meth Date: 15-Jan-2015 11:58 rcrocker Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D Als bottle: 5 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description 1.000 Dilution Factor 5.000 sample purged Vo

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
-	====	====	=======================================	=======	======	======	========
1 Dichlorodifluoromethane	85	1.987	1.993 (0.247)	90423	14.2319	14.2	
2 Chloromethane	50	2.230	2.229 (0.277)	123421	14.1451	14.1	
3 Vinyl chloride	62	2.330	2.329 (0.290)	102647	16.4993	16.5	
4 Bromomethane	94	2.730	2.729 (0.340)	30095	10.0291	10.0	
5 Chloroethane	64	2.880	2.879 (0.358)	47256	17.9626	18.0	
6 Trichlorofluoromethane	101	3.059	3.058 (0.380)	161815	18.3933	18.4	
7 Diethyl Ether	59	3.495	3.494 (0.435)	61525	17.2783	17.3	
8 Tertiary-butyl alcohol	59	5.354	5.353 (0.666)	36405	92.6610	92.7	
9 1,1-Dichloroethene	96	3.752	3.751 (0.467)	63539	15.2518	15.2	
10 Carbon Disulfide	76	3.788	3.787 (0.471)	234804	18.8113	18.8	
11 Freon-113	151	3.817	3.809 (0.475)	52204	18.4097	18.4	
12 Iodomethane	142	3.960	3.959 (0.492)	37279	13.3012	13.3	
13 Acrolein	56	4.267	4.266 (0.531)	62520	79.2269	79.2	
14 Methylene Chloride	84	4.653	4.652 (0.579)	89315	16.1484	16.1	
15 Acetone	43	4.760	4.752 (0.592)	37364	18.4163	18.4	
16 Isobutyl Alcohol	43	8.256	8.255 (1.027)	68951	363.922	364	
17 trans-1,2-Dichloroethene	96	4.918	4.917 (0.612)	72722	15.9339	15.9	
18 Allyl Chloride	41	4.474	4.473 (0.556)	143794	20.0161	20.0	
19 Methyl tert-butyl ether	73	5.132	5.131 (0.638)	429209	40.5091	40.5	
20 Acetonitrile	39	5.554	5.546 (0.691)	31325	151.480	151	
21 Di-isopropyl ether	45	5.790	5.789 (0.720)	274785	20.1133	20.1	
22 Chloroprene	53	5.911	5.910 (0.735)	141716	21.0906	21.1	
23 Propionitrile	54	7.963	7.969 (0.990)	151634	180.642	181	
24 Methacrylonitrile	41	7.991	7.990 (0.994)	658443	209.547	210	

Data File: $\t server \g \chem \gcms-c.i\C011515.b\C0998.D$ Report Date: 21-Jan-2015 13:56

						CONCENTRA	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====	======	=======	=======	======	======	========
25 1,1-Dichloroethane	63	5.947	5.953	(0.740)	161347	18.5538	18.6	
26 Acrylonitrile	52	6.047	6.046	(0.752)	165756	90.1198	90.1	
27 Ethyl tertiary-buty	vl ether 59	6.354	6.353	(0.790)	228282	20.3843	20.4	
28 Vinyl Acetate	43	6.376	6.375	(0.732)	206164	18.3513	18.4	
29 cis-1,2-Dichloroeth	nene 96	6.762	6.761	(0.841)	84524	16.9759	17.0	
M 30 1,2-Dichloroethylen	ne (total) 96				157246	32.9098	32.9	
31 Methyl Methacrylate	41	9.571	9.570	(1.099)	80940	19.6787	19.7	
32 2,2-Dichloropropane	27	6.912	6.911	(0.860)	130023	19.4273	19.4	
33 Bromochloromethane	128	7.041	7.040	(0.876)	39274	17.8645	17.9	
34 Chloroform	83	7.155	7.154	(0.890)	162730	18.3071	18.3	
35 Carbon Tetrachlorid	de 117	7.319	7.318	(0.841)	114693	18.1447	18.1	
36 Tetrahydrofuran	42	7.369	7.361	(0.916)	25144	15.4062	15.4	
\$ 37 Dibromofluoromethan	ne 113	7.405	7.404	(0.921)	215439	50.3777	50.4	
38 1,1,1-Trichloroetha	ane 97	7.419	7.418	(0.923)	143236	18.5945	18.6	
39 1,1-Dichloropropene	25	10.872	10.871	(1.249)	123523	18.9378	18.9	
40 2-Butanone	43	7.591	7.583	(0.944)	39842	15.2596	15.2	
41 Benzene	78	7.913		(0.909)	324367	17.3705	17.4	
* 42 Pentafluorobenzene	168	8.041		(1.000)	459323	50.0000		
43 Cyclohexane	56	7.019		(0.873)	139154	18.2295	18.2	
44 Ethyl Methacrylate	69	11.058		(1.270)	100814	18.7539	18.8	
\$ 45 1,2-Dichloroethane-		8.091		(1.006)	288402	53.2711	53.3	
46 Tertiary-amyl methy		8.084		(1.005)	188944	19.5456	19.5	
47 1,2-Dichloroethane	62	8.177		(0.939)	134025	19.3891	19.4	
48 Trichloroethene	95	8.649		(0.993)	85547	17.3787	17.4	
* 49 1,4-Difluorobenzene		8.706		(1.000)	780858	50.0000	17.1	21
50 Dibromomethane	93	9.164		(1.053)	53473	17.4190	17.4	1.187
51 1,2-Dichloropropane		9.285		(1.055)	82526	17.4190	17.5	\mathcal{N} .
52 Bromodichloromethan		9.371		(1.076)	123738	18.9397	18.9	2:00 pm, Jan 21, 2015
53 cis-1,3-dichloropro		10.107		(1.161)	131614	17.1425	17.1	2.00 pm, san 21, 2010
54 1,4-Dioxane	88	9.614		(1.101)	34929	424.512	424	
				(1.104)	739249			
	98	10.322				49.1694	49.2 23.6	
56 2-Chloroethylvinyle		10.050		(1.154)	41877	23.6576		
57 Toluene	92	10.379		(1.192)	211542	18.0899	18.1	
58 4-methyl-2-pentanon		10.829		(1.244)	82329	17.1785	17.2(M	I) M6
59 Tetrachloroethene	164	10.822	10.821		66396	15.6683	15.7	
60 trans-1,3-Dichlorop	•		10.871		123523	18.9378	18.9	
61 1,1,2-Trichloroetha			11.057		64837	17.2014	17.2	
62 Dibromochloromethan			11.271		84270	17.0438	17.0	
63 1,3-Dichloropropane			11.385		139877	17.9762	18.0	
64 1,2-Dibromoethane	107		11.557		82245	17.0974	17.1	
65 2-Hexanone	43		11.836		57862	15.7961	15.8	
* 66 Chlorobenzene-D5	117		12.193		810293	50.0000		
67 Chlorobenzene	112		12.215		237627	16.4142	16.4	
152 1-Chlorohexane	91		12.186		141437	18.5116	18.5	
68 Ethylbenzene	106		12.250		125918	16.8436	16.8	
69 1,1,1,2-Tetrachloro		12.294	12.293	(1.009)	86146	18.2464	18.2	
M 70 Xylenes (total)	106				485222	53.4051	53.4	
71 m+p-Xylenes	106		12.436		328227	35.9839	36.0	
72 o-Xylene	106	13.009	13.008	(1.067)	156995	17.4211	17.4	
73 Styrene	104	13.081	13.080	(1.073)	262018	18.9844	19.0	
74 Bromoform	173	13.116	13.115	(1.076)	54015	16.8848	16.9	
75 Isopropylbenzene	105	13.438	13.437	(0.866)	432475	17.8070	17.8	
\$ 76 P-Bromofluorobenzen	ne 95	13.838	13.837	(1.589)	342468	50.7321	50.7	

Data File: $\t server \g \chem \gcms-c.i\C011515.b\C0998.D$ Report Date: 21-Jan-2015 13:56

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/1)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.403	14.402 (0.928)	35033	18.0717	18.1	
79 Bromobenzene	156	13.988	13.987 (0.901)	103000	16.4473	16.4	
80 N-Propylbenzene	91	14.024	14.030 (0.904)	568461	18.9149	18.9	
81 1,1,2,2-Tetrachloroethane	83	14.139	14.137 (0.911)	123214	16.4840	16.5	
82 1,3,5-Trimethylbenzene	105	14.317	14.316 (0.923)	381173	18.6382	18.6	
83 2-Chlorotoluene	91	14.253	14.252 (0.918)	330428	17.5862	17.6	
84 1,2,3-Trichloropropane	75	14.332	14.330 (0.924)	104613	17.0720	17.1	
85 4-Chlorotoluene	91	14.503	14.502 (0.935)	346443	18.1678	18.2	
86 tert-Butylbenzene	119	14.796	14.795 (0.953)	385957	17.7059	17.7	
87 Pentachloroethane	117	14.825	14.824 (0.955)	80485	17.5581	17.6	
88 1,2,4-Trimethylbenzene	105	14.903	14.902 (0.960)	389767	19.2556	19.2	
89 P-Isopropyltoluene	119	15.297	15.295 (0.986)	445568	19.8434	19.8	
90 1,3-Dichlorobenzene	146	15.404	15.403 (0.993)	206175	16.2893	16.3	
* 91 1,4-Dichlorobenzene-D4	152	15.518	15.517 (1.000)	462944	50.0000		
92 1,4-Dichlorobenzene	146	15.540	15.546 (1.001)	208317	16.4196	16.4	
93 N-Butylbenzene	91	15.968	15.967 (1.029)	461188	21.1299	21.1	
94 sec-Butylbenzene	105	15.068	15.067 (0.971)	543920	19.3601	19.4	
95 1,2-Dichlorobenzene	146	16.219	16.218 (1.045)	188556	16.6650	16.7	
96 1,2-Dibromo-3-Chloropropane	75	17.562	17.569 (1.132)	19751	14.9473	14.9	
97 1,3,5-Trichlorobenzene	180	17.620	17.626 (1.135)	160444	18.5870	18.6	
98 Hexachlorobutadiene	225	18.728	18.726 (1.207)	80931	19.9169	19.9	
99 1,2,4-Trichlorobenzene	180	18.763	18.762 (1.209)	112971	18.0300	18.0	
100 1,2,3-Trimethylbenzene	105	15.582	15.589 (1.004)	394887	19.3171	19.3	
101 Naphthalene	128	19.349	19.348 (1.247)	214580	16.3097	16.3	
102 1,2,3-Trichlorobenzene	180	19.685	19.684 (1.269)	85097	17.2021	17.2	
103 Methyl Acetate	43	4.975	4.974 (0.619)	81858	18.4395	18.4	
104 Methylcyclohexane	83	8.627	8.625 (1.073)	150611	20.8718	20.9	
M 153 Total Alkylbenzenes	100			3608509	152.655	153	

QC Flag Legend

M - Compound response manually integrated.

BEFORE MANUAL INTEGRATION

Compound: 4-methyl-2-pentanone CAS Number: 108-10-1

Data File: $\t server\g\cms-c.i\C011515.b\C0998.D$ Injection Date: 15-JAN-2015 11:33 Instrument: gcms-c.i Client Sample ID:

Compound: 4-methyl-2-pentanone CAS Number: 108-10-1

LCS Recovery Report

Client:

Lab ID: WG157065-1 Client ID: LCS

Project: SDG: SI0230

LCS File ID: C1017.D

Sample Date: Analysis Date: 16-JAN-15
Received Date: Analyst: REC

Extract Date: 16-JAN-15 Analysis Method: EPA 624

Extracted By: REC Matrix: AQ
Extraction Method: EPA 624 % Solids: NA

Lab Prep Batch: WG157065 **Report Date:** 21-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Dichlorodifluoromethane	68.5	20.0	13.7	ug/L	29-164
Chloromethane	67.5	20.0	13.5	ug/L	0-273
Vinyl Chloride	77.0	20.0	15.4	ug/L	0-251
Bromomethane	59.5	20.0	11.9	ug/L	0-242
Chloroethane	95.5	20.0	19.1	ug/L	14-230
Trichlorofluoromethane	93.5	20.0	18.7	ug/L	17-181
1,1-Dichloroethene	73.0	20.0	14.6	ug/L	0-234
Methylene Chloride	79.0	20.0	15.8	ug/L	0-221
trans-1,2-Dichloroethene	77.0	20.0	15.4	ug/L	54-156
1,1-Dichloroethane	91.5	20.0	18.3	ug/L	59-155
Chloroform	90.5	20.0	18.1	ug/L	51-138
1,1,1-Trichloroethane	95.5	20.0	19.1	ug/L	52-162
Carbon Tetrachloride	90.0	20.0	18.0	ug/L	70-140
Benzene	84.5	20.0	16.9	ug/L	37-151
1,2-Dichloroethane	92.5	20.0	18.5	ug/L	49-155
Trichloroethene	86.0	20.0	17.2	ug/L	71-157
1,2-Dichloropropane	87.0	20.0	17.4	ug/L	0-210
Bromodichloromethane	91.0	20.0	18.2	ug/L	35-155
cis-1,3-Dichloropropene	83.0	20.0	16.6	ug/L	0-227
Toluene	84.5	20.0	16.9	ug/L	47-150
trans-1,3-Dichloropropene	93.0	20.0	18.6	ug/L	17-183
1,1,2-Trichloroethane	79.5	20.0	15.9	ug/L	52-150
Tetrachloroethene	78.0	20.0	15.6	ug/L	64-148
Dibromochloromethane	83.5	20.0	16.7	ug/L	53-149
Chlorobenzene	80.0	20.0	16.0	ug/L	37-160
Ethylbenzene	83.5	20.0	16.7	ug/L	37-162
Bromoform	81.0	20.0	16.2	ug/L	45-169
1,1,2,2-Tetrachloroethane	81.0	20.0	16.2	ug/L	46-157
1,3-Dichlorobenzene	79.5	20.0	15.9	ug/L	59-156
1,4-Dichlorobenzene	80.0	20.0	16.0	ug/L	18-190
1,2-Dichlorobenzene	83.0	20.0	16.6	ug/L	18-190
cis-1,2-Dichloroethene	* 82.0	20.0	16.4	ug/L	85-123
Freon-113	90.5	20.0	18.1	ug/L	73-126
Acetone	81.0	20.0	16.2	ug/L	62-172
Carbon Disulfide	88.0	20.0	17.6	ug/L	71-129

Page 1 of 2

LCS Recovery Report

Client:

Lab ID: WG157065-1 Client ID: LCS

Project: SDG: SI0230

LCS File ID: C1017.D

Sample Date: Analysis Date: 16-JAN-15
Received Date: Analyst: REC

Extract Date: 16-JAN-15 Analysis Method: EPA 624

Extracted By: REC **Matrix:** AQ **Extraction Method:** EPA 624 **% Solids:** NA

Lab Prep Batch: WG157065 **Report Date:** 21-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
Methyl tert-butyl Ether	95.8	40.0	38.3	ug/L	81-125
1,2-Dichloroethylene (Total)	* 79.8	40.0	31.9	ug/L	84-121
2-Butanone	79.5	20.0	15.9	ug/L	71-132
Cyclohexane	87.5	20.0	17.5	ug/L	71-133
4-Methyl-2-Pentanone	88.0	20.0	17.6	ug/L	83-122
2-Hexanone	* 74.0	20.0	14.8	ug/L	80-124
1,2-Dibromoethane	* 75.0	20.0	15.0	ug/L	84-116
Xylenes (Total)	* 84.5	60.0	50.7	ug/L	89-116
M+P-Xylenes	* 86.0	40.0	34.4	ug/L	88-116
o-Xylene	* 82.0	20.0	16.4	ug/L	90-116
Styrene	90.5	20.0	18.1	ug/L	88-117
1,2-Dibromo-3-Chloropropane	81.5	20.0	16.3	ug/L	67-124
1,2,4-Trichlorobenzene	82.5	20.0	16.5	ug/L	76-126
Isopropylbenzene	* 88.0	20.0	17.6	ug/L	96-136
Methyl Acetate	91.5	20.0	18.3	ug/L	70-132
Methylcyclohexane	94.0	20.0	18.8	ug/L	73-125
1,2-Dichloroethane-D4	112.				67-135
Toluene-D8	96.7				65-128
P-Bromofluorobenzene	98.7				56-133
Dibromofluoromethane	102.				68-128

Data File: \\target_server\gg\chem\gcms-c.i\C011615.b\C1017.D

Report Date: 21-Jan-2015 13:57

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-c.i\C011615.b\C1017.D

Lab Smp Id: WG157065-1

Inj Date : 16-JAN-2015 11:08 MS Autotune Date: 03-APR-2014 08:54

Operator : REC Smp Info : WG157065-1,SI0230 Misc Info : WG157065,WG157320-3,SI0230-4 Inst ID: gcms-c.i

Comment : Method : \TARGET_SERVER\GG\chem\gcms-c.i\C011615.b\C624a27.m Meth Date : 21-Jan-2015 13:35 gcms-c.i Quant Type: ISTD Cal Date : 29-DEC-2014 15:30 Cal File: C0792A.D Als bottle: 2 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * 5/Vo * CpndVariable

Name Value Description 1.000 Dilution Factor 5.000 sample purged Vo

Cpnd Variable Local Compound Variable

					CONCENTRA	ATIONS	
	OUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
-	====	====		: =======	======	======	========
1 Dichlorodifluoromethane	85	1.992	1.993 (0.248)	76871	13.6689	13.7	
2 Chloromethane	50	2.228	2.229 (0.277)	104390	13.5166	13.5	
3 Vinyl chloride	62	2.328	2.329 (0.290)	84943	15.4254	15.4	
4 Bromomethane	94	2.729	2.729 (0.339)	31699	11.9345	11.9	
5 Chloroethane	64	2.886	2.879 (0.359)	44447	19.0873	19.1	
6 Trichlorofluoromethane	101	3.057	3.058 (0.380)	145974	18.7459	18.7	
7 Diethyl Ether	59	3.493	3.494 (0.435)	55056	17.4680	17.5	
8 Tertiary-butyl alcohol	59	5.352	5.353 (0.666)	28272	81.2983	81.3	
9 1,1-Dichloroethene	96	3.751	3.751 (0.467)	53864	14.6072	14.6	
10 Carbon Disulfide	76	3.786	3.787 (0.471)	195084	17.6573	17.6	
11 Freon-113	151	3.815	3.809 (0.475)	45478	18.1190	18.1	
12 Iodomethane	142	3.958	3.959 (0.492)	34185	13.7801	13.8	
13 Acrolein	56	4.273	4.266 (0.531)	54088	77.4362	77.4	
14 Methylene Chloride	84	4.651	4.652 (0.579)	77197	15.7687	15.8	
15 Acetone	43	4.759	4.752 (0.592)	29022	16.1609	16.2	
16 Isobutyl Alcohol	43	8.254	8.255 (1.027)	49076	292.635	293	
17 trans-1,2-Dichloroethene	96	4.923	4.917 (0.612)	62414	15.4500	15.4	
18 Allyl Chloride	41	4.480	4.473 (0.557)	119985	18.8693	18.9	
19 Methyl tert-butyl ether	73	5.130	5.131 (0.638)	359093	38.2895	38.3	
20 Acetonitrile	39	5.545	5.546 (0.690)	30277	165.411	165	
21 Di-isopropyl ether	45	5.788	5.789 (0.720)	234457	19.3884	19.4	
22 Chloroprene	53	5.917	5.910 (0.736)	122815	20.6495	20.6	
23 Propionitrile	54	7.968	7.969 (0.991)	131746	177.316	177	
24 Methacrylonitrile	41	7.990	7.990 (0.994)	580494	208.713	209	

Data File: $\t server \g \chem \gcms-c.i\C011615.b\C1017.D$ Report Date: 21-Jan-2015 13:57

								CONCENTRA		
		_	QUANT SIG					ON-COLUMN	FINAL	
		unds =======	MASS	RT	EXP RT		RESPONSE	(ug/l)	(ug/l) ======	REVIEW CODE
		1,1-Dichloroethane	63	5.952		(0.740)	140745	18.2850	18.3	========
		Acrylonitrile	52	6.045		(0.752)	144422	88.7102	88.7	
		Ethyl tertiary-butyl ether	59	6.353		(0.790)	193441	19.5147	19.5	
		Vinyl Acetate	43	6.374		(0.732)	173602	17.3610	17.4	
		cis-1,2-Dichloroethene	96	6.760		(0.732)	72480	16.4460	16.4	
		1,2-Dichloroethylene (total)	96	0.700	0.701	(0.041)	134894	31.8960	31.9	
		Methyl Methacrylate	41	9.569	9 570	(1.099)	66946	18.2862	18.3	
		2,2-Dichloropropane	77	6.910		(0.860)	108789	18.3640	18.4	
		Bromochloromethane	128	7.039		(0.876)	32762	16.8363	16.8	
		Chloroform	83						18.1	
				7.160		(0.891)	142305	18.0868		
		Carbon Tetrachloride	117	7.318		(0.841)	101572	18.0530	18.0	
		Tetrahydrofuran	42	7.375		(0.917)	19846	13.7380	13.7	
		Dibromofluoromethane	113	7.403		(0.921)	192958	50.9760	51.0	
		1,1,1-Trichloroethane	97	7.418		(0.923)	130441	19.1309	19.1	
		1,1-Dichloropropene	75	10.870		(1.249)	108265	18.6481	18.6	
		2-Butanone	43	7.596		(0.945)	36708	15.8837	15.9	
		Benzene	78	7.911		(0.909)	280515	16.8770	16.9	
		Pentafluorobenzene	168	8.040		(1.000)	406564	50.0000		
		Cyclohexane	56	7.025		(0.874)	118307	17.5097	17.5	
		Ethyl Methacrylate	69	11.063		(1.271)	85413	17.8509	17.8	
\$	45	1,2-Dichloroethane-D4	65	8.090	8.090	(1.006)	268925	56.1195	56.1	
	46	Tertiary-amyl methyl ether	73	8.082	8.083	(1.005)	153378	17.9254	17.9	
	47	1,2-Dichloroethane	62	8.175	8.176	(0.939)	113913	18.5145	18.5	
	48	Trichloroethene	95	8.654	8.654	(0.994)	75247	17.1738	17.2	21
*	49	1,4-Difluorobenzene	114	8.704	8.705	(1.000)	695036	50.0000		1.177
	50	Dibromomethane	93	9.169	9.162	(1.053)	44275	16.2037	16.2	\mathcal{N} .
	51	1,2-Dichloropropane	63	9.283	9.284	(1.067)	72891	17.3631	17.4	2:01 pm, Jan 21, 2015
	52	Bromodichloromethane	83	9.369	9.370	(1.076)	105576	18.1551	18.2	2.01 pm, san 21, 2015
	53	cis-1,3-dichloropropene	75	10.112	10.113	(1.162)	113512	16.6103	16.6	
	54	1,4-Dioxane	88	9.612	9.613	(1.104)	16029	218.864	219(R)	
\$	55	Toluene-D8	98	10.320	10.320	(1.186)	646799	48.3324	48.3	
	56	2-Chloroethylvinylether	63	10.048	10.049	(1.154)	14724	9.34512	9.3	
	57	Toluene	92	10.384	10.378	(1.193)	175978	16.9068	16.9	
	58	4-methyl-2-pentanone	43	10.834	10.828	(1.245)	75172	17.6220	17.6(M)	M6
	59	Tetrachloroethene	164	10.820	10.821	(0.887)	57583	15.5565	15.6	
	60	trans-1,3-Dichloropropene	75	10.870	10.871	(1.249)	108265	18.6481	18.6	
	61	1,1,2-Trichloroethane	83	11.056	11.057	(1.270)	53346	15.9004	15.9	
	62	Dibromochloromethane	129	11.270	11.271	(0.924)	72233	16.7249	16.7	
	63	1,3-Dichloropropane	76	11.385	11.385	(0.934)	117196	17.2425	17.2	
	64	1,2-Dibromoethane	107	11.556	11.557	(1.328)	64082	14.9665	15.0	
	65	2-Hexanone	43	11.842	11.836	(0.971)	47520	14.8514	14.8	
*	66	Chlorobenzene-D5	117	12.193	12.193	(1.000)	707793	50.0000		
	67	Chlorobenzene	112		12.215		203070	16.0585	16.0	
		1-Chlorohexane	91		12.186		114694	16.9594	17.0	
		Ethylbenzene	106		12.250		109318	16.7408	16.7	
		1,1,1,2-Tetrachloroethane	131		12.293		74383	18.0365	18.0	
		Xylenes (total)	106				402771	50.7480	50.7	
		m+p-Xylenes	106	12.436	12.436	(1.020)	273780	34.3615	34.4	
		o-Xylene	106		13.008		128991	16.3865	16.4	
		Styrene	104		13.080		217997	18.0822	18.1	
		Bromoform	173		13.115		45288	16.0022	16.2	
		Isopropylbenzene	105		13.115		370247	17.5514	17.6	
		P-Bromofluorobenzene	95							
					13.837		296673	49.3748	49.4	
	11	cis-1,4-Dichloro-2-Butene	53	13.937	13.937	(0.898)	37190	17.2980	17.3	

Data File: $\t server \g \chem \gcms-c.i\C011615.b\C1017.D$ Report Date: 21-Jan-2015 13:57

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/l)	(ug/l)	REVIEW CODE
	====	====		=======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	14.401	14.402 (0.928)	31367	18.6289	18.6	
79 Bromobenzene	156	13.987	13.987 (0.901)	85636	15.7437	15.7	
80 N-Propylbenzene	91	14.030	14.030 (0.904)	483161	18.5091	18.5	
81 1,1,2,2-Tetrachloroethane	83	14.137	14.137 (0.911)	105123	16.1916	16.2	
82 1,3,5-Trimethylbenzene	105	14.323	14.316 (0.923)	327853	18.4566	18.4	
83 2-Chlorotoluene	91	14.258	14.252 (0.919)	284284	17.4196	17.4	
84 1,2,3-Trichloropropane	75	14.337	14.330 (0.924)	90435	16.9913	17.0	
85 4-Chlorotoluene	91	14.501	14.502 (0.934)	303813	18.3429	18.3	
86 tert-Butylbenzene	119	14.794	14.795 (0.953)	326933	17.2675	17.3	
87 Pentachloroethane	117	14.823	14.824 (0.955)	69152	17.3684	17.4	
88 1,2,4-Trimethylbenzene	105	14.909	14.902 (0.960)	333882	18.9905	19.0	
89 P-Isopropyltoluene	119	15.295	15.295 (0.985)	370599	19.0020	19.0	
90 1,3-Dichlorobenzene	146	15.402	15.403 (0.992)	174521	15.8747	15.9	
* 91 1,4-Dichlorobenzene-D4	152	15.524	15.517 (1.000)	402103	50.0000		
92 1,4-Dichlorobenzene	146	15.545	15.546 (1.001)	176079	15.9785	16.0	
93 N-Butylbenzene	91	15.974	15.967 (1.029)	380226	20.0563	20.0	
94 sec-Butylbenzene	105	15.066	15.067 (0.971)	443750	18.1845	18.2	
95 1,2-Dichlorobenzene	146	16.217	16.218 (1.045)	162793	16.5650	16.6	
96 1,2-Dibromo-3-Chloropropane	75	17.575	17.569 (1.132)	18736	16.3245	16.3	
97 1,3,5-Trichlorobenzene	180	17.625	17.626 (1.135)	122902	16.3922	16.4	
98 Hexachlorobutadiene	225	18.726	18.726 (1.206)	57566	16.3104	16.3	
99 1,2,4-Trichlorobenzene	180	18.762	18.762 (1.209)	89658	16.4744	16.5	
100 1,2,3-Trimethylbenzene	105	15.588	15.589 (1.004)	330653	18.6223	18.6	
101 Naphthalene	128	19.355	19.348 (1.247)	195193	17.0810	17.1	
102 1,2,3-Trichlorobenzene	180	19.691	19.684 (1.268)	69360	16.1423	16.1	
103 Methyl Acetate	43	4.980	4.974 (0.619)	72103	18.3497	18.3	
104 Methylcyclohexane	83	8.633	8.625 (1.074)	120237	18.8248	18.8	
M 153 Total Alkylbenzenes	100			3036651	148.018	148	

QC Flag Legend

- R Spike/Surrogate failed recovery limits.
 M Compound response manually integrated.

Compound: 4-methyl-2-pentanone CAS Number: 108-10-1

AFTER MANUAL INTEGRATION

Compound: 4-methyl-2-pentanone CAS Number: 108-10-1

Logbooks and Supporting Documents

DATE/TIME OF BFB INJECTION: D/29/4B

1

EPA 524 0000023
EPA 624
OLC 03.2
OLM 04.2
12/30/14 14EC
-
A THE PERSON NAMED OF THE
Manually colored Ind Churk
.5
9-
500
-3
W/15/247_4
CANDING
COMMENTS

KATAHDIN ANALYTICAL SERVICES

8:44

DATE/TIME OF BFB INJECTION: 01/15/15

GCMS-C INSTRUMENT RUNLOG

155700 SS soited @ 20 + THEAT. Spike 1845 LPGL Prod75x24 COMMENTS SI double so, hed 01/16/15 REC **OLM 04.2** OLC 03.2 **EPA 624 EPA 524** Consounds low 5m2740m6 7 8.43 1559 E ر الا الا 73 4 4 Ξ 4 ر م 4 3 N ٢ SW846 8260 SIM SW846 8260 SIM (heated purge) Circle Methods: SW846 8260 Y/N ANALYST 内で \geq 8 \geq 3 2 Ş 5 > 5030 5035 1311 KAS DOD MCP Criteria V9673 χ 8296A. PREP METHOD QAMS560 VO48F648 C624427 METHOD C826A37 CLLYAZZ CRACM27 C826A27 STANDARD SS MIX IS MIX ALS# g 2 9 23 \sim T 5 $\overline{\lambda}$ 범 V9675 V9676 7965 V9677 V9674 03 (4) DATAFILE CR 913(A) ٥ ও ক 0 9 6 Ş 8 2 Ū 7699 9 ೭ C. 100 $\widetilde{\mathfrak{s}}$ VOA-002 - Revision 1 - 11/06/2009 CODE 1 d 28 820 A NG157009-¢ 7 Ato Œ W6157009-X4007812W A22 SAMPLE NAME 4 33 50 no 8FB VST DO20CISR V170050615A \leq VST 0020C15A 101-ST0132-30L ST 530-2 7 SI 0128-**EXTRAS MIX** STANDARD CS/MS MIX V BCKA VBLKD VBLFB 5.78 CAL. STD. VBLKC 252 とこと 758 BFB अस्मिर Silsylo 岛

KATAHDIN ANALYTICAL SERVICES

DATE/TIME OF BFB INJECTION: 01/16/15GCMS-C INSTRUMENT RUNLOG

0000034			QAMS560		1/06/2009	VOA-002 - Revision 1 - 11/06/2009
EPA 524	(heated purge)				79665	EXTRAS MIX
CLC 03.2	SW846 8260 SIM				人ないフォ	LCS/MS MIX
OF 0 03.2	SW846 8260 SIM	86,98		SS MIX	V9675 V9676	CAL. STD.
200	Circle Methods:	CODE V96.73	9	S MIX	V9677	
					The Co	STAMDADD
****				·		
1000						
		X	×	8 CBAGA27	7 23 5	Stoux-201
1/10 (0/1)				7 (22 1	RICK
15(8)	16	X	×	2		4RA
	~			7 /		V 5-7-
	N			3	24 2	VDLKA
				ا د	(2)	LCOM 20 A W6157065-1
-	1		17		J	Y1T0020C16A
CCMMENIS	MANAGE FOR			70	CR 994	50 ng DFB -3
Section 1997	-	WAS DAD SEED	5030 5035	ALS# METHOD	DATAFILE DF	SAMPLE NAME
			PRED METHOD			

VOLATILES DATA

QC Summary Section

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: SL

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID	BFB #	DBF #	DCA #	TOL #
IDWS-0312-011315	SI0230-1RA		96.2	114.	108.	115.
Laboratory Control S	WG157196-8		93.4	97.7	94.2	99.7
Method Blank Sample	WG157196-9		93.1	98.3	96.8	101.

		QC Limits
DBF	DIBROMOFLUOROMETHANE	64-130
TOL	TOLUENE-D8	85-115
BFB	P-BROMOFLUOROBENZENE	85-120
DCA	1,2-DICHLOROETHANE-D4	58-134

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Form 4 Method Blank Summary - VOA

Lab Name: Katahdin Analytical Services SDG: SI0230

Project : Navy Clean WE15-03-06 NWIRP Bethpage, **Lab Sample ID :** WG157196-9 **Lab File ID :** W1910.D **Date Analyzed :** 19-JAN-15

Instrument ID : GCMS-W **Time Analyzed :** 15:38

Heated Purge: Yes

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG157196-8	W1908.D	01/19/15	14:15
IDWS-0312-011315	SI0230-1RA	W1912.D	01/19/15	16:43

Form 5 Volatile Organic Instrument Performance Check

Lab Name: Katahdin Analytical Services SDG: SI0230
Project: Navy Clean WE15-03-06 NWIRP Bethpage, Date Analyzed: 19-JAN-15
Lab File ID: WB111.D Time Analyzed: 09:07

Lab File ID : WB111.DTime Analyzed : 09:07Instrument ID : GCMS-WHeated Purge : Yes

m/e	Ion Abundance Criteria	% Rel	
50	15.0 - 40.0% of mass 95	16.8	
75	30.0 - 60.0% of mass 95	46.9	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.0	
173	Less than 2.0% of mass 174	0.0	0.0
174	Greater than 50.0% of mass 95	75.1	
175	5.0 - 9.0% of mass 174	6.0	7.98
176	95.0 - 101.0% of mass 174	74.6	99.32
177	5.0 - 9.0% of mass 176	4.2	5.61

1-Value is % mass 174

2-Value is % mass 176

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed		
Initial Calibration	WG157196-4	W1902.D	01/19/15	10:27	
Initial Calibration	WG157196-6	W1903.D	01/19/15	11:19	
Initial Calibration	WG157196-5	W1904.D	01/19/15	11:51	
Initial Calibration	WG157196-3	W1905.D	01/19/15	12:24	
Initial Calibration	WG157196-2	W1906.D	01/19/15	12:56	
Initial Calibration	WG157196-1	W1907.D	01/19/15	13:29	
Laboratory Control S	WG157196-8	W1908.D	01/19/15	14:15	
Independent Source	WG157196-7	W1908A.D	01/19/15	14:15	
Method Blank Sample	WG157196-9	W1910.D	01/19/15	15:38	
IDWS-0312-011315	SI0230-1RA	W1912.D	01/19/15	16:43	

Form 8 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Project :Navy Clean WE15-03-06 NWIR SDG: SI0230
Lab ID :WG157196-4 Analytical Date: 01/19/15 10:27
Lab File ID :W1902.D Instrument ID: GCMS-W

		PENTAFLUOROBENZENE		1,4-DIFLUOR	ROBENZENE	CHLOROBENZENE-D5	
	Std .	Area # 607035	RT #_ 8.47	Area # 877633	RT #_ 9.47	Area # 808211	RT #
	Upper Limit	1214070	8.97	1755266	9.97	1616422	14.74
	Lower Limit	303517.5	7.97	438816.5	8.97	404105.5	13.74
Client Sample ID	Lab Sample ID						
Laboratory Control S	WG157196-8	673852	8.47	978053	9.47	863568	14.25
Method Blank Sample	WG157196-9	632484	8.47	903445	9.47	825016	14.24
IDWS-0312-011315	SI0230-1RA	532062	8.47	767745	9.47	680756	14.24

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

SDG: SI0230

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Lab ID :WG157196-4Analytical Date: 01/19/15 10:27Lab File ID :W1902.DInstrument ID: GCMS-W

		1,4-DICHLOROBENZENE		
		Area #	RT #	
	Std.	502207	18.07	
	Upper Limit	1004414	18.57	
	Lower Limit	251103.5	17.57	
Client Sample ID	Lab Sample ID			
Laboratory Control S	WG157196-8	517849	18.06	
Method Blank Sample	WG157196-9	492440	18.07	
IDWS-0312-011315	SI0230-1RA	365280	18.06	

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Sample Data Section

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-1RA

Client ID: IDWS-0312-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: REC

SDG: SI0230

Lab File ID: W1912.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15

Extract Date: 19-JAN-15

Extracted By: REC
Extraction Method: SW846 5035

Lab Prep Batch: WG157196

Analysis Date: 19-JAN-15

Analyst: REC

Analysis Method: SW846 8260B

Matrix: SL % Solids: 79.

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	6.0	ug/Kgdryw	t 1	10	12.	1.1	6.0
Trichlorofluoromethane	U	6.0	ug/Kgdryw	t 1	10	12.	1.1	6.0
Freon-113	U	3.0	ug/Kgdryw	t 1	5	6.0	1.1	3.0
Methyl Acetate	U	3.6	ug/Kgdryw	t 1	5	6.0	3.2	3.6
Methyl tert-butyl Ether	U	3.0	ug/Kgdryw	t 1	5	6.0	1.3	3.0
Cyclohexane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.7	3.0
Methylcyclohexane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.2	3.0
1,2-Dibromoethane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.4	3.0
Isopropylbenzene	U	3.0	ug/Kgdryw	t 1	5	6.0	1.1	3.0
Chloromethane	U	6.0	ug/Kgdryw	t 1	10	12.	1.7	6.0
Bromomethane	U	6.0	ug/Kgdryw	t 1	10	12.	1.3	6.0
Vinyl Chloride	U	6.0	ug/Kgdryw	t 1	10	12.	1.0	6.0
Chloroethane	U	6.0	ug/Kgdryw	t 1	10	12.	1.6	6.0
Methylene Chloride	U	15	ug/Kgdryw	t 1	25	30.	9.5	15.
Acetone	U	15	ug/Kgdryw	t 1	25	30.	6.1	15.
Carbon Disulfide	J	1.6	ug/Kgdryw	t 1	5	6.0	0.94	3.0
1,1-Dichloroethene	U	3.0	ug/Kgdryw	t 1	5	6.0	1.1	3.0
1,1-Dichloroethane	U	3.0	ug/Kgdryw	t 1	5	6.0	2.0	3.0
cis-1,2-Dichloroethene	U	3.0	ug/Kgdryw	t 1	5	6.0	1.1	3.0
trans-1,2-Dichloroethene	U	3.0	ug/Kgdryw	t 1	5	6.0	0.85	3.0
Chloroform	U	3.0	ug/Kgdryw	t 1	5	6.0	0.42	3.0
1,2-Dichloroethane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.2	3.0
2-Butanone	U	15	ug/Kgdryw	t 1	25	30.	7.1	15.
1,1,1-Trichloroethane	U	3.0	ug/Kgdryw	t 1	5	6.0	0.50	3.0
Carbon Tetrachloride	U	3.0	ug/Kgdryw	t 1	5	6.0	1.6	3.0
Bromodichloromethane	U	3.0	ug/Kgdryw	t 1	5	6.0	0.72	3.0
1,2-Dichloropropane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.7	3.0
cis-1,3-Dichloropropene	U	3.0	ug/Kgdryw	t 1	5	6.0	0.86	3.0
Trichloroethene	U	3.0	ug/Kgdryw	t 1	5	6.0	0.71	3.0
Dibromochloromethane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.2	3.0
1,1,2-Trichloroethane	U	3.0	ug/Kgdryw	t 1	5	6.0	1.2	3.0
Benzene	U	3.0	ug/Kgdryw	t 1	5	6.0	1.1	3.0
trans-1,3-Dichloropropene	U	3.0	ug/Kgdryw	t 1	5	6.0	1.0	3.0
Bromoform	U	3.0	ug/Kgdryw	t 1	5	6.0	0.84	3.0
4-Methyl-2-Pentanone	U	15	ug/Kgdryw	t 1	25	30.	7.1	15.

Page 1 of 2

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-1RA

Client ID: IDWS-0312-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: REC

SDG: SI0230

Lab File ID: W1912.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15

Extract Date: 19-JAN-15

Extraction Method: SW846 5035

Lab Prep Batch: WG157196

Analysis Date: 19-JAN-15

Analyst: REC

Analysis Method: SW846 8260B

Matrix: SL % Solids: 79.

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
2-Hexanone	U	15	ug/Kgdrywt	: 1	25	30.	5.8	15.
Tetrachloroethene	U	3.0	ug/Kgdrywt	1	5	6.0	1.4	3.0
1,1,2,2-Tetrachloroethane	U	3.0	ug/Kgdrywt	1	5	6.0	1.0	3.0
Toluene	U	3.0	ug/Kgdrywt	1	5	6.0	1.7	3.0
Chlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.61	3.0
Ethylbenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.78	3.0
Styrene	U	3.0	ug/Kgdrywt	1	5	6.0	0.61	3.0
m+p-Xylenes	U	6.0	ug/Kgdrywt	1	10	12.	2.0	6.0
o-Xylene	U	3.0	ug/Kgdrywt	1	5	6.0	1.6	3.0
Xylenes (Total)	U	9.0	ug/Kgdrywt	1	15	18.	1.6	9.0
1,3-Dichlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.74	3.0
1,4-Dichlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.53	3.0
1,2-Dichlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.94	3.0
1,2-Dibromo-3-Chloropropane	U	3.0	ug/Kgdrywt	1	5	6.0	1.8	3.0
1,2,4-Trichlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.95	3.0
1,2,3-Trichlorobenzene	U	3.0	ug/Kgdrywt	1	5	6.0	0.91	3.0
Dibromofluoromethane		114.	%					
1,2-Dichloroethane-d4		108.	%					
Toluene-d8		115.	%					
P-Bromofluorobenzene		96.2	%					

Data File: \\target_server\gg\chem\gcms-w.i\W011915.b\W1912.D

Report Date: 20-Jan-2015 10:10

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1912.D

Lab Smp Id: SI0230-1RA Client Smp ID: IDWS-0312-011315

Inj Date : 19-JAN-2015 16:43

Operator : REC Inst ID: gcms-w.i

Smp Info : SI0230-1RA Misc Info : WG157196,WG157196-4

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 13:29 Cal File: W1907.D

Als bottle: 12

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * (100/(100-M))*(Vt/Ws) * CpndVariable

Name	Value	Description
DF M		Dilution Factor % Moisture
Vt		Volume of DI Water (mL)
Ws	5.060	Weight of Sample (g)
Cpnd Variable		Local Compound Variable

						CONCENTRA	ATIONS	
		QUANT SIG				ON-COLUMN	FINAL	
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt) REVIEW COD
=	=======================================	====	====			======	======	========
	10 Carbon Disulfide	76	3.253	3.252 (0.384)	7844	1.33165	1.6(a)	
	36 Tetrahydrofuran	42	7.299	7.262 (0.862)	7031	10.0041	12.4(aM)	м9
\$	37 Dibromofluoromethane	113	7.335	7.341 (0.866)	130475	56.8635	70.7	
*	42 Pentafluorobenzene	168	8.472	8.470 (1.000)	532062	50.0000		_
\$	45 1,2-Dichloroethane-D4	65	8.464	8.470 (0.999)	132626	54.1216	67.3	OEC.
*	49 1,4-Difluorobenzene	114	9.472	9.471 (1.000)	767745	50.0000		nec
\$	55 Toluene-D8	98	11.831	11.830 (1.249)	560179	57.6851	71.8	10:22 am, Jan 20, 2015
*	66 Chlorobenzene-D5	117	14.240	14.239 (1.000)	680756	50.0000		
\$	76 P-Bromofluorobenzene	95	16.091	16.090 (1.699)	191095	48.0937	59.8	
*	91 1,4-Dichlorobenzene-D4	152	18.064	18.070 (1.000)	365280	50.0000		

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

M - Compound response manually integrated.

Instrument: gcms-w₊i

Data File: \\target_server\gg\chem\gcms-w.i\W011915.b\W1912.D

Date : 19-JAN-2015 16:43 Client ID: IDWS-0312-011315

Instrument: gcms-w.i

Sample Info: SI0230-1RA

10 Carbon Disulfide

Concentration: 1.6 ug/Kgdrywt

36 Tetrahydrofuran

Concentration: 12.4 ug/Kgdrywt

Standards Data Section

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: SI0230

Project : Navy Clean WE15-03-06 NWIRP Bethpage, N Instrument ID: GCMS-W

Lab File IDs: W1907.D W1906.D W1905.D Column ID:

W1902.D W1904.D W1903.D Calibration Date(s): 19-JAN-15 09:41

19-JAN-15 13:29

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max	
	5.0000	10.0000	20.0000	50.0000	100.0000	200.0000	New	b	m1	m2	%RSD	%RSD	
Dichlorodifluoromethane	0.28241	0.29719	0.26420	0.38059	0.30173	0.34740	AVG		0.31225		13.91735	15.00000	О
Chloromethane	0.28287	0.32564	0.29561	0.31572	0.28658	0.28911	AVG		0.29926		5.81193	15.00000	О
Vinyl chloride	0.25225	0.28833	0.26408	0.31110	0.28129	0.30570	AVG		0.28379		8.09131	15.00000	О
Bromomethane	0.16672	0.16861	0.15873	0.15103	0.13905	0.12403	AVG		0.15136		11.39239	15.00000	О
Chloroethane	0.10340	0.10638	0.08829	0.10625	0.08617	0.09114	AVG		0.09694		9.69759	15.00000	О
Trichlorofluoromethane	0.32738	0.35226	0.31605	0.41127	0.31428	+++++	AVG		0.34425		11.73972	15.00000	О
1,1-Dichloroethene	0.20034	0.21653	0.19623	0.23083	0.20603	0.20924	AVG		0.20987		5.93561	15.00000	О
Carbon Disulfide	0.52760	0.57571	0.53108	0.60388	0.54644	0.53659	AVG		0.55355		5.44368	15.00000	О
Freon-113	0.18731	0.19012	0.16705	0.20198	0.18050	0.17453	AVG		0.18358		6.71409	15.00000	О
Methylene Chloride	34244	58056	91189	161013	343997	604663	LNR	-0.12810	0.23240		0.99989	0.99000	O
Acetone	0.06588	0.06832	0.06601	0.06703	0.06729	0.06830	AVG		0.06714		1.57986	15.00000	О
trans-1,2-Dichloroethene	0.23545	0.26642	0.24494	0.25411	0.23744	0.23132	AVG		0.24495		5.40724	15.00000	О
Methyl tert-butyl ether	0.72085	0.75962	0.77103	0.73274	0.74903	0.70380	AVG		0.73951		3.39815	15.00000	О
1,1-Dichloroethane	0.39975	0.44347	0.41987	0.42289	0.40612	0.39610	AVG		0.41470		4.26545	15.00000	О
cis-1,2-Dichloroethene	0.28587	0.32220	0.30794	0.31109	0.30336	0.29731	AVG		0.30463		4.06966	15.00000	О
Chloroform	0.41297	0.45869	0.43859	0.46320	0.44194	0.44164	AVG		0.44284		4.01204	15.00000	О
Carbon Tetrachloride	0.17381	0.19616	0.19244	0.24546	0.22304	0.22648	AVG		0.20957		12.63848	15.00000	O
1,1,1-Trichloroethane	0.36203	0.40449	0.38322	0.44447	0.40098	0.41300	AVG		0.40136		6.94033	15.00000	О
2-Butanone	0.09050	0.10046	0.10307	0.10191	0.11289	0.11626	AVG		0.10418		8.89422	15.00000	О
Benzene	0.69644	0.77059	0.75862	0.74716	0.72993	0.67308	AVG		0.72930		5.17601	15.00000	О
Cyclohexane	0.32409	0.34849	0.32323	0.37307	0.34857	0.34959	AVG		0.34451		5.42036	15.00000	О
1,2-Dichloroethane	0.21785	0.22134	0.21696	0.22898	0.21693	0.21588	AVG		0.21966		2.24861	15.00000	О
Trichloroethene	0.18663	0.20421	0.19061	0.20148	0.19225	0.18141	AVG		0.19277		4.51257	15.00000	О
1,2-Dichloropropane	0.14755	0.15584	0.15676	0.15519	0.15808	0.15127	AVG		0.15412		2.56466	15.00000	О
Bromodichloromethane	0.21190	0.22470	0.22741	0.25198	0.24084	0.24321	AVG		0.23334		6.27010	15.00000	О
cis-1,3-dichloropropene	0.26061	0.28496	0.31064	0.32128	0.32243	0.31555	AVG		0.30258		8.16056	15.00000	О
Toluene	0.52511	0.56255	0.54995	0.55767	0.53150	0.49322	AVG		0.53667		4.81222	15.00000	О
4-methyl-2-pentanone	0.11817	0.13482	0.14369	0.14353	0.14839	0.14329	AVG		0.13865		7.89731	15.00000	О
Tetrachloroethene	0.20331	0.22645	0.21260	0.23164	0.22298	0.20707	AVG		0.21734		5.22214	15.00000	О
trans-1,3-Dichloropropene	0.26061	0.28496	0.31064	0.32128	0.32243	0.31555	AVG		0.30258		8.16056	15.00000	О
1,1,2-Trichloroethane	0.12808	0.13243	0.13499	0.13602	0.13397	0.13487	AVG		0.13339		2.14903	15.00000	О
Dibromochloromethane	0.19280	0.20537	0.21692	0.23899	0.23223	0.24029	AVG		0.22110		8.76599	15.00000	О
1,2-Dibromoethane	0.15654	0.17360	0.17647	0.18347	0.18614	0.18918	AVG		0.17757		6.67391	15.00000	О
2-Hexanone	0.09108	0.10627	0.11633	0.11666	0.12587	0.12465	AVG		0.11348		11.49334	15.00000	О
Chlorobenzene	0.70276	0.76677	0.73430	0.73279	0.68639	0.63412	AVG		0.70952		6.51958	15.00000	О
Ethylbenzene	0.36962	0.40435	0.38674	0.39840	0.37553	0.34845	AVG		0.38052		5.38440	15.00000	О
Xylenes (total)	+++++	+++++	+++++	+++++	+++++	+++++	AVG		0.000e+00		0.000e+(15.00000	M (

Form 6 Initial Calibration Summary

Lab Name: Katahdin Analytical Services SDG: SI0230

Project: Navy Clean WE15-03-06 NWIRP Bethpage, N Instrument ID: GCMS-W

Lab File IDs: W1907.D W1906.D W1905.D Column ID:

W1902.D W1904.D W1903.D Calibration Date(s): 19-JAN-15 09:41

19-JAN-15 13:29

					T	T	1					
m+p-Xylenes	0.44784	0.49996	0.48685	0.49492	0.45157	0.39634	AVG	(0.46291	8.50923	15.00000	O
o-Xylene	0.40801	0.46984	0.47518	0.48796	0.46923	0.44029	AVG	(0.45842	6.37529	15.00000	О
Styrene	0.63586	0.73818	0.75754	0.77068	0.73831	0.68612	AVG	(0.72112	7.03393	15.00000	О
Bromoform	0.12475	0.14215	0.15136	0.16696	0.16836	0.18146	AVG	(0.15584	13.18503	15.00000	О
Isopropylbenzene	1.77607	2.05862	1.97794	2.04930	1.83064	1.58176	AVG	1	1.87905	9.88033	15.00000	О
1,1,2,2-Tetrachloroethane	0.40662	0.43516	0.43712	0.42834	0.43992	0.43112	AVG	(0.42971	2.80442	15.00000	О
1,3-Dichlorobenzene	1.07048	1.16181	1.11393	1.13149	1.05915	0.97666	AVG	1	1.08559	6.04205	15.00000	О
1,4-Dichlorobenzene	1.06337	1.11504	1.07725	1.10435	1.03878	0.95112	AVG	1	1.05832	5.60473	15.00000	О
1,2-Dichlorobenzene	1.01894	1.11338	1.07204	1.09300	1.03974	0.95561	AVG	1	1.04878	5.44776	15.00000	О
1,2-Dibromo-3-Chloropropane	0.08457	0.08678	0.09763	0.11082	0.10932	0.10982	AVG	(0.09982	12.01061	15.00000	О
1,2,4-Trichlorobenzene	0.78914	0.89204	0.88674	0.89920	0.81304	0.71994	AVG	(0.83335	8.62994	15.00000	О
1,2,3-Trichlorobenzene	0.84114	0.88117	0.87909	0.87040	0.78264	0.70044	AVG	(0.82581	8.68303	15.00000	О
Methyl Acetate	0.16064	0.14538	0.14251	0.14411	0.14624	0.15840	AVG	(0.14955	5.25558	15.00000	О
Methylcyclohexane	0.44408	0.47917	0.44049	0.51119	0.50311	0.47839	AVG	(0.47607	6.13791	15.00000	О
Dibromofluoromethane	0.19961	0.22714	0.21528	0.22448	0.20861	0.21863	AVG	(0.21563	4.75693	15.00000	
1,2-Dichloroethane-D4	0.22470	0.23403	0.22739	0.24423	0.21774	0.23362	AVG	(0.23029	3.96312	15.00000	
Toluene-D8	0.58434	0.65990	0.65417	0.66468	0.63379	0.59773	AVG	(0.63244	5.37872	15.00000	
P-Bromofluorobenzene	0.23006	0.25760	0.25929	0.27005	0.26104	0.27458	AVG	(0.25877	6.00804	15.00000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Data File: \\target_server\gg\chem\gcms-w.i\W011915.b\W1908A.D

Report Date: 20-Jan-2015 10:14

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: WG157196

Sample Matrix: SOLID Fraction: VOA

Client Smp ID: Independent Source Lab Smp Id: WG157196-7

Level: LOW Operator: REC

Data Type: MS DATA SampleType: INDSOURCE
SpikeList File: IND_CHECK4.1.spk Quant Type: ISTD
Sublist File: SW8260-S.sub
Method File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W826S16.m

Misc Info: WG157196, WG157196-4

SPIKE COMPOUND	υ	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
1 Dichlorodi: 2 Chlorometha 3 Vinyl chlor 4 Bromomethar 5 Chloroethar 6 Trichlorof: 7 Diethyl Eth 8 Tertiary-br 9 1,1-Dichlor 10 Carbon Dist 11 Freon-113 12 Iodomethan 13 Acrolein 14 Methylene 15 Acetone 16 Isobutyl Ar 17 trans-1,2-1 18 Allyl Chlor 19 Methyl terr 20 Acetonitri 21 Di-isopropy 22 Chloroprene 23 Propionitry 24 Methacrylor 25 1,1-Dichlor 26 Acrylonitry 27 Ethyl tert 28 Vinyl Aceta 29 cis-1,2-Dichlor 31 Methyl Meth 32 2,2-Dichlor 31 Methyl Meth 32 2,2-Dichlor 33 Bromochlore 34 Chloroform 35 Carbon Tetr 36 Tetrahydror 38 1,1,1-Trich 39 1,1-Dichlor 40 2-Butanone 41 Benzene	ane ride ne ne luoromet her utyl alc roethene ulfide e Chloride lcohol Dichloro ride t-butyl le yl ether e ile nitrile roethane ile iary-but ate chloroet roethyle hacrylat ropropan omethane rachlori furan hloroeth	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	51.3 47.16.64.5 48.15.46.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.46.1 54.66.1	103.69 98.29 100.64 94.25 97.22 109.25 96.75 101.93 92.79 117.27 108.91 109.24 100.52 86.59 115.04 89.35 92.56 103.45 104.62 109.92 98.42 97.20 98.22 98.23 101.93 97.54 97.55 97.54	80-120 80-120

Data File: $\t server \g \ens-w.i\W011915.b\W1908A.D$ Report Date: 20-Jan-2015 10:14

		CONC	CONC	%	<u> </u>
SDIKE	COMPOUND	ADDED	RECOVERED	RECOVERED	LIMITS
DITKE	COMICOND	ug/Kgdrywt	ug/Kgdrywt	RECOVERED	LTIMITIO
•		ag/rigar/wo			
43	Cyclohexane	50.0	55.2	110.49	80-120
	Ethyl Methacrylate	50.0	50.9	101.80	80-120
	Tertiary-amyl meth	50.0	49.5	99.00	80-120
	1,2-Dichloroethane	50.0	45.2	90.32	80-120
	Trichloroethene	50.0	48.0	96.08	80-120
	Dibromomethane	50.0	46.5	92.99	80-120
	1,2-Dichloropropan Bromodichlorometha	50.0	47.9	95.73	80-120
	cis-1,3-dichloropr	50.0 50.0	47.5 45.6	95.05 91.20	80-120 80-120
	1,4-Dioxane	1000	1090	108.66	80-120
	2-Chloroethylvinyl	50.0	42.0	83.96	80-120
57	Toluene	50.0	48.0	95.97	80-120
	4-methyl-2-pentano	50.0	45.3	90.63	80-120
	Tetrachloroethene	50.0	50.9	101.85	80-120
	trans-1,3-Dichloro	50.0	45.6	91.20	80-120
	1,1,2-Trichloroeth	50.0	46.4	92.82	80-120
	Dibromochlorometha 1,3-Dichloropropan	50.0 50.0	47.5 48.2	94.95 96.36	80-120 80-120
	1,2-Dibromoethane	50.0	45.7	91.47	80-120
	2-Hexanone	50.0	45.1	90.26	80-120
	Chlorobenzene	50.0	47.2	94.50	80-120
152	1-Chlorohexane	50.0	52.2	104.45	80-120
	Ethylbenzene	50.0	49.3	98.64	80-120
	1,1,1,2-Tetrachlor	50.0	48.9	97.84	80-120
	Xylenes (total)	150	147	97.86	80-120
	m+p-Xylenes o-Xylene	100 50.0	98.1 48.6	98.14 97.29	80-120 80-120
	Styrene	50.0	50.5	101.07	80-120
	Bromoform	50.0	46.3	92.64	80-120
	Isopropylbenzene	50.0	51.1	102.13	80-120
	cis-1,4-Dichloro-2	50.0	48.3	96.55	80-120
	trans-1,4-Dichloro	50.0	47.4	94.83	80-120
	Bromobenzene	50.0	49.0	98.03	80-120
	N-Propylbenzene	50.0 50.0	50.6 45.5	101.21 91.01	80-120 80-120
	1,1,2,2-Tetrachlor 1,3,5-Trimethylben	50.0	49.6	99.20	80-120
	2-Chlorotoluene	50.0	48.0	96.00	80-120
	1,2,3-Trichloropro	50.0	46.8	93.69	80-120
	4-Chlorotoluene	50.0	48.3	96.59	80-120
	tert-Butylbenzene	50.0	50.8	101.63	80-120
1	Pentachloroethane	50.0	52.1	104.29	80-120
	1,2,4-Trimethylben	50.0	50.5	101.05	80-120
	P-Isopropyltoluene	50.0	52.4	104.78	80-120
	1,3-Dichlorobenzen 1,4-Dichlorobenzen	50.0 50.0	46.2 47.7	92.35 95.41	80-120 80-120
	N-Butylbenzene	50.0	50.9	101.73	80-120
	sec-Butylbenzene	50.0	50.8	101.59	80-120
	1,2-Dichlorobenzen	50.0	46.3	92.62	80-120
96	1,2-Dibromo-3-Chlo	50.0	49.5	99.02	80-120
	1,3,5-Trichloroben	50.0	46.7	93.46	80-120
	Hexachlorobutadien	50.0	51.6	103.20	80-120
	1,2,4-Trichloroben	50.0	47.1	94.26	80-120
	1,2,3-Trimethylben Naphthalene	50.0 50.0	49.3 47.9	98.57 95.88	80-120 80-120
1 101	Napilcliatelle	50.0	'	33.00	00-120
	I		l ———— l	l 	I

Data File: $\t server \g \em \g w.i\W011915.b\W1908A.D$ Report Date: 20-Jan-2015 10:14

SPIKE COMPOUND	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
102 1,2,3-Trichloroben	50.0	46.5	92.99	80-120
103 Methyl Acetate	50.0	54.2	108.32	80-120
104 Methylcyclohexane	50.0	56.4	112.74	80-120
M 153 Total Alkylbenzene	350	356	101.60	80-120

SURROGATE COMPOUND	AMOUNT ADDED ug/kg	AMOUNT RECOVERED ug/kg	% RECOVERED	LIMITS
\$ 37 Dibromofluorometha	50.0	48.8	97.68	64-130
\$ 45 1,2-Dichloroethane	50.0	47.1	94.22	58-134
\$ 55 Toluene-D8	50.0	49.8	99.69	67-118
\$ 76 P-Bromofluorobenze	50.0	46.7	93.40	47-119

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1902.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1902.D

Lab Smp Id: WG157196-4 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 10:27

Operator : REC Smp Info : WG157196-4 Inst ID: gcms-w.i

Misc Info :

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 10:27 Cal File: W1902.D

Als bottle: 2 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M	0.0000	Dilution Factor % Moisture
Vt	5.000	Volume of DI Water (mL)
Ws	5.000	Weight of Sample (g)
Cpnd Variable		Local Compound Variable

					AMOUI	NTS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL R	T RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====			======	======	========
1 Dichlorodifluoromethane	85	1.736	1.737 (0.205)	231032	50.0000	50.0	
2 Chloromethane	50	1.951	1.951 (0.230)	191652	50.0000	50.0	
3 Vinyl chloride	62	2.022	2.023 (0.239)	188849	50.0000	50.0	
4 Bromomethane	94	2.365	2.366 (0.279)	91679	50.0000	50.0	
5 Chloroethane	64	2.494	2.495 (0.295)	64495	50.0000	50.0	
6 Trichlorofluoromethane	101	2.637	2.638 (0.311)	249653	50.0000	50.0	
7 Diethyl Ether	59	3.009	3.009 (0.355)	96058	50.0000	50.0	
8 Tertiary-butyl alcohol	59	5.696	5.697 (0.673)	398479	250.000	250	
9 1,1-Dichloroethene	96	3.223	3.224 (0.381)	140124	50.0000	50.0	
10 Carbon Disulfide	76	3.252	3.252 (0.384)	366575	50.0000	50.0	
11 Freon-113	151	3.273	3.274 (0.386)	122607	50.0000	50.0	
12 Iodomethane	142	3.402	3.402 (0.402)	151550	50.0000	50.0	
13 Acrolein	56	3.674	3.674 (0.434)	77995	250.000	250	
14 Methylene Chloride	84	3.988	3.989 (0.471)	161013	50.0000	50.0	
15 Acetone	43	4.088	4.089 (0.483)	203443	250.000	250	
16 Isobutyl Alcohol	43	8.899	8.899 (1.051)	153337	1000.00	1000	
17 trans-1,2-Dichloroethene	96	4.210	4.210 (0.497)	154252	50.0000	50.0	
18 Allyl Chloride	41	3.838	3.838 (0.453)	145494	50.0000	50.0	
19 Methyl tert-butyl ether	73	4.388	4.389 (0.518)	889600	100.000	100	
20 Acetonitrile	39	4.796	4.796 (0.566)	32760	500.000	500	
21 Di-isopropyl ether	45	5.025	5.025 (0.593)	333475	50.0000	50.0	
22 Chloroprene	53	5.153	5.154 (0.608)	211739	50.0000	50.0	

Data File: $\t server \g \em \g w.i\W011915.b\W1902.D$ Report Date: 20-Jan-2015 08:15

								AMOUN	ITS	
			QUANT SIG					CAL-AMT	ON-COL	
Co	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
==	===	=======	====	====		: ======	======	======	======	========
	23	Propionitrile	54	8.305	8.305	(0.981)	229541	500.000	500	
	24	Methacrylonitrile	41	8.334	8.335	(0.984)	724426	500.000	500	
	25	1,1-Dichloroethane	63	5.203	5.204	(0.614)	256707	50.0000	50.0	
	26	Acrylonitrile	52	5.332	5.332	(0.630)	212852	250.000	250	
	27	Ethyl tertiary-butyl ether	59	5.696	5.697	(0.673)	398479	50.0000	50.0	
	28	Vinyl Acetate	43	5.739	5.740	(0.606)	257014	50.0000	50.0	
	29	cis-1,2-Dichloroethene	96	6.254	6.254	(0.738)	188843	50.0000	50.0	
	31	Methyl Methacrylate	41	10.829	10.829	(1.143)	104389	50.0000	50.0	
	32	2,2-Dichloropropane	77	6.468	6.469	(0.764)	239961	50.0000	50.0	
	33	Bromochloromethane	128	6.683	6.683	(0.789)	91139	50.0000	50.0	
	34	Chloroform	83	6.912	6.912	(0.816)	281181	50.0000	50.0	
	35	Carbon Tetrachloride	117	7.140	7.141	(0.754)	215427	50.0000	50.0	
	36	Tetrahydrofuran	42	7.262	7.262	(0.857)	196267	250.000	250	
\$	37	Dibromofluoromethane	113	7.340	7.341	(0.867)	136270	50.0000	50.0	
	38	1,1,1-Trichloroethane	97	7.319	7.320	(0.864)	269808	50.0000	50.0	
	39	1,1-Dichloropropene	75	7.619	7.620	(0.805)	217412	50.0000	50.0	
	40	2-Butanone	43	7.684	7.684	(0.907)	309308	250.000	250	
	41	Benzene	78	8.155	8.156	(0.861)	655732	50.0000	50.0	
*	42	Pentafluorobenzene	168	8.470	8.470	(1.000)	607035	50.0000		
	43	Cyclohexane	56	6.626	6.626	(0.782)	226467	50.0000	50.0	
	44	Ethyl Methacrylate	69	12.952	12.952	(1.368)	208295	50.0000	50.0	
\$	45	1,2-Dichloroethane-D4	65	8.470	8.470	(1.000)	148255	50.0000	50.0	
	46	Tertiary-amyl methyl ether	73	8.506	8.506	(1.004)	408112	50.0000	50.0	
		1,2-Dichloroethane	62	8.606		(0.909)	200959	50.0000	50.0	
	48	Trichloroethene	95	9.349	9.350	(0.987)	176822	50.0000	50.0	
*	49	1,4-Difluorobenzene	114	9.471	9.471	(1.000)	877633	50.0000		
	50	Dibromomethane	93	10.114	10.114		93729	50.0000	50.0	
	51	1,2-Dichloropropane	63	10.300	10.300	(1.088)	136199	50.0000	50.0	
		Bromodichloromethane	83	10.457	10.457		221142	50.0000	50.0	
		cis-1,3-dichloropropene	75	11.543	11.544		281962	50.0000	50.0	
		1,4-Dioxane	88	10.843	10.843		63401	1000.00	1000	
\$		Toluene-D8	98	11.829	11.830		583348	50.0000	50.0	
	56	2-Chloroethylvinylether	63	11.515	11.515		42257	50.0000	50.0	
		Toluene	92	11.915	11.916		489429	50.0000	50.0	
		4-methyl-2-pentanone	43	12.594	12.595		629814	250.000	250	
		Tetrachloroethene	164	12.501	12.502		187214	50.0000	50.0	
	60	trans-1,3-Dichloropropene	75	11.543	11.544	(1.219)	281962	50.0000	50.0	
		1,1,2-Trichloroethane	83		12.866		119372	50.0000	50.0	
		Dibromochloromethane	129		13.117		193154	50.0000	50.0	
		1,3-Dichloropropane	76		13.267		270064	50.0000	50.0	
		1,2-Dibromoethane	107		13.438		161023	50.0000	50.0	
		2-Hexanone	43		13.903		471410	250.000	250	
*		Chlorobenzene-D5	117	14.238			808211	50.0000		
		Chlorobenzene	112		14.267		592249	50.0000	50.0	
		1-Chlorohexane	91		14.289		266484	50.0000	50.0	
		Ethylbenzene	106		14.339		321995	50.0000	50.0	
		1,1,1,2-Tetrachloroethane	131		14.382		202177	50.0000	50.0	
		m+p-Xylenes	106		14.575		800007	100.000	100	
		o-Xylene	106	15.210			394375	50.0000	50.0	
		Styrene	104		15.211		622874	50.0000	50.0	
		Bromoform	173		15.304		134939	50.0000	50.0	
		Isopropylbenzene	105		15.690		1029174	50.0000	50.0	
\$		P-Bromofluorobenzene	95		16.090		237009	50.0000	50.0	
٧		cis-1,4-Dichloro-2-Butene	53		16.239		66319	50.0000	50.0	
	, ,	1,1 Diditato 2 Dacene	33	10.210	10.200	,	20317	55.0000	50.0	

Data File: $\t server \g \em \g w.i\W011915.b\W1902.D$ Report Date: 20-Jan-2015 08:15

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====		======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	16.754	16.754 (0.927)	56139	50.0000	50.0	
79 Bromobenzene	156	16.225	16.226 (0.898)	269218	50.0000	50.0	
80 N-Propylbenzene	91	16.318	16.319 (0.903)	1145723	50.0000	50.0	
81 1,1,2,2-Tetrachloroethane	83	16.468	16.469 (0.911)	215116	50.0000	50.0	
82 1,3,5-Trimethylbenzene	105	16.661	16.662 (0.922)	898673	50.0000	50.0	
83 2-Chlorotoluene	91	16.540	16.540 (0.915)	712930	50.0000	50.0	
84 1,2,3-Trichloropropane	75	16.654	16.655 (0.922)	183597	50.0000	50.0	
85 4-Chlorotoluene	91	16.826	16.826 (0.931)	738653	50.0000	50.0	
86 tert-Butylbenzene	119	17.205	17.204 (0.952)	928138	50.0000	50.0	
87 Pentachloroethane	117	17.219	17.219 (0.953)	168485	50.0000	50.0	
88 1,2,4-Trimethylbenzene	105	17.348	17.347 (0.960)	903657	50.0000	50.0	
89 P-Isopropyltoluene	119	17.848	17.849 (0.988)	1054700	50.0000	50.0	
90 1,3-Dichlorobenzene	146	17.920	17.920 (0.992)	568242	50.0000	50.0	
* 91 1,4-Dichlorobenzene-D4	152	18.070	18.070 (1.000)	502207	50.0000		
92 1,4-Dichlorobenzene	146	18.091	18.092 (1.001)	554612	50.0000	50.0	
93 N-Butylbenzene	91	18.634	18.635 (1.031)	874465	50.0000	50.0	
94 sec-Butylbenzene	105	17.548	17.548 (0.971)	1197152	50.0000	50.0	
95 1,2-Dichlorobenzene	146	18.856	18.856 (1.044)	548910	50.0000	50.0	
96 1,2-Dibromo-3-Chloropropane	75	20.264	20.265 (1.121)	55656	50.0000	50.0	
97 1,3,5-Trichlorobenzene	180	20.314	20.315 (2.398)	520719	50.0000	50.0	
98 Hexachlorobutadiene	225	21.365	21.365 (1.182)	228130	50.0000	50.0	
99 1,2,4-Trichlorobenzene	180	21.379	21.380 (1.183)	451587	50.0000	50.0	
100 1,2,3-Trimethylbenzene	105	18.170	18.170 (2.145)	944956	50.0000	50.0	
101 Naphthalene	128	21.894	21.894 (1.212)	1113082	50.0000	50.0	
102 1,2,3-Trichlorobenzene	180	22.180	22.180 (1.227)	437122	50.0000	50.0	
103 Methyl Acetate	43	4.267	4.267 (0.504)	87477	50.0000	50.0	
104 Methylcyclohexane	83	9.278	9.278 (1.095)	310313	50.0000	50.0	

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1903.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gcms-w.i\\W011915.b\\W1903.D

Lab Smp Id: WG157196-6 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 11:19

Operator : REC Inst ID: gcms-w.i

Smp Info : WG157196-6

Misc Info :

Comment : SW846 5035

Method : \\target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date: 19-JAN-2015 11:19 Cal File: W1903.D

Als bottle: 3 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

Compounds			AMOUNTS					
Dichlorodifluoromethane		QUANT SIG				CAL-AMT	ON-COL	
1 Dichlorodifluoromethane 85 1.737 1.737 (0.205) 875821 200.000 215 (AM) M9 2 Chloromethane 50 1.959 1.951 (0.231) 728859 200.000 195 3 Vinyl chloride 62 2.023 2.023 (0.239) 770683 200.000 210 (A) 4 Bromomethane 94 2.366 2.366 (0.279) 312676 200.000 173 5 Chlorochhane 64 2.488 2.495 (0.239) 229764 200.000 196 6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichlorocthene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214 (A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020 (A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820 (A) 17 trans-1,2-Dichlorocthene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 584877 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381 (A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060 (A)	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
2 Chloromethane 50 1.959 1.951 (0.231) 728859 200.000 195 3 Vinyl chloride 62 2.023 2.023 (0.239) 770683 200.000 210(A) 4 Bromomethane 94 2.366 2.366 (0.279) 312676 200.000 173 5 Chloroethane 64 2.488 2.495 (0.293) 229764 200.000 196 6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 199 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	=======================================	====	====		= ======	======	======	========
3 Vinyl chloride 62 2.023 2.023 (0.239) 770683 200.000 210(A) 4 Bromomethane 94 2.366 2.366 (0.279) 312676 200.000 173 5 Chloroethane 64 2.488 2.495 (0.293) 229764 200.000 196 6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 199 11 Freon-113 151 3.267 3.274 (0.385) 44002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 54847 200.000 381(A) 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	1 Dichlorodifluoromethane	85	1.737	1.737 (0.205)	875821	200.000	215(AM)	м9
4 Bromomethane 94 2.366 2.366 (0.279) 312676 200.000 173 5 Chloroethane 64 2.488 2.495 (0.293) 229764 200.000 196 6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 199 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	2 Chloromethane	50	1.959	1.951 (0.231)	728859	200.000	195	
5 Chloroethane 64 2.488 2.495 (0.293) 229764 200.000 196 6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214 (A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 180 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820 (A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 381 (A) 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381 (A) 20 Acetonitrile 39 4.818 4.796 (0.568) 15484 2000.00 2060 (A)	3 Vinyl chloride	62	2.023	2.023 (0.239)	770683	200.000	210(A)	
6 Trichlorofluoromethane 101 2.623 2.638 (0.309) 290261 200.000 66.3 10.21 am, Jan 20, 2015 7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	4 Bromomethane	94	2.366	2.366 (0.279)	312676	200.000	173	060
7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	5 Chloroethane	64	2.488	2.495 (0.293)	229764	200.000	196	REC
7 Diethyl Ether 59 3.017 3.009 (0.356) 381781 200.000 189 8 Tertiary-butyl alcohol 59 5.711 5.697 (0.674) 1687199 1000.00 980 9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 381(A) 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	6 Trichlorofluoromethane	101	2.623	2.638 (0.309)	290261	200.000	66.3	10:21 am Jan 20 2015
9 1,1-Dichloroethene 96 3.217 3.224 (0.379) 527515 200.000 199 10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	7 Diethyl Ether	59	3.017	3.009 (0.356)	381781	200.000	189	10.21 am, Jan 20, 2013
10 Carbon Disulfide 76 3.245 3.252 (0.383) 1352777 200.000 194 11 Freon-113 151 3.267 3.274 (0.385) 440002 200.000 193 12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	8 Tertiary-butyl alcohol	59	5.711	5.697 (0.674)	1687199	1000.00	980	
11 Freon-113	9 1,1-Dichloroethene	96	3.217	3.224 (0.379)	527515	200.000	199	
12 Iodomethane 142 3.395 3.402 (0.401) 624958 200.000 214(A) 13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	10 Carbon Disulfide	76	3.245	3.252 (0.383)	1352777	200.000	194	
13 Acrolein 56 3.681 3.674 (0.434) 329431 1000.00 947 14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	11 Freon-113	151	3.267	3.274 (0.385)	440002	200.000	193	
14 Methylene Chloride 84 3.982 3.989 (0.470) 604663 200.000 180 15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	12 Iodomethane	142	3.395	3.402 (0.401)	624958	200.000	214(A)	
15 Acetone 43 4.103 4.089 (0.484) 860928 1000.00 1020(A) 16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	13 Acrolein	56	3.681	3.674 (0.434)	329431	1000.00	947	
16 Isobutyl Alcohol 43 8.985 8.899 (1.060) 822574 4000.00 4820(A) 17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	14 Methylene Chloride	84	3.982	3.989 (0.470)	604663	200.000	180	
17 trans-1,2-Dichloroethene 96 4.203 4.210 (0.496) 583167 200.000 191 18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	15 Acetone	43	4.103	4.089 (0.484)	860928	1000.00	1020(A)	
18 Allyl Chloride 41 3.831 3.838 (0.452) 548477 200.000 184 19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	16 Isobutyl Alcohol	43	8.985	8.899 (1.060)	822574	4000.00	4820(A)	
19 Methyl tert-butyl ether 73 4.403 4.389 (0.519) 3548625 400.000 381(A) 20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	17 trans-1,2-Dichloroethene	96	4.203	4.210 (0.496)	583167	200.000	191	
20 Acetonitrile 39 4.818 4.796 (0.568) 154484 2000.00 2060(A)	18 Allyl Chloride	41	3.831	3.838 (0.452)	548477	200.000	184	
	19 Methyl tert-butyl ether	73	4.403	4.389 (0.519)	3548625	400.000	381(A)	
21 Di-isopropyl ether 45 5.032 5.025 (0.594) 1374954 200.000 189	20 Acetonitrile	39	4.818	4.796 (0.568)	154484	2000.00	2060(A)	
	21 Di-isopropyl ether	45	5.032	5.025 (0.594)	1374954	200.000	189	
22 Chloroprene 53 5.154 5.154 (0.608) 833568 200.000 192	22 Chloroprene	53	5.154	5.154 (0.608)	833568	200.000	192	

Data File: $\t server \g \em \g w.i\W011915.b\W1903.D$ Report Date: 20-Jan-2015 08:15

			AMOUNTS							
		QUANT SIG					CAL-AMT	ON-COL		
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE	
=====	=======================================	====	====	======	: ======	======	======	======	========	
23	Propionitrile	54	8.342	8.305	(0.984)	985583	2000.00	1970		
24	Methacrylonitrile	41	8.363	8.335	(0.987)	2891029	2000.00	1890		
25	1,1-Dichloroethane	63	5.204	5.204	(0.614)	998577	200.000	193		
26	Acrylonitrile	52	5.347	5.332	(0.631)	931253	1000.00	997		
27	Ethyl tertiary-butyl ether	59	5.711	5.697	(0.674)	1687199	200.000	196		
28	Vinyl Acetate	43	5.740	5.740	(0.606)	1131094	200.000	198		
29	cis-1,2-Dichloroethene	96	6.255	6.254	(0.738)	749519	200.000	195		
31	Methyl Methacrylate	41	10.837	10.829	(1.144)	518665	200.000	216(A)		
32	2,2-Dichloropropane	77	6.469	6.469	(0.763)	958418	200.000	205(A)		
33	Bromochloromethane	128	6.691	6.683	(0.789)	375041	200.000	200(A)		
34	Chloroform	83	6.912	6.912	(0.815)	1113405	200.000	198		
35	Carbon Tetrachloride	117	7.141	7.141	(0.754)	858227	200.000	204(A)		
36	Tetrahydrofuran	42	7.270	7.262	(0.858)	905823	1000.00	1050(A)		
\$ 37	Dibromofluoromethane	113	7.348	7.341	(0.867)	551168	200.000	202(A)		
38	1,1,1-Trichloroethane	97	7.320	7.320	(0.863)	1041201	200.000	201(A)		
39	1,1-Dichloropropene	75	7.613	7.620	(0.804)	860767	200.000	192		
40	2-Butanone	43	7.699	7.684	(0.908)	1465531	1000.00	1070(A)		
41	Benzene	78	8.156	8.156	(0.861)	2550569	200.000	185		
* 42	Pentafluorobenzene	168	8.478	8.470	(1.000)	630261	50.0000			
43	Cyclohexane	56	6.626	6.626	(0.782)	881324	200.000	200(A)		
44	Ethyl Methacrylate	69	12.952	12.952	(1.368)	997543	200.000	210(A)		
\$ 45	1,2-Dichloroethane-D4	65	8.478	8.470	(1.000)	588958	200.000	202(A)		
46	Tertiary-amyl methyl ether	73	8.513	8.506	(1.004)	1789751	200.000	203(A)		
47	1,2-Dichloroethane	62	8.613	8.606	(0.909)	818045	200.000	196		
48	Trichloroethene	95	9.350	9.350	(0.987)	687440	200.000	190		
* 49	1,4-Difluorobenzene	114	9.471	9.471	(1.000)	947354	50.0000			
50	Dibromomethane	93	10.115	10.114	(1.068)	398713	200.000	202(A)		
51	1,2-Dichloropropane	63	10.300	10.300	(1.088)	573240	200.000	195		
52	Bromodichloromethane	83	10.465	10.457	(1.105)	921608	200.000	202(A)		
53	cis-1,3-dichloropropene	75	11.544	11.544	(1.219)	1195769	200.000	199		
54	1,4-Dioxane	88	10.872	10.843	(1.148)	311805	4000.00	4240(A)		
\$ 55	Toluene-D8	98	11.837	11.830	(1.250)	2265055	200.000	187		
56	2-Chloroethylvinylether	63	11.516	11.515	(1.216)	238915	200.000	237(A)		
57	Toluene	92	11.916	11.916	(1.258)	1869029	200.000	185		
58	4-methyl-2-pentanone	43	12.609	12.595	(1.331)	2714858	1000.00	990		
59	Tetrachloroethene	164	12.502	12.502	(0.878)	729953	200.000	189		
60	trans-1,3-Dichloropropene	75	11.544	11.544	(1.219)	1195769	200.000	199		
61	1,1,2-Trichloroethane	83	12.867	12.866	(1.358)	511061	200.000	200		
62	Dibromochloromethane	129	13.117	13.117	(0.921)	847075	200.000	207(A)		
63	1,3-Dichloropropane	76	13.274	13.267	(0.932)	1137236	200.000	196		
64	1,2-Dibromoethane	107	13.438	13.438	(1.419)	716870	200.000	206(A)		
65	2-Hexanone	43	13.910	13.903	(0.976)	2197040	1000.00	1030(A)		
* 66	Chlorobenzene-D5	117	14.246	14.239	(1.000)	881303	50.0000			
67	Chlorobenzene	112	14.268	14.267	(1.002)	2235412	200.000	182		
152	l 1-Chlorohexane	91	14.296	14.289	(1.686)	1096204	200.000	208(A)		
68	Ethylbenzene	106	14.346	14.339	(1.007)	1228353	200.000	185		
69	1,1,1,2-Tetrachloroethane	131	14.389	14.382	(1.010)	841124	200.000	199		
71	m+p-Xylenes	106	14.575	14.575	(1.023)	2794344	400.000	346		
	o-Xylene	106		15.211		1552133	200.000	188		
73	Styrene	104	15.297	15.297	(1.074)	2418712	200.000	186(A)		
	Bromoform	173		15.304		639674	200.000	217(A)		
75	Isopropylbenzene	105		15.690		3762720	200.000	170		
\$ 76	P-Bromofluorobenzene	95		16.090		1040502	200.000	206(A)		
	cis-1,4-Dichloro-2-Butene	53		16.239		345461	200.000	214(A)		

Data File: $\t server \g \em \g w.i\W011915.b\W1903.D$ Report Date: 20-Jan-2015 08:15

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====	=======================================	======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	16.762	16.754 (0.928)	291373	200.000	215(A)	
79 Bromobenzene	156	16.233	16.226 (0.898)	1117971	200.000	184	
80 N-Propylbenzene	91	16.326	16.319 (0.903)	4178316	200.000	169	
81 1,1,2,2-Tetrachloroethane	83	16.469	16.469 (0.911)	1025565	200.000	199	
82 1,3,5-Trimethylbenzene	105	16.669	16.662 (0.922)	3429840	200.000	175	
83 2-Chlorotoluene	91	16.548	16.540 (0.916)	2856248	200.000	180	
84 1,2,3-Trichloropropane	75	16.662	16.655 (0.922)	823947	200.000	193	
85 4-Chlorotoluene	91	16.834	16.826 (0.932)	2970995	200.000	181	
86 tert-Butylbenzene	119	17.213	17.204 (0.953)	3653467	200.000	180	
87 Pentachloroethane	117	17.227	17.219 (0.953)	759787	200.000	195	
88 1,2,4-Trimethylbenzene	105	17.348	17.347 (0.960)	3579944	200.000	179	
89 P-Isopropyltoluene	119	17.856	17.849 (0.988)	4033830	200.000	178	
90 1,3-Dichlorobenzene	146	17.920	17.920 (0.992)	2323306	200.000	182	
* 91 1,4-Dichlorobenzene-D4	152	18.070	18.070 (1.000)	594706	50.0000		
92 1,4-Dichlorobenzene	146	18.099	18.092 (1.002)	2262558	200.000	182	
93 N-Butylbenzene	91	18.642	18.635 (1.032)	3348690	200.000	177	
94 sec-Butylbenzene	105	17.548	17.548 (0.971)	4558961	200.000	177	
95 1,2-Dichlorobenzene	146	18.864	18.856 (1.044)	2273220	200.000	184	
96 1,2-Dibromo-3-Chloropropane	75	20.272	20.265 (1.122)	261233	200.000	205(A)	
97 1,3,5-Trichlorobenzene	180	20.322	20.315 (2.397)	1964470	200.000	190	
98 Hexachlorobutadiene	225	21.366	21.365 (1.182)	875632	200.000	181(A)	
99 1,2,4-Trichlorobenzene	180	21.387	21.380 (1.184)	1712610	200.000	174	
100 1,2,3-Trimethylbenzene	105	18.178	18.170 (2.144)	3730032	200.000	196	
101 Naphthalene	128	21.902	21.894 (1.212)	4078965	200.000	166	
102 1,2,3-Trichlorobenzene	180	22.188	22.180 (1.228)	1666228	200.000	173	
103 Methyl Acetate	43	4.275	4.267 (0.504)	399325	200.000	214(A)	
104 Methylcyclohexane	83	9.285	9.278 (1.095)	1206030	200.000	198	

- A Target compound detected but, quantitated amount exceeded maximum amount.
- M Compound response manually integrated.

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1904.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1904.D

Lab Smp Id: WG157196-5 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 11:51

Operator : REC Smp Info : WG157196-5 Inst ID: gcms-w.i

Misc Info :

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 11:51 Cal File: W1904.D

Als bottle: 4 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws Cpnd Variable	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g) Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====			======	======	========
1 Dichlorodifluoromethane	85	1.742	1.737 (0.206)	421561	100.000	93.3	
2 Chloromethane	50	1.950	1.951 (0.230)	400398	100.000	96.6	
3 Vinyl chloride	62	2.028	2.023 (0.239)	393001	100.000	96.8	
4 Bromomethane	94	2.364	2.366 (0.279)	194274	100.000	97.1	
5 Chloroethane	64	2.493	2.495 (0.294)	120394	100.000	92.7	
6 Trichlorofluoromethane	101	2.629	2.638 (0.310)	439103	100.000	90.5	
7 Diethyl Ether	59	3.008	3.009 (0.355)	224749	100.000	100	
8 Tertiary-butyl alcohol	59	5.702	5.697 (0.673)	989768	500.000	519	
9 1,1-Dichloroethene	96	3.222	3.224 (0.380)	287860	100.000	97.8	
10 Carbon Disulfide	76	3.251	3.252 (0.384)	763465	100.000	98.5	
11 Freon-113	151	3.272	3.274 (0.386)	252187	100.000	99.7	
12 Iodomethane	142	3.401	3.402 (0.401)	328960	100.000	101	
13 Acrolein	56	3.672	3.674 (0.433)	204177	500.000	530	
14 Methylene Chloride	84	3.987	3.989 (0.470)	343997	100.000	92.6	
15 Acetone	43	4.094	4.089 (0.483)	470069	500.000	501	
16 Isobutyl Alcohol	43	8.919	8.899 (1.052)	443040	2000.00	2340	
17 trans-1,2-Dichloroether	ne 96	4.208	4.210 (0.497)	331742	100.000	98.1	
18 Allyl Chloride	41	3.837	3.838 (0.453)	339871	100.000	103	
19 Methyl tert-butyl ether	73	4.394	4.389 (0.518)	2093016	200.000	203(A)	
20 Acetonitrile	39	4.809	4.796 (0.567)	88982	1000.00	1070	
21 Di-isopropyl ether	45	5.030	5.025 (0.594)	844190	100.000	105	
22 Chloroprene	53	5.152	5.154 (0.608)	501613	100.000	104	

Data File: $\t server \g \em \g w.i\W011915.b\W1904.D$ Report Date: 20-Jan-2015 08:15

								AMOUN	TS	
			QUANT SIG					CAL-AMT	ON-COL	
Cor	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
===	===		====	====	======	======	======	======	======	========
	23	Propionitrile	54	8.319	8.305	(0.981)	582478	1000.00	1050	
	24	Methacrylonitrile	41	8.347	8.335	(0.985)	1718391	1000.00	1010	
	25	1,1-Dichloroethane	63	5.202	5.204	(0.614)	567411	100.000	98.8	
	26	Acrylonitrile	52	5.338	5.332	(0.630)	533012	500.000	515	
	27	Ethyl tertiary-butyl ether	59	5.702	5.697	(0.673)	989768	100.000	104	
	28	Vinyl Acetate	43	5.738	5.740	(0.606)	626782	100.000	104	
	29	cis-1,2-Dichloroethene	96	6.253	6.254	(0.738)	423839	100.000	99.5	
	31	Methyl Methacrylate	41	10.835	10.829	(1.144)	272386	100.000	108	
	32	2,2-Dichloropropane	77	6.474	6.469	(0.764)	513720	100.000	99.1	
	33	Bromochloromethane	128	6.689	6.683	(0.789)	202680	100.000	97.6	
	34	Chloroform	83	6.910	6.912	(0.815)	617455	100.000	99.0	
	35	Carbon Tetrachloride	117	7.139	7.141	(0.754)	444985	100.000	100	
	36	Tetrahydrofuran	42	7.268	7.262	(0.857)	488233	500.000	512	
\$	37	Dibromofluoromethane	113	7.346	7.341	(0.867)	291460	100.000	96.2	
	38	1,1,1-Trichloroethane	97	7.325	7.320	(0.864)	560234	100.000	97.7	
	39	1,1-Dichloropropene	75	7.618	7.620	(0.804)	481014	100.000	102	
		2-Butanone	43	7.690	7.684	(0.907)	788622	500.000	520	
	41	Benzene	78	8.161		(0.862)	1456284	100.000	100	
*		Pentafluorobenzene	168	8.476		(1.000)	698577	50.0000		
		Cyclohexane	56	6.624		(0.782)	487000	100.000	100	
		Ethyl Methacrylate	69	12.950		(1.368)	530705	100.000	106	
\$		1,2-Dichloroethane-D4	65	8.469		(0.999)	304219	100.000	94.4	
¥		Tertiary-amyl methyl ether	73	8.504		(1.003)	1024915	100.000	105	
		1,2-Dichloroethane	62	8.604		(0.909)	432802	100.000	98.7	
		Trichloroethene	95	9.348		(0.987)	383563	100.000	100	
									100	
^		1,4-Difluorobenzene	114	9.469		(1.000)	997545	50.0000	00.0	
		Dibromomethane	93	10.113		(1.068)	207247	100.000	99.8	
		1,2-Dichloropropane	63	10.306	10.300		315390	100.000	102	
		Bromodichloromethane	83		10.457		480502	100.000	100	
		cis-1,3-dichloropropene	75	11.549	11.544		643274	100.000	102	
		1,4-Dioxane	88	10.849	10.843		170376	2000.00	2200	
\$		Toluene-D8	98	11.835	11.830		1264468	100.000	99.4	
		2-Chloroethylvinylether	63		11.515		112986	100.000	106	
		Toluene	92		11.916		1060397	100.000	99.7	
		4-methyl-2-pentanone	43		12.595		1480231	500.000	513	
		Tetrachloroethene	164		12.502		408571	100.000	102	
		trans-1,3-Dichloropropene	75		11.544		643274	100.000	102	
		1,1,2-Trichloroethane	83		12.866		267282	100.000	99.3	
		Dibromochloromethane	129		13.117		425530	100.000	100	
		1,3-Dichloropropane	76		13.267		607353	100.000	100	
	64	1,2-Dibromoethane	107	13.437	13.438	(1.419)	371360	100.000	101	
	65	2-Hexanone	43	13.908	13.903	(0.976)	1153234	500.000	521	
*	66	Chlorobenzene-D5	117	14.244	14.239	(1.000)	916179	50.0000		
	67	Chlorobenzene	112	14.266	14.267	(1.002)	1257707	100.000	98.5	
1	152	1-Chlorohexane	91	14.294	14.289	(1.686)	596371	100.000	102	
	68	Ethylbenzene	106	14.344	14.339	(1.007)	688105	100.000	99.5	
	69	1,1,1,2-Tetrachloroethane	131	14.387	14.382	(1.010)	437898	100.000	99.5	
	71	m+p-Xylenes	106	14.573	14.575	(1.023)	1654874	200.000	197	
	72	o-Xylene	106	15.209	15.211	(1.068)	859796	100.000	100	
	73	Styrene	104	15.295	15.297	(1.074)	1352843	100.000	100	
		Bromoform	173		15.304		308503	100.000	101	
		Isopropylbenzene	105		15.690		2144948	100.000	98.4	
\$		P-Bromofluorobenzene	95		16.090		520796	100.000	98.0	
•		cis-1,4-Dichloro-2-Butene	53		16.239		163375	100.000	103	
						•				

Data File: $\t server \g \em \g w.i\W011915.b\W1904.D$ Report Date: 20-Jan-2015 08:15

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
=======================================	====	====	=======================================	======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	16.753	16.754 (0.927)	138336	100.000	104	
79 Bromobenzene	156	16.231	16.226 (0.898)	583380	100.000	97.5	
80 N-Propylbenzene	91	16.324	16.319 (0.903)	2393357	100.000	98.5	
81 1,1,2,2-Tetrachloroethane	83	16.467	16.469 (0.911)	515453	100.000	101	
82 1,3,5-Trimethylbenzene	105	16.667	16.662 (0.922)	1911728	100.000	98.9	
83 2-Chlorotoluene	91	16.546	16.540 (0.916)	1539304	100.000	98.5	
84 1,2,3-Trichloropropane	75	16.660	16.655 (0.922)	418593	100.000	99.6	
85 4-Chlorotoluene	91	16.832	16.826 (0.932)	1592646	100.000	98.4	
86 tert-Butylbenzene	119	17.211	17.204 (0.953)	1995409	100.000	99.6	
87 Pentachloroethane	117	17.218	17.219 (0.953)	392893	100.000	102	
88 1,2,4-Trimethylbenzene	105	17.346	17.347 (0.960)	1957271	100.000	99.2	
89 P-Isopropyltoluene	119	17.847	17.849 (0.988)	2242380	100.000	100	
90 1,3-Dichlorobenzene	146	17.918	17.920 (0.992)	1241000	100.000	99.0	
* 91 1,4-Dichlorobenzene-D4	152	18.068	18.070 (1.000)	585845	50.0000		
92 1,4-Dichlorobenzene	146	18.097	18.092 (1.002)	1217123	100.000	99.6	
93 N-Butylbenzene	91	18.640	18.635 (1.032)	1865610	100.000	100	
94 sec-Butylbenzene	105	17.547	17.548 (0.971)	2531113	100.000	99.6	
95 1,2-Dichlorobenzene	146	18.862	18.856 (1.044)	1218256	100.000	100	
96 1,2-Dibromo-3-Chloropropane	75	20.270	20.265 (1.122)	128088	100.000	102	
97 1,3,5-Trichlorobenzene	180	20.320	20.315 (2.397)	1154336	100.000	101	
98 Hexachlorobutadiene	225	21.364	21.365 (1.182)	466761	100.000	97.9	
99 1,2,4-Trichlorobenzene	180	21.385	21.380 (1.184)	952633	100.000	98.0	
100 1,2,3-Trimethylbenzene	105	18.176	18.170 (2.144)	2124823	100.000	101	
101 Naphthalene	128	21.900	21.894 (1.212)	2385570	100.000	98.4	
102 1,2,3-Trichlorobenzene	180	22.186	22.180 (1.228)	917006	100.000	96.8	
103 Methyl Acetate	43	4.266	4.267 (0.503)	204316	100.000	98.9	
104 Methylcyclohexane	83	9.284	9.278 (1.095)	702924	100.000	104	

A - Target compound detected but, quantitated amount exceeded maximum amount.

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1905.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1905.D

Lab Smp Id: WG157196-3 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 12:24

Operator : REC Smp Info : WG157196-3 Inst ID: gcms-w.i

Misc Info :

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 12:24 Cal File: W1905.D

Als bottle: 5 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
=======================================	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.737	1.737 (0.205)	77087	20.0000	16.3	
2 Chloromethane	50	1.945	1.951 (0.230)	86250	20.0000	19.9	
3 Vinyl chloride	62	2.023	2.023 (0.239)	77050	20.0000	18.2	
4 Bromomethane	94	2.366	2.366 (0.279)	46314	20.0000	22.2	
5 Chloroethane	64	2.495	2.495 (0.295)	25760	20.0000	19.0	
6 Trichlorofluoromethane	101	2.645	2.638 (0.312)	92215	20.0000	18.2	
7 Diethyl Ether	59	3.002	3.009 (0.354)	49523	20.0000	21.2	
8 Tertiary-butyl alcohol	59	5.697	5.697 (0.673)	203156	100.000	102	
9 1,1-Dichloroethene	96	3.231	3.224 (0.381)	57255	20.0000	18.6	
10 Carbon Disulfide	76	3.253	3.252 (0.384)	154953	20.0000	19.2	
11 Freon-113	151	3.274	3.274 (0.387)	48741	20.0000	18.4	
12 Iodomethane	142	3.403	3.402 (0.402)	57124	20.0000	16.9	
13 Acrolein	56	3.667	3.674 (0.433)	42756	100.000	106	
14 Methylene Chloride	84	3.989	3.989 (0.471)	91189	20.0000	23.5(a)	
15 Acetone	43	4.089	4.089 (0.483)	96297	100.000	98.3	
16 Isobutyl Alcohol	43	8.900	8.899 (1.051)	67940	500.000	344	
17 trans-1,2-Dichloroethene	96	4.210	4.210 (0.497)	71467	20.0000	20.2	
18 Allyl Chloride	41	3.839	3.838 (0.453)	71677	20.0000	20.8	
19 Methyl tert-butyl ether	73	4.389	4.389 (0.518)	449928	40.0000	41.7	
20 Acetonitrile	39	4.797	4.796 (0.566)	17337	200.000	199	
21 Di-isopropyl ether	45	5.025	5.025 (0.593)	177738	20.0000	21.1	
22 Chloroprene	53	5.154	5.154 (0.608)	98401	20.0000	19.6	

Data File: $\t server \g \em \g w.i\W011915.b\W1905.D$ Report Date: 20-Jan-2015 08:15

							AMOUN	TS	
		QUANT SIG					CAL-AMT	ON-COL	
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
=====	=======================================	====	====		=======	======	======	======	========
23	Propionitrile	54	8.299	8.305	(0.980)	117742	200.000	203	
24	Methacrylonitrile	41	8.328	8.335	(0.983)	372626	200.000	211	
25	1,1-Dichloroethane	63	5.204	5.204	(0.614)	122506	20.0000	20.4	
	Acrylonitrile	52	5.333		(0.630)	110878	100.000	102	
	Ethyl tertiary-butyl ether	59	5.697		(0.673)	203156	20.0000	20.4	
	Vinyl Acetate	43	5.733		(0.605)	126351	20.0000	20.0	
29	•	96	6.255		(0.738)	89847	20.0000	20.2	
	Methyl Methacrylate	41	10.837		(1.144)	47354	20.0000	17.9	
	2,2-Dichloropropane	77	6.476		(0.765)	99306	20.0000	18.4	
	Bromochloromethane	128	6.684		(0.789)	43831	20.0000	20.2	
	: Chloroform	83	6.912		(0.816)	127967	20.0000	19.6	
	Carbon Tetrachloride	117	7.141		(0.754)	80345	20.0000	17.3	
	Tetrahydrofuran	42	7.270		(0.754)	97053	100.000	97.5	
	Dibromofluoromethane	113	7.341		(0.867)	62813	20.0000	19.9	
	1,1,1-Trichloroethane	97	7.341		(0.865)	111812	20.0000	18.7	
	1,1-Dichloropropene	75	7.620		(0.805)	95672	20.0000	19.4	
	2-Butanone	43	7.620		(0.805)			95.0	
						150358	100.000		
	Benzene	78	8.163		(0.862)	316733	20.0000	20.9	
	Pentafluorobenzene	168	8.471		(1.000)	729428	50.0000		
	Cyclohexane	56	6.626		(0.782)	94310	20.0000	18.5	
	Ethyl Methacrylate	69		12.952		97955	20.0000	18.7	
	1,2-Dichloroethane-D4	65	8.471		(1.000)	66345	20.0000	19.7	
46	Tertiary-amyl methyl ether	73	8.506		(1.004)	197753	20.0000	19.4	
47	1,2-Dichloroethane	62	8.606	8.606	(0.909)	90585	20.0000	19.8	
48	Trichloroethene	95	9.350	9.350	(0.987)	79583	20.0000	19.9	
* 49	1,4-Difluorobenzene	114	9.471	9.471	(1.000)	1043781	50.0000		
50	Dibromomethane	93	10.115	10.114	(1.068)	41947	20.0000	19.3	
51	1,2-Dichloropropane	63	10.308	10.300	(1.088)	65450	20.0000	20.2	
52	Bromodichloromethane	83	10.465	10.457	(1.105)	94945	20.0000	18.9	
53	cis-1,3-dichloropropene	75	11.544	11.544	(1.219)	129694	20.0000	19.6	
54	1,4-Dioxane	88	10.851	10.843	(1.146)	29490	400.000	364	
\$ 55	Toluene-D8	98	11.837	11.830	(1.250)	273123	20.0000	20.5	
56	2-Chloroethylvinylether	63	11.516	11.515	(1.216)	18744	20.0000	16.9	
57	Toluene	92	11.916	11.916	(1.258)	229609	20.0000	20.6	
58	4-methyl-2-pentanone	43	12.602	12.595	(1.331)	299967	100.000	99.3	
59	Tetrachloroethene	164	12.502	12.502	(0.878)	79891	20.0000	19.4	
60	trans-1,3-Dichloropropene	75	11.544	11.544	(1.219)	129694	20.0000	19.6	
61	1,1,2-Trichloroethane	83	12.867	12.866	(1.358)	56360	20.0000	20.0	
62	Dibromochloromethane	129	13.117	13.117	(0.921)	81515	20.0000	18.7	
63	1,3-Dichloropropane	76	13.267	13.267	(0.932)	123939	20.0000	20.0	
64	1,2-Dibromoethane	107	13.439	13.438	(1.419)	73678	20.0000	19.2	
	2-Hexanone	43		13.903		218580	100.000	96.2	
* 66	Chlorobenzene-D5	117	14.239	14.239	(1.000)	939459	50.0000		
	Chlorobenzene	112		14.267		275939	20.0000	21.1	
	1-Chlorohexane	91		14.289		108215	20.0000	17.8	
	Ethylbenzene	106		14.339		145331	20.0000	20.5	
	1,1,1,2-Tetrachloroethane	131		14.382		87524	20.0000	19.4	
	m+p-Xylenes	106		14.575		365899	40.0000	42.6	
	= =	106							
	o-Xylene			15.211		178565	20.0000	20.3	
	Styrene	104		15.297		284672	20.0000	20.5	
	Bromoform	173		15.304		56878	20.0000	18.1	
	Isopropylbenzene	105		15.690		447808	20.0000	21.3	
	P-Bromofluorobenzene	95		16.090		108256	20.0000	19.5	
77	cis-1,4-Dichloro-2-Butene	53	16.241	16.239	(0.899)	28616	20.0000	18.6	

Data File: $\t server \g \em \g w.i\W011915.b\W1905.D$ Report Date: 20-Jan-2015 08:15

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====	=======================================	======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	16.755	16.754 (0.927)	23464	20.0000	18.2	
79 Bromobenzene	156	16.233	16.226 (0.898)	121824	20.0000	21.1	
80 N-Propylbenzene	91	16.319	16.319 (0.903)	501565	20.0000	21.4	
81 1,1,2,2-Tetrachloroethane	83	16.469	16.469 (0.911)	98965	20.0000	20.1	
82 1,3,5-Trimethylbenzene	105	16.662	16.662 (0.922)	392308	20.0000	21.0	
83 2-Chlorotoluene	91	16.541	16.540 (0.915)	316885	20.0000	21.0	
84 1,2,3-Trichloropropane	75	16.655	16.655 (0.922)	82829	20.0000	20.4	
85 4-Chlorotoluene	91	16.834	16.826 (0.932)	327621	20.0000	20.9	
86 tert-Butylbenzene	119	17.206	17.204 (0.952)	396622	20.0000	20.5	
87 Pentachloroethane	117	17.220	17.219 (0.953)	73042	20.0000	19.6	
88 1,2,4-Trimethylbenzene	105	17.348	17.347 (0.960)	398931	20.0000	20.9	
89 P-Isopropyltoluene	119	17.849	17.849 (0.988)	437469	20.0000	20.2	
90 1,3-Dichlorobenzene	146	17.920	17.920 (0.992)	252195	20.0000	20.8	
* 91 1,4-Dichlorobenzene-D4	152	18.070	18.070 (1.000)	566004	50.0000		
92 1,4-Dichlorobenzene	146	18.092	18.092 (1.001)	243890	20.0000	20.6	
93 N-Butylbenzene	91	18.635	18.635 (1.031)	363857	20.0000	20.2	
94 sec-Butylbenzene	105	17.549	17.548 (0.971)	502304	20.0000	20.4	
95 1,2-Dichlorobenzene	146	18.857	18.856 (1.044)	242712	20.0000	20.6	
96 1,2-Dibromo-3-Chloropropane	75	20.272	20.265 (1.122)	22104	20.0000	18.3	
97 1,3,5-Trichlorobenzene	180	20.315	20.315 (2.398)	239483	20.0000	20.0	
98 Hexachlorobutadiene	225	21.366	21.365 (1.182)	92094	20.0000	20.0	
99 1,2,4-Trichlorobenzene	180	21.380	21.380 (1.183)	200760	20.0000	21.4	
100 1,2,3-Trimethylbenzene	105	18.171	18.170 (2.145)	428689	20.0000	19.5	
101 Naphthalene	128	21.895	21.894 (1.212)	522120	20.0000	22.3	
102 1,2,3-Trichlorobenzene	180	22.181	22.180 (1.227)	199028	20.0000	21.8	
103 Methyl Acetate	43	4.268	4.267 (0.504)	41579	20.0000	19.3	
104 Methylcyclohexane	83	9.286	9.278 (1.096)	128523	20.0000	18.2	

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1906.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1906.D

Lab Smp Id: WG157196-2 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 12:56

Operator : REC Smp Info : WG157196-2 Inst ID: gcms-w.i

Misc Info :

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 12:56 Cal File: W1906.D

Als bottle: 6 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

				AMOUNTS			
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====		======	======	======	========
1 Dichlorodifluoromethane	85	1.740	1.737 (0.205)	43608	10.0000	9.3	
2 Chloromethane	50	1.947	1.951 (0.230)	47783	10.0000	10.8	
3 Vinyl chloride	62	2.025	2.023 (0.239)	42308	10.0000	9.9	
4 Bromomethane	94	2.369	2.366 (0.280)	24741	10.0000	11.4	
5 Chloroethane	64	2.497	2.495 (0.295)	15609	10.0000	11.1	
6 Trichlorofluoromethane	101	2.647	2.638 (0.312)	51688	10.0000	10.1	
7 Diethyl Ether	59	3.005	3.009 (0.355)	24609	10.0000	10.4	
8 Tertiary-butyl alcohol	59	5.700	5.697 (0.673)	98895	50.0000	49.5	
9 1,1-Dichloroethene	96	3.233	3.224 (0.382)	31773	10.0000	10.2	
10 Carbon Disulfide	76	3.255	3.252 (0.384)	84476	10.0000	10.3	
11 Freon-113	151	3.276	3.274 (0.387)	27897	10.0000	10.4	
12 Iodomethane	142	3.405	3.402 (0.402)	25610	10.0000	7.9	
13 Acrolein	56	3.670	3.674 (0.433)	21419	50.0000	52.3	
14 Methylene Chloride	84	3.984	3.989 (0.470)	58056	10.0000	13.6(a)	
15 Acetone	43	4.084	4.089 (0.482)	50123	50.0000	50.7	
16 Isobutyl Alcohol	43	8.902	8.899 (1.051)	30234	200.000	298	
17 trans-1,2-Dichloroethene	96	4.213	4.210 (0.497)	39093	10.0000	10.8	
18 Allyl Chloride	41	3.841	3.838 (0.453)	37855	10.0000	10.7	
19 Methyl tert-butyl ether	73	4.391	4.389 (0.518)	222924	20.0000	20.4	
20 Acetonitrile	39	4.806	4.796 (0.567)	8381	100.000	96.6	
21 Di-isopropyl ether	45	5.028	5.025 (0.593)	88054	10.0000	10.3	
22 Chloroprene	53	5.156	5.154 (0.609)	51499	10.0000	10.2	

Data File: $\t server \g \chem \gcms-w.i\W011915.b\W1906.D$ Report Date: 20-Jan-2015 08:15

							AMOUN	TS	
		QUANT SIG					CAL-AMT	ON-COL	
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
====		====	====	======	: ======	======	======	======	========
23	3 Propionitrile	54	8.301	8.305	(0.980)	59244	100.000	101	
24	4 Methacrylonitrile	41	8.330	8.335	(0.983)	189046	100.000	105	
2!	5 1,1-Dichloroethane	63	5.206	5.204	(0.614)	65072	10.0000	10.6	
26	6 Acrylonitrile	52	5.335	5.332	(0.630)	58329	50.0000	52.9	
2'	7 Ethyl tertiary-butyl ether	59	5.700	5.697	(0.673)	98895	10.0000	9.9	
	8 Vinyl Acetate	43	5.742		(0.606)	62327	10.0000	9.8	
29	9 cis-1,2-Dichloroethene	96	6.257		(0.738)	47278	10.0000	10.4	
	1 Methyl Methacrylate	41	10.839		(1.144)	21525	10.0000	8.3	
	2 2,2-Dichloropropane	77	6.479		(0.765)	52828	10.0000	9.8	
	3 Bromochloromethane	128	6.693		(0.790)	22231	10.0000	10.2	
	4 Chloroform	83	6.915		(0.816)	67305	10.0000	10.2	
	5 Carbon Tetrachloride	117	7.143		(0.754)	41655	10.0000	9.0	
	6 Tetrahydrofuran	42	7.279		(0.859)	47433	50.0000	47.9	
	7 Dibromofluoromethane	113	7.344		(0.867)	33330	10.0000	10.4	
	8 1,1,1-Trichloroethane	97	7.329		(0.865)	59352	10.0000	9.9	
	9 1,1-Dichloropropene	75	7.622		(0.805)	50560	10.0000	10.1	
	0 2-Butanone	43	7.694		(0.908)	73708	50.0000	47.0	
	1 Benzene	78	8.158		(0.861)	163634	10.0000	10.5	
	2 Pentafluorobenzene	168	8.473		(1.000)	733673	50.0000		
	3 Cyclohexane	56	6.629		(0.782)	51135	10.0000	10	
	4 Ethyl Methacrylate	69	12.955		(1.367)	44283	10.0000	8.6	
	5 1,2-Dichloroethane-D4	65	8.466		(0.999)	34341	10.0000	10.1	
	6 Tertiary-amyl methyl ether	73	8.509		(1.004)	97303	10.0000	9.6	
	7 1,2-Dichloroethane	62	8.609		(0.909)	47002	10.0000	10.1	
	8 Trichloroethene	95	9.352		(0.987)	43364	10.0000	10.5	
	9 1,4-Difluorobenzene	114	9.474		(1.000)	1061740	50.0000		
	0 Dibromomethane	93	10.124		(1.069)	21806	10.0000	9.9	
	1 1,2-Dichloropropane	63	10.303	10.300		33093	10.0000	10.0	
	2 Bromodichloromethane	83		10.457		47714	10.0000	9.4	
	3 cis-1,3-dichloropropene	75	11.547	11.544		60510	10.0000	9.2	
	4 1,4-Dioxane	88	10.860	10.843		14578	200.000	181	
	5 Toluene-D8	98	11.840	11.830		140128	10.0000	10.3	
	6 2-Chloroethylvinylether	63	11.518	11.515		8595	10.0000	8.0	
	7 Toluene	92		11.916		119456	10.0000	10.4	
	8 4-methyl-2-pentanone	43		12.595		143143	50.0000	47.2	
	9 Tetrachloroethene	164		12.502		43511	10.0000	10.3	
	0 trans-1,3-Dichloropropene	75		11.544		60510	10.0000	9.2	
	1 1,1,2-Trichloroethane	83		12.866		28121	10.0000	9.8	
	2 Dibromochloromethane	129		13.117		39460	10.0000	9.0	
	3 1,3-Dichloropropane	76	13.269	13.267		62308	10.0000	9.9	
	4 1,2-Dibromoethane	107		13.438 13.903		36864	10.0000	9.6	
	5 2-Hexanone	43		14.239		102092	50.0000	45.0	
-	6 Chlorobenzene-D5 7 Chlorobenzene	117 112		14.239		960720 147330	50.0000 10.0000	10.8	
	2 1-Chlorohexane 8 Ethylbenzene	91 106		14.289 14.339		58836 77694	10.0000	9.7	
	9 1,1,1,2-Tetrachloroethane	131		14.339		77694 44796	10.0000	10.6 9.8	
	1 m+p-Xylenes	106		14.575		192127	20.0000	21.5	
	n m+p-xylenes 2 o-Xylene	106		15.211		90277	10.0000	10.0	
	3 Styrene	104		15.211		141837	10.0000	10.0	
	4 Bromoform	173		15.297		27314	10.0000	8.8	
	5 Isopropylbenzene	105		15.304		27314	10.0000	10.8	
	6 P-Bromofluorobenzene	95		16.090		54701	10.0000	9.7	
	7 cis-1,4-Dichloro-2-Butene	53		16.239		13645	10.0000	9.7	
,	. 015 1,1 DIGHTOIO 2-BUCCHE	33	10.230	10.433	, 0 . 0 . 0 .)	1010	10.0000	٥.٠	

Data File: $\t server \g \chem \gcms-w.i\W011915.b\W1906.D$ Report Date: 20-Jan-2015 08:15

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====	=======================================	======	======	======	========
78 trans-1,4-Dichloro-2-Butene	53	16.757	16.754 (0.928)	11491	10.0000	9.1	
79 Bromobenzene	156	16.229	16.226 (0.898)	62832	10.0000	10.6	
80 N-Propylbenzene	91	16.321	16.319 (0.903)	263817	10.0000	10.9	
81 1,1,2,2-Tetrachloroethane	83	16.472	16.469 (0.912)	49544	10.0000	10.0	
82 1,3,5-Trimethylbenzene	105	16.665	16.662 (0.922)	202599	10.0000	10.6	
83 2-Chlorotoluene	91	16.543	16.540 (0.916)	166977	10.0000	10.8	
84 1,2,3-Trichloropropane	75	16.657	16.655 (0.922)	40874	10.0000	10.0	
85 4-Chlorotoluene	91	16.829	16.826 (0.932)	168330	10.0000	10.6	
86 tert-Butylbenzene	119	17.208	17.204 (0.953)	204880	10.0000	10.4	
87 Pentachloroethane	117	17.222	17.219 (0.953)	37113	10.0000	9.9	
88 1,2,4-Trimethylbenzene	105	17.344	17.347 (0.960)	204575	10.0000	10.5	
89 P-Isopropyltoluene	119	17.851	17.849 (0.988)	228782	10.0000	10.4	
90 1,3-Dichlorobenzene	146	17.923	17.920 (0.992)	132274	10.0000	10.7	
* 91 1,4-Dichlorobenzene-D4	152	18.066	18.070 (1.000)	569260	50.0000		
92 1,4-Dichlorobenzene	146	18.094	18.092 (1.002)	126949	10.0000	10.5	
93 N-Butylbenzene	91	18.637	18.635 (1.032)	190031	10.0000	10.4	
94 sec-Butylbenzene	105	17.551	17.548 (0.972)	262011	10.0000	10.5	
95 1,2-Dichlorobenzene	146	18.859	18.856 (1.044)	126760	10.0000	10.6	
96 1,2-Dibromo-3-Chloropropane	75	20.267	20.265 (1.122)	9880	10.0000	8.4	
97 1,3,5-Trichlorobenzene	180	20.317	20.315 (2.398)	121100	10.0000	10.0	
98 Hexachlorobutadiene	225	21.368	21.365 (1.183)	50563	10.0000	10.7	
99 1,2,4-Trichlorobenzene	180	21.382	21.380 (1.184)	101560	10.0000	10.6	
100 1,2,3-Trimethylbenzene	105	18.173	18.170 (2.145)	218736	10.0000	9.9	
101 Naphthalene	128	21.897	21.894 (1.212)	257645	10.0000	10.7	
102 1,2,3-Trichlorobenzene	180	22.183	22.180 (1.228)	100323	10.0000	10.7	
103 Methyl Acetate	43	4.270	4.267 (0.504)	21333	10.0000	9.9	
104 Methylcyclohexane	83	9.288	9.278 (1.096)	70311	10.0000	9.9	

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1907.D

Report Date: 20-Jan-2015 08:15

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1907.D

Lab Smp Id: WG157196-1 Client Smp ID: Initial Calibration

Inj Date : 19-JAN-2015 13:29

Operator : REC Smp Info : WG157196-1 Inst ID: gcms-w.i

Misc Info:

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 13:29 Cal File: W1907.D

Als bottle: 7 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.738	1.737 (0.205)	20618	5.00000	4.5(a)	
2 Chloromethane	50	1.946	1.951 (0.230)	20652	5.00000	4.7(a)	
3 Vinyl chloride	62	2.024	2.023 (0.239)	18416	5.00000	4.4(a)	
4 Bromomethane	94	2.367	2.366 (0.279)	12172	5.00000	5.5	
5 Chloroethane	64	2.496	2.495 (0.295)	7549	5.00000	5.3	
6 Trichlorofluoromethane	101	2.646	2.638 (0.312)	23901	5.00000	4.8(a)	
7 Diethyl Ether	59	3.004	3.009 (0.355)	12196	5.00000	5.1	
8 Tertiary-butyl alcohol	59	5.698	5.697 (0.673)	46121	25.0000	23.5(a)	
9 1,1-Dichloroethene	96	3.232	3.224 (0.382)	14626	5.00000	4.8(a)	
10 Carbon Disulfide	76	3.254	3.252 (0.384)	38519	5.00000	4.8(a)	
11 Freon-113	151	3.275	3.274 (0.387)	13675	5.00000	5.1	
12 Iodomethane	142	3.404	3.402 (0.402)	10536	5.00000	3.5(a)	
13 Acrolein	56	3.676	3.674 (0.434)	10509	25.0000	25.6	
15 Acetone	43	4.090	4.089 (0.483)	24050	25.0000	24.5(a)	
16 Isobutyl Alcohol	43	8.901	8.899 (1.051)	12945	100.000	194	
17 trans-1,2-Dichloroethene	96	4.212	4.210 (0.497)	17190	5.00000	4.8(a)	
18 Allyl Chloride	41	3.840	3.838 (0.453)	16749	5.00000	4.8(a)	
19 Methyl tert-butyl ether	73	4.390	4.389 (0.518)	105255	10.0000	9.7	
21 Di-isopropyl ether	45	5.026	5.025 (0.593)	41610	5.00000	4.9(a)	
22 Chloroprene	53	5.155	5.154 (0.609)	22814	5.00000	4.6(a)	
23 Propionitrile	54	8.307	8.305 (0.981)	28408	50.0000	49.0(a)	
24 Methacrylonitrile	41	8.336	8.335 (0.984)	90231	50.0000	50.3	

Data File: $\t server \g \em \gcms-w.i\W011915.b\W1907.D$ Report Date: 20-Jan-2015 08:15

							AMOUN	ITS	
			QUANT SIG				CAL-AMT	ON-COL	
Co	mpo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
==	===	=======================================	====	====		=======	======	======	========
	25	1,1-Dichloroethane	63	5.205	5.204 (0.614)	29185	5.00000	4.8(a)	
	26	Acrylonitrile	52	5.334	5.332 (0.630)	28189	25.0000	25.6	
	27	Ethyl tertiary-butyl ether	59	5.698	5.697 (0.673)	46121	5.00000	4.7(a)	
	28	Vinyl Acetate	43	5.741	5.740 (0.606)	27098	5.00000	4.4(a)	
	29	cis-1,2-Dichloroethene	96	6.256	6.254 (0.738)	20871	5.00000	4.7(a)	
	31	Methyl Methacrylate	41	10.838	10.829 (1.144)	9130	5.00000	3.8(a)	
	32	2,2-Dichloropropane	77	6.478	6.469 (0.765)	23059	5.00000	4.4(a)	
	33	Bromochloromethane	128	6.685	6.683 (0.789)	10699	5.00000	4.9(a)	
	34	Chloroform	83	6.921	6.912 (0.817)	30150	5.00000	4.7(a)	
	35	Carbon Tetrachloride	117	7.135	7.141 (0.753)	17992	5.00000	4.1(a)	
	36	Tetrahydrofuran	42	7.285	7.262 (0.860)	21421	25.0000	22.2(a)	
\$	37	Dibromofluoromethane	113	7.350	7.341 (0.868)	14573	5.00000	4.6(a)	
	38	1,1,1-Trichloroethane	97	7.328	7.320 (0.865)	26431	5.00000	4.5(a)	
	39	1,1-Dichloropropene	75	7.621	7.620 (0.805)	22651	5.00000	4.7(a)	
	40	2-Butanone	43	7.693	7.684 (0.908)	33035	25.0000	21.7(a)	
	41	Benzene	78	8.157	8.156 (0.861)	72091	5.00000	4.8(a)	
*	42	Pentafluorobenzene	168	8.472	8.470 (1.000)	730077	50.0000		
	43	Cyclohexane	56	6.628	6.626 (0.782)	23661	5.00000	4.7(a)	
	44	Ethyl Methacrylate	69	12.954	12.952 (1.367)	18046	5.00000	3.8(a)	
\$	45	1,2-Dichloroethane-D4	65	8.465	8.470 (0.999)	16405	5.00000	4.9(a)	
	46	Tertiary-amyl methyl ether	73	8.508	8.506 (1.004)	45789	5.00000	4.6(a)	
	47	1,2-Dichloroethane	62	8.608	8.606 (0.909)	22550	5.00000	5.0	
	48	Trichloroethene	95	9.351	9.350 (0.987)	19319	5.00000	4.8(a)	
*	49	1,4-Difluorobenzene	114	9.473	9.471 (1.000)	1035134	50.0000		
	50	Dibromomethane	93	10.116	10.114 (1.068)	10330	5.00000	4.8(a)	
	51	1,2-Dichloropropane	63	10.302	10.300 (1.088)	15273	5.00000	4.8(a)	
	52	Bromodichloromethane	83	10.466	10.457 (1.105)	21935	5.00000	4.5(a)	
	53	cis-1,3-dichloropropene	75	11.545	11.544 (1.219)	26977	5.00000	4.3(a)	
	54	1,4-Dioxane	88	10.866	10.843 (1.147)	5661	100.000	75.6(a)	
\$	55	Toluene-D8	98	11.839	11.830 (1.250)	60487	5.00000	4.6(a)	
	56	2-Chloroethylvinylether	63	11.524	11.515 (1.217)	3641	5.00000	9.3	
	57	Toluene	92	11.917	11.916 (1.258)	54356	5.00000	4.9(a)	
	58	4-methyl-2-pentanone	43	12.603	12.595 (1.330)	61163	25.0000	21.3(a)	
	59	Tetrachloroethene	164	12.503	12.502 (0.878)	19204	5.00000	4.7(a)	
	60	trans-1,3-Dichloropropene	75	11.545	11.544 (1.219)	26977	5.00000	4.3(a)	
	61	1,1,2-Trichloroethane	83	12.868	12.866 (1.358)	13258	5.00000	4.8(a)	
	62	Dibromochloromethane	129	13.118	13.117 (0.921)	18211	5.00000	4.4(a)	
	63	1,3-Dichloropropane	76	13.268	13.267 (0.932)	29041	5.00000	4.7(a)	
	64	1,2-Dibromoethane	107	13.440	13.438 (1.419)	16204	5.00000	4.4(a)	
	65	2-Hexanone	43	13.911	13.903 (0.977)	43014	25.0000	20.1(a)	
*	66	Chlorobenzene-D5	117	14.240	14.239 (1.000)	944564	50.0000		
	67	Chlorobenzene	112	14.269	14.267 (1.002)	66380	5.00000	5.0	
	152	1-Chlorohexane	91	14.290	14.289 (1.687)	25078	5.00000	4.3(a)	
	68	Ethylbenzene	106	14.340	14.339 (1.007)	34913	5.00000	4.8(a)	
	69	1,1,1,2-Tetrachloroethane	131	14.383	14.382 (1.010)	20077	5.00000	4.5(a)	
	71	m+p-Xylenes	106	14.576	14.575 (1.024)	84603	10.0000	9.7(a)	
	72	o-Xylene	106	15.212	15.211 (1.068)	38539	5.00000	4.4(a)	
	73	Styrene	104	15.298	15.297 (1.074)	60061	5.00000	4.4(a)	
	74	Bromoform	173	15.305	15.304 (1.075)	11783	5.00000	4.0(a)	
	75	Isopropylbenzene	105	15.691	15.690 (0.869)	99654	5.00000	4.7(a)	
\$	76	P-Bromofluorobenzene	95	16.099	16.090 (1.699)	23814	5.00000	4.4(a)	
	77	cis-1,4-Dichloro-2-Butene	53	16.242	16.239 (0.899)	5958	5.00000	4.1(a)	
	78	trans-1,4-Dichloro-2-Butene	53	16.763	16.754 (0.928)	5152	5.00000	4.2(a)	

156 16.235 16.226 (0.899) 28773 5.00000

79 Bromobenzene

Data File: $\t server \g \em \g w.i\W011915.b\W1907.D$ Report Date: 20-Jan-2015 08:15

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/kg)	REVIEW CODE
	====	====		=======	======	======	========
80 N-Propylbenzene	91	16.320	16.319 (0.903)	113938	5.00000	4.8(a)	
81 1,1,2,2-Tetrachloroethane	83	16.470	16.469 (0.912)	22815	5.00000	4.7(a)	
82 1,3,5-Trimethylbenzene	105	16.663	16.662 (0.922)	84973	5.00000	4.6(a)	
83 2-Chlorotoluene	91	16.542	16.540 (0.916)	71460	5.00000	4.7(a)	
84 1,2,3-Trichloropropane	75	16.656	16.655 (0.922)	19519	5.00000	4.9(a)	
85 4-Chlorotoluene	91	16.835	16.826 (0.932)	73661	5.00000	4.7(a)	
86 tert-Butylbenzene	119	17.207	17.204 (0.953)	86511	5.00000	4.5(a)	
87 Pentachloroethane	117	17.221	17.219 (0.953)	16145	5.00000	4.5(a)	
88 1,2,4-Trimethylbenzene	105	17.350	17.347 (0.960)	86527	5.00000	4.6(a)	
89 P-Isopropyltoluene	119	17.850	17.849 (0.988)	97593	5.00000	4.6(a)	
90 1,3-Dichlorobenzene	146	17.921	17.920 (0.992)	60064	5.00000	4.9(a)	
* 91 1,4-Dichlorobenzene-D4	152	18.064	18.070 (1.000)	561094	50.0000		
92 1,4-Dichlorobenzene	146	18.093	18.092 (1.002)	59665	5.00000	5.0	
93 N-Butylbenzene	91	18.636	18.635 (1.032)	81208	5.00000	4.6(a)	
94 sec-Butylbenzene	105	17.550	17.548 (0.972)	113359	5.00000	4.7(a)	
95 1,2-Dichlorobenzene	146	18.858	18.856 (1.044)	57172	5.00000	4.8(a)	
96 1,2-Dibromo-3-Chloropropane	75	20.273	20.265 (1.122)	4745	5.00000	4.2(a)	
97 1,3,5-Trichlorobenzene	180	20.316	20.315 (2.398)	55406	5.00000	4.7(a)	
98 Hexachlorobutadiene	225	21.367	21.365 (1.183)	22462	5.00000	4.8(a)	
99 1,2,4-Trichlorobenzene	180	21.381	21.380 (1.184)	44278	5.00000	4.7(a)	
100 1,2,3-Trimethylbenzene	105	18.172	18.170 (2.145)	96484	5.00000	4.5(a)	
101 Naphthalene	128	21.903	21.894 (1.212)	114490	5.00000	4.9(a)	
102 1,2,3-Trichlorobenzene	180	22.182	22.180 (1.228)	47196	5.00000	5.1	
103 Methyl Acetate	43	4.269	4.267 (0.504)	11728	5.00000	5.4	
104 Methylcyclohexane	83	9.287	9.278 (1.096)	32421	5.00000	4.7(a)	

Compound: Dichlorodifluoromethane CAS Number: 75-71-8

BEFORE MANUAL INTEGRATION

AFTER MANUAL **INTEGRATION**

Compound: Dichlorodifluoromethane CAS Number: 75-71-8

Data File: \target_server\gg\chem\gcms-w.i\W011915.b\W1908A.D

Report Date: 20-Jan-2015 10:13

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\W011915.b\W1908A.D

Lab Smp Id: WG157196-7 Client Smp ID: Independent Source

Inj Date : 19-JAN-2015 14:15

Operator : REC Inst ID: gcms-w.i

Smp Info : WG157196-7

Misc Info: WG157196, WG157196-4

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 13:29 Cal File: W1907.D Als bottle: 8 QC Sample: INDSOURCE

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8260-S.sub

Target Version: 4.12

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

					CONCENTR	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.736	1.737 (0.205)	218176	51.8447	51.8	
2 Chloromethane	50	1.943	1.951 (0.230)	198204	49.1446	49.1	
3 Vinyl chloride	62	2.022	2.023 (0.239)	192459	50.3206	50.3	
4 Bromomethane	94	2.365	2.366 (0.279)	96126	47.1227	47.1	
5 Chloroethane	64	2.494	2.495 (0.294)	63503	48.6085	48.6	
6 Trichlorofluoromethane	101	2.644	2.638 (0.312)	253425	54.6242	54.6	
7 Diethyl Ether	59	3.001	3.009 (0.354)	105949	48.3764	48.4	
8 Tertiary-butyl alcohol	59	5.696	5.697 (0.673)	462044	254.830	255	
9 1,1-Dichloroethene	96	3.223	3.224 (0.381)	131222	46.3943	46.4	
10 Carbon Disulfide	76	3.251	3.252 (0.384)	437434	58.6356	58.6	
11 Freon-113	151	3.273	3.274 (0.386)	134723	54.4526	54.4	
12 Iodomethane	142	3.402	3.402 (0.402)	174378	54.6176	54.6	
13 Acrolein	56	3.673	3.674 (0.434)	95026	251.296	251	
14 Methylene Chloride	84	3.981	3.989 (0.470)	155660	43.2938	43.3	
15 Acetone	43	4.081	4.089 (0.482)	52045	57.5197	57.5	
16 Isobutyl Alcohol	43	8.891	8.899 (1.050)	170929	893.535	894	
17 trans-1,2-Dichloroethene	96	4.202	4.210 (0.496)	152777	46.2797	46.3	
18 Allyl Chloride	41	3.838	3.838 (0.453)	166562	51.7270	51.7	
19 Methyl tert-butyl ether	73	4.388	4.389 (0.518)	990900	99.4239	99.4	
20 Acetonitrile	39	4.795	4.796 (0.566)	41325	517.577	518	
21 Di-isopropyl ether	45	5.024	5.025 (0.593)	408685	52.3113	52.3	
22 Chloroprene	53	5.153	5.154 (0.608)	251726	54.9576	55.0	

Data File: $\t server \g \ens-w.i\W011915.b\W1908A.D$ Report Date: 20-Jan-2015 10:13

						CONCENTR	¿ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT		RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COI
23 Propionitrile	==== 54	8.305		= ======= (0.981)	263336	492.103	492	========
24 Methacrylonitrile	41	8.334		(0.984)	804709	486.007	486	
25 1,1-Dichloroethane	63	5.203		(0.614)	274469	49.1096	49.1	
26 Acrylonitrile	52	5.332		(0.630)	249894	245.573	246	
27 Ethyl tertiary-butyl ether	59	5.696		(0.673)	462044	50.9659	51.0	
					270289		47.0	
28 Vinyl Acetate 29 cis-1,2-Dichloroethene	43 96	5.732		(0.605) (0.738)		47.0144 48.7699	47.0	
		6.254	0.∠⊃⊐	(0.130)	200224	48.7699		
M 30 1,2-Dichloroethylene (total)		10 020	10 929	(1 1/2)	353001 113631	95.0497 45.2103	95.0 45.2	
31 Methyl Methacrylate	41	10.828		(1.143)	113631	45.2103	45.2	
32 2,2-Dichloropropane	77	6.475		(0.765)	237670	49.0007	49.0	
33 Bromochloromethane	128	6.683		(0.789)	92495	46.1521	46.2	
34 Chloroform	83	6.911		(0.816)	281605	47.1847	47.2	
35 Carbon Tetrachloride	117	7.140		(0.754)	210811	51.4256	51.4	
36 Tetrahydrofuran	42	7.269		(0.858)	41023	46.0880	46.1	
\$ 37 Dibromofluoromethane	113	7.340		(0.867)	141922	48.8375	48.8	
38 1,1,1-Trichloroethane	97	7.326		(0.865)	266775	49.3187	49.3	
39 1,1-Dichloropropene	75	7.619		(0.805)	239032	52.2942	52.3	
40 2-Butanone	43	7.690	7.684	(0.908)	64390	45.8599	45.8	
41 Benzene	78	8.155	8.156	(0.861)	694476	48.6806	48.7	
* 42 Pentafluorobenzene	168	8.470	8.470	(1.000)	673852	50.0000		
43 Cyclohexane	56	6.625	6.626	(0.782)	256493	55.2440	55.2	
44 Ethyl Methacrylate	69	12.951	12.952	(1.368)	229675	50.8993	50.9	
\$ 45 1,2-Dichloroethane-D4	65	8.470	8.470	(1.000)	146212	47.1110	47.1	
46 Tertiary-amyl methyl ether	73	8.505	8.506	(1.004)	454089	49.5023	49.5	
47 1,2-Dichloroethane	62	8.605		(0.909)	194030	45.1577	45.2	
48 Trichloroethene	95	9.349		(0.987)	181138	48.0382	48.0	
* 49 1,4-Difluorobenzene	114	9.470		(1.000)	978053	50.0000		
50 Dibromomethane	93	10.114			93806	46.4951	46.5	
51 1,2-Dichloropropane	63	10.299		(1.088)	144294	47.8638	47.9	
52 Bromodichloromethane	83	10.457		(1.104)	216918	47.5038	47.5	
53 cis-1,3-dichloropropene	75	11.543		(1.219)	269904	45.6016	45.6	
53 cis-1,3-dichioropropene 54 1,4-Dioxane	88	10.843		(1.219)	76853	1086.59	1090	
							1090 49.8	
	98 63		11.830		616667 44414	49.8474		
56 2-Chloroethylvinylether	63				44414	41.9804	42.0	
57 Toluene	92				503739	47.9853	48.0	
58 4-methyl-2-pentanone	43		12.595		122893	45.3130	45.3	
59 Tetrachloroethene	164		12.502		191155	50.9236	50.9	
60 trans-1,3-Dichloropropene	75		11.544		269904	45.6016	45.6	
61 1,1,2-Trichloroethane	83		12.866		121094	46.4089	46.4	
62 Dibromochloromethane	129		13.117		181290	47.4745	47.5	
63 1,3-Dichloropropane	76		13.267		270412	48.1804	48.2	
64 1,2-Dibromoethane	107	13.437	13.438	(1.419)	158848	45.7329	45.7	
65 2-Hexanone	43	13.909	13.903	(0.976)	88445	45.1279	45.1	
* 66 Chlorobenzene-D5	117	14.245	14.239	(1.000)	863568	50.0000		
67 Chlorobenzene	112	14.267	14.267	(1.002)	579000	47.2483	47.2	
152 1-Chlorohexane	91	14.288	14.289	(1.687)	283420	52.2260	52.2	
68 Ethylbenzene	106	14.338	14.339	(1.007)	324129	49.3195	49.3	
69 1,1,1,2-Tetrachloroethane	131		14.382		198041	48.9204	48.9	
M 70 Xylenes (total)	106			,	1169829	146.790	147	
71 m+p-Xylenes	106	14.574	14.575	(1.023)	784665	98.1428	98.1	
72 o-Xylene	106		15.211		385164	48.6471	48.6	
73 Styrene	104		15.211		629393	50.5348	50.5	
74 Bromoform	173	15.303	15.304	(1.0/4)	124667	46.3177	46.3	

105 15.689 15.690 (0.869) 993841 51.0675 51.1

75 Isopropylbenzene

Data File: $\t server \g \ens-w.i\W011915.b\W1908A.D$ Report Date: 20-Jan-2015 10:13

100

M 153 Total Alkylbenzenes

						CONCENTRATIONS		
		QUANT SIG				ON-COLUMN	FINAL	
С	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
=		====	====		= ======	======	======	=======
\$	76 P-Bromofluorobenzene	95	16.096	16.090 (1.700)	236380	46.6986	46.7	
	77 cis-1,4-Dichloro-2-Butene	53	16.239	16.239 (0.899)	64093	48.2749	48.3	
	78 trans-1,4-Dichloro-2-Butene	53	16.754	16.754 (0.928)	53095	47.4145	47.4	
	79 Bromobenzene	156	16.232	16.226 (0.899)	262858	49.0163	49.0	
	80 N-Propylbenzene	91	16.318	16.319 (0.903)	1104513	50.6075	50.6	
	81 1,1,2,2-Tetrachloroethane	83	16.468	16.469 (0.912)	202516	45.5037	45.5	
	82 1,3,5-Trimethylbenzene	105	16.661	16.662 (0.922)	846687	49.5979	49.6	
	83 2-Chlorotoluene	91	16.540	16.540 (0.916)	668988	48.0013	48.0	
	84 1,2,3-Trichloropropane	75	16.654	16.655 (0.922)	173199	46.8443	46.8	
	85 4-Chlorotoluene	91	16.826	16.826 (0.932)	693417	48.2975	48.3	
	86 tert-Butylbenzene	119	17.204	17.204 (0.953)	892946	50.8146	50.8	
	87 Pentachloroethane	117	17.219	17.219 (0.953)	173412	52.1456	52.1	
	88 1,2,4-Trimethylbenzene	105	17.347	17.347 (0.960)	878725	50.5234	50.5	
	89 P-Isopropyltoluene	119	17.848	17.849 (0.988)	1030094	52.3894	52.4	
	90 1,3-Dichlorobenzene	146	17.919	17.920 (0.992)	519187	46.1771	46.2	
*	91 1,4-Dichlorobenzene-D4	152	18.062	18.070 (1.000)	517849	50.0000		
	92 1,4-Dichlorobenzene	146	18.091	18.092 (1.002)	522900	47.7057	47.7	
	93 N-Butylbenzene	91	18.634	18.635 (1.032)	831007	50.8644	50.9	
	94 sec-Butylbenzene	105	17.547	17.548 (0.972)	1139969	50.7974	50.8	
	95 1,2-Dichlorobenzene	146	18.856	18.856 (1.044)	503048	46.3117	46.3	
	96 1,2-Dibromo-3-Chloropropane	75	20.271	20.265 (1.122)	51189	49.5124	49.5	
	97 1,3,5-Trichlorobenzene	180	20.321	20.315 (2.399)	511004	46.7315	46.7	
	98 Hexachlorobutadiene	225	21.364	21.365 (1.183)	220167	51.5983	51.6	
	99 1,2,4-Trichlorobenzene	180	21.379	21.380 (1.184)	406792	47.1315	47.1	
	100 1,2,3-Trimethylbenzene	105	18.169	18.170 (2.145)	978496	49.2872	49.3	
	101 Naphthalene	128	21.901	21.894 (1.213)	1040770	47.9408	47.9	
	102 1,2,3-Trichlorobenzene	180	22.179	22.180 (1.228)	397654	46.4933	46.5	
	103 Methyl Acetate	43	4.266	4.267 (0.504)	109155	54.1598	54.2	
	104 Methylcyclohexane	83	9.284	9.278 (1.096)	361677	56.3708	56.4	

356

6723941 355.595

Date : 19-JAN-2015 09:07

Client ID: Instrument: gcms-w.i

Sample Info: WG157196-10,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

Data File: \\target_server\gg\chem\gcms-w.i\W011915.b\WB111.D

Date : 19-JAN-2015 09:07

Client ID: Instrument: gcms-w.i

Sample Info: WG157196-10,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

1 bfb

Date : 19-JAN-2015 09:07

Client ID: Instrument: gcms-w.i

Sample Info: WG157196-10,SI0230

Operator: REC

Column phase: RTX-VMS Column diameter: 0.18

L	ocation o	Data File Spectrum of Maximum of points	: Avg. S : 95.00	cans 125-1	L27	′ (2.99)	, Backgro	und Scan 1	20	
	m/z	Υ.					Y	m/z	Y	
1	37.00		57,00			75,00		+ 96₊00	1341	
- 1	38,00	621 I	60,00	85	ı	76.00	874	I 97₊00	75	I
- 1	39.00	253 I	61.00	901	I	79.00	298	104.00	69	l
- 1	40,00	40 1	62,00	700	1	80,00	83	141.00	261	I
!	44.00		63,00					143.00 	178	
1	45.00		64,00		•	87,00		+ 174,00	14492	
- 1	47.00	255 I	68.00	1909	I	88.00	544	I 175.00	1156	l
- 1	49.00	764 I	69.00	2038	I	92,00	697	I 176.00	14393	l
- 1	50,00	3248 I	70.00	71	I	93.00	728	177.00	807	I
1	51,00		73,00			94.00			48	
+-	56.00		74.00		•		19288	+ I		+

Raw QC Data Section

Report of Analytical Results

Client:

Lab ID: WG157196-9

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: W1910.D

Sample Date: Received Date:

Extract Date: 19-JAN-15

Extracted By: REC **Extraction Method:** SW846 5035

Lab Prep Batch: WG157196

Analysis Date: 19-JAN-15

Analyst: REC

Analysis Method: SW846 8260B

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	5.0	ug/Kgdryw	t 1	10	10.	0.92	5.0
Trichlorofluoromethane	U	5.0	ug/Kgdryw	t 1	10	10.	0.91	5.0
Freon-113	U	2.5	ug/Kgdryw	t 1	5	5.0	0.90	2.5
Methyl Acetate	U	3.0	ug/Kgdryw	t 1	5	5.0	2.7	3.0
Methyl tert-butyl Ether	U	2.5	ug/Kgdryw	t 1	5	5.0	1.1	2.5
Cyclohexane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.4	2.5
Methylcyclohexane	U	2.5	ug/Kgdryw	t 1	5	5.0	0.96	2.5
1,2-Dibromoethane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.2	2.5
Isopropylbenzene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.92	2.5
Chloromethane	U	5.0	ug/Kgdryw	t 1	10	10.	1.4	5.0
Bromomethane	U	5.0	ug/Kgdryw	t 1	10	10.	1.1	5.0
Vinyl Chloride	U	5.0	ug/Kgdryw	t 1	10	10.	0.87	5.0
Chloroethane	U	5.0	ug/Kgdryw	t 1	10	10.	1.3	5.0
Methylene Chloride	U	12	ug/Kgdryw	t 1	25	25.	7.9	12.
Acetone	U	12	ug/Kgdryw	t 1	25	25.	5.1	12.
Carbon Disulfide	U	2.5	ug/Kgdryw	t 1	5	5.0	0.78	2.5
1,1-Dichloroethene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.93	2.5
1,1-Dichloroethane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.7	2.5
cis-1,2-Dichloroethene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.91	2.5
trans-1,2-Dichloroethene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.71	2.5
Chloroform	U	2.5	ug/Kgdryw	t 1	5	5.0	0.35	2.5
1,2-Dichloroethane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.0	2.5
2-Butanone	U	12	ug/Kgdryw	t 1	25	25.	5.9	12.
1,1,1-Trichloroethane	U	2.5	ug/Kgdryw	t 1	5	5.0	0.42	2.5
Carbon Tetrachloride	U	2.5	ug/Kgdryw	t 1	5	5.0	1.3	2.5
Bromodichloromethane	U	2.5	ug/Kgdryw	t 1	5	5.0	0.60	2.5
1,2-Dichloropropane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.4	2.5
cis-1,3-Dichloropropene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.72	2.5
Trichloroethene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.59	2.5
Dibromochloromethane	U	2.5	ug/Kgdryw	t 1	5	5.0	1.0	2.5
1,1,2-Trichloroethane	U	2.5	ug/Kgdryw	t 1	5	5.0	0.97	2.5
Benzene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.92	2.5
trans-1,3-Dichloropropene	U	2.5	ug/Kgdryw	t 1	5	5.0	0.86	2.5
Bromoform	U	2.5	ug/Kgdryw	t 1	5	5.0	0.70	2.5

Page 1 of 2

Report of Analytical Results

Client:

Lab ID: WG157196-9

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: W1910.D

Sample Date: Received Date:

Extract Date: 19-JAN-15

Extracted By:REC

Extraction Method: SW846 5035

Lab Prep Batch: WG157196

Analysis Date: 19-JAN-15

Analyst: REC

Analysis Method: SW846 8260B

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Methyl-2-Pentanone	U	12	ug/Kgdrywt	1	25	25.	5.9	12.
2-Hexanone	U	12	ug/Kgdrywt	1	25	25.	4.8	12.
Tetrachloroethene	U	2.5	ug/Kgdrywt	1	5	5.0	1.2	2.5
1,1,2,2-Tetrachloroethane	U	2.5	ug/Kgdrywt	1	5	5.0	0.84	2.5
Toluene	U	2.5	ug/Kgdrywt	1	5	5.0	1.4	2.5
Chlorobenzene	U	2.5	ug/Kgdrywt	1	5	5.0	0.51	2.5
Ethylbenzene	U	2.5	ug/Kgdrywt	: 1	5	5.0	0.65	2.5
Styrene	U	2.5	ug/Kgdrywt	: 1	5	5.0	0.51	2.5
m+p-Xylenes	U	5.0	ug/Kgdrywt	: 1	10	10.	1.7	5.0
o-Xylene	U	2.5	ug/Kgdrywt	: 1	5	5.0	1.3	2.5
Xylenes (Total)	U	7.5	ug/Kgdrywt	: 1	15	15.	1.3	7.5
1,3-Dichlorobenzene	U	2.5	ug/Kgdrywt	: 1	5	5.0	0.62	2.5
1,4-Dichlorobenzene	U	2.5	ug/Kgdrywt	: 1	5	5.0	0.44	2.5
1,2-Dichlorobenzene	U	2.5	ug/Kgdrywt	1	5	5.0	0.78	2.5
1,2-Dibromo-3-Chloropropane	U	2.5	ug/Kgdrywt	1	5	5.0	1.5	2.5
1,2,4-Trichlorobenzene	U	2.5	ug/Kgdrywt	1	5	5.0	0.79	2.5
1,2,3-Trichlorobenzene	U	2.5	ug/Kgdrywt	1	5	5.0	0.76	2.5
Dibromofluoromethane		98.3	%					
1,2-Dichloroethane-d4		96.8	%					
Toluene-d8		101.	%					
P-Bromofluorobenzene		93.1	%					

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1910.D

Report Date: 20-Jan-2015 10:12

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1910.D

Lab Smp Id: WG157196-9 Client Smp ID: WG157196-Blank

Inj Date : 19-JAN-2015 15:38

Operator : REC Smp Info : WG157196-9,SI0230 Misc Info : WG157196,WG157196-4,SI0230-1 Inst ID: gcms-w.i

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date : 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 13:29 Cal File: W1907.D Als bottle: 10 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * (100/(100-M))*(Vt/Ws) * CpndVariable

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
=======================================	====	====			======	======	=======
\$ 37 Dibromofluoromethane	113	7.343	7.341 (0.867)	134039	49.1417	49.1	
* 42 Pentafluorobenzene	168	8.473	8.470 (1.000)	632484	50.0000		
\$ 45 1,2-Dichloroethane-D4	65	8.465	8.470 (0.999)	141019	48.4097	48.4	
* 49 1,4-Difluorobenzene	114	9.473	9.471 (1.000)	903445	50.0000		
\$ 55 Toluene-D8	98	11.832	11.830 (1.249)	579241	50.6888	50.7	
* 66 Chlorobenzene-D5	117	14.241	14.239 (1.000)	825016	50.0000		
\$ 76 P-Bromofluorobenzene	95	16.092	16.090 (1.699)	217593	46.5371	46.5	
* 91 1.4-Dichlorobenzene-D4	152	18.065	18.070 (1.000)	492440	50.0000		

LCS Recovery Report

Client:

Lab ID: WG157196-8 **Client ID:** LCS

Project: SDG: SI0230

LCS File ID: W1908.D

Sample Date: Analysis Date: 19-JAN-15
Received Date: Analyst: REC

Received Date: Analyst: REC **Extract Date:** 19-JAN-15 Analysis Method: SW846 8260B

Extracted By: REC **Matrix:** SL **Extraction Method:** SW846 5035 **% Solids:** NA

Lab Prep Batch: WG157196 **Report Date:** 20-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	d Conc Units	Limits
Dichlorodifluoromethane	104.	50.0	51.8	ug/Kg	35-135
Trichlorofluoromethane	109.	50.0	54.6	ug/Kg	25-185
Freon-113	109.	50.0	54.4	ug/Kg	67-135
Methyl Acetate	108.	50.0	54.2	ug/Kg	72-133
Methyl tert-butyl Ether	99.4	100.	99.4	ug/Kg	81-125
Cyclohexane	110.	50.0	55.2	ug/Kg	75-128
Methylcyclohexane	113.	50.0	56.4	ug/Kg	71-127
1,2-Dibromoethane	91.4	50.0	45.7	ug/Kg	70-125
Isopropylbenzene	102.	50.0	51.1	ug/Kg	75-130
Chloromethane	98.2	50.0	49.1	ug/Kg	50-130
Bromomethane	94.2	50.0	47.1	ug/Kg	30-160
Vinyl Chloride	101.	50.0	50.3	ug/Kg	60-125
Chloroethane	97.2	50.0	48.6	ug/Kg	40-155
Methylene Chloride	86.6	50.0	43.3	ug/Kg	55-140
Acetone	115.	50.0	57.5	ug/Kg	20-160
Carbon Disulfide	117.	50.0	58.6	ug/Kg	45-160
1,1-Dichloroethene	92.8	50.0	46.4	ug/Kg	65-135
1,1-Dichloroethane	98.2	50.0	49.1	ug/Kg	75-125
cis-1,2-Dichloroethene	97.6	50.0	48.8	ug/Kg	65-125
trans-1,2-Dichloroethene	92.6	50.0	46.3	ug/Kg	65-135
Chloroform	94.4	50.0	47.2	ug/Kg	70-125
1,2-Dichloroethane	90.4	50.0	45.2	ug/Kg	70-135
2-Butanone	91.6	50.0	45.8	ug/Kg	30-160
1,1,1-Trichloroethane	98.6	50.0	49.3	ug/Kg	70-135
Carbon Tetrachloride	103.	50.0	51.4	ug/Kg	65-135
Bromodichloromethane	95.0	50.0	47.5	ug/Kg	70-130
1,2-Dichloropropane	95.8	50.0	47.9	ug/Kg	70-120
cis-1,3-Dichloropropene	91.2	50.0	45.6	ug/Kg	70-125
Trichloroethene	96.0	50.0	48.0	ug/Kg	75-125
Dibromochloromethane	95.0	50.0	47.5	ug/Kg	65-130
1,1,2-Trichloroethane	92.8	50.0	46.4	ug/Kg	60-125
Benzene	97.4	50.0	48.7	ug/Kg	75-125
trans-1,3-Dichloropropene	91.2	50.0	45.6	ug/Kg	65-125
Bromoform	92.6	50.0	46.3	ug/Kg	55-135
4-Methyl-2-Pentanone	90.6	50.0	45.3	ug/Kg	45-145

Page 1 of 2

LCS Recovery Report

Client:

Lab ID: WG157196-8

Client ID: LCS Project:

SDG: SI0230

LCS File ID: W1908.D

Sample Date: Received Date:

Extract Date: 19-JAN-15

Extracted By: REC **Extraction Method:** SW846 5035

Lab Prep Batch: WG157196

Analysis Date: 19-JAN-15

Analyst: REC

Analysis Method: SW846 8260B

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Recovery (%)	Conc Added	Conc Recovere	ed Conc Units	Limits
2-Hexanone	90.2	50.0	45.1	ug/Kg	45-145
Tetrachloroethene	102.	50.0	50.9	ug/Kg	65-140
1,1,2,2-Tetrachloroethane	91.0	50.0	45.5	ug/Kg	55-130
Toluene	96.0	50.0	48.0	ug/Kg	70-125
Chlorobenzene	94.4	50.0	47.2	ug/Kg	75-125
Ethylbenzene	98.6	50.0	49.3	ug/Kg	75-125
Styrene	101.	50.0	50.5	ug/Kg	75-125
m+p-Xylenes	98.1	100.	98.1	ug/Kg	80-125
o-Xylene	97.2	50.0	48.6	ug/Kg	75-125
Xylenes (Total)	98.0	150.	147.	ug/Kg	81-114
1,3-Dichlorobenzene	92.4	50.0	46.2	ug/Kg	70-125
1,4-Dichlorobenzene	95.4	50.0	47.7	ug/Kg	70-125
1,2-Dichlorobenzene	92.6	50.0	46.3	ug/Kg	75-120
1,2-Dibromo-3-Chloropropane	99.0	50.0	49.5	ug/Kg	40-135
1,2,4-Trichlorobenzene	94.2	50.0	47.1	ug/Kg	65-130
1,2,3-Trichlorobenzene	93.0	50.0	46.5	ug/Kg	60-135
Dibromofluoromethane	97.7				64-130
1,2-Dichloroethane-d4	94.2				58-134
Toluene-d8	99.7				85-115
P-Bromofluorobenzene	93.4				85-120

Data File: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1908.D

Report Date: 20-Jan-2015 10:10

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-w.i\\W011915.b\\W1908.D

Lab Smp Id: WG157196-8 Client Smp ID: WG157196-LCS

Inj Date : 19-JAN-2015 14:15

Operator : REC Inst ID: gcms-w.i

Smp Info : WG157196-8,SI0230 Misc Info : WG157196,WG157196-4,SI0230-1

Comment : SW846 5035
Method : \target_server\gg\chem\gcms-w.i\W011915.b\W826S16.m

Meth Date: 19-Jan-2015 14:02 rcrocker Quant Type: ISTD Cal Date : 19-JAN-2015 13:29 Cal File: W1907.D Als bottle: 8 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all.sub

Target Version: 4.12

Concentration Formula: Amt * DF * (100/(100-M))*(Vt/Ws) * CpndVariable

Name	Value	Description
DF M Vt Ws	0.00000	Dilution Factor % Moisture Volume of DI Water (mL) Weight of Sample (g)
Cpnd Variable		Local Compound Variable

					CONCENTR	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
	====	====		=======	======	======	========
1 Dichlorodifluoromethane	85	1.736	1.737 (0.205)	218176	51.8447	51.8	
2 Chloromethane	50	1.943	1.951 (0.230)	198204	49.1446	49.1	
3 Vinyl chloride	62	2.022	2.023 (0.239)	192459	50.3206	50.3	
4 Bromomethane	94	2.365	2.366 (0.279)	96126	47.1227	47.1	
5 Chloroethane	64	2.494	2.495 (0.294)	63503	48.6085	48.6	
6 Trichlorofluoromethane	101	2.644	2.638 (0.312)	253425	54.6242	54.6	
7 Diethyl Ether	59	3.001	3.009 (0.354)	105949	48.3764	48.4	
8 Tertiary-butyl alcohol	59	5.696	5.697 (0.673)	462044	254.830	255	
9 1,1-Dichloroethene	96	3.223	3.224 (0.381)	131222	46.3943	46.4	
10 Carbon Disulfide	76	3.251	3.252 (0.384)	437434	58.6356	58.6	
11 Freon-113	151	3.273	3.274 (0.386)	134723	54.4526	54.4	
12 Iodomethane	142	3.402	3.402 (0.402)	174378	54.6176	54.6	
13 Acrolein	56	3.673	3.674 (0.434)	95026	251.296	251	
14 Methylene Chloride	84	3.981	3.989 (0.470)	155660	43.2938	43.3	
15 Acetone	43	4.081	4.089 (0.482)	52045	57.5197	57.5	
16 Isobutyl Alcohol	43	8.891	8.899 (1.050)	170929	893.535	894	
17 trans-1,2-Dichloroethene	96	4.202	4.210 (0.496)	152777	46.2797	46.3	
18 Allyl Chloride	41	3.838	3.838 (0.453)	166562	51.7270	51.7	
19 Methyl tert-butyl ether	73	4.388	4.389 (0.518)	990900	99.4239	99.4	
20 Acetonitrile	39	4.795	4.796 (0.566)	41325	517.577	518	
21 Di-isopropyl ether	45	5.024	5.025 (0.593)	408685	52.3113	52.3	
22 Chloroprene	53	5.153	5.154 (0.608)	251726	54.9576	55.0	

Data File: $\t server \g \em \g w.i\W011915.b\W1908.D$ Report Date: 20-Jan-2015 10:10

							CONCENTR.	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL	
Compo	ounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
=====		====	====	======	======	======	======	======	=======
23	3 Propionitrile	54	8.305	8.305	(0.981)	263336	492.103	492	
24	Methacrylonitrile	41	8.334	8.335	(0.984)	804709	486.007	486	
25	1,1-Dichloroethane	63	5.203	5.204	(0.614)	274469	49.1096	49.1	
26	5 Acrylonitrile	52	5.332	5.332	(0.630)	249894	245.573	246	
27	Ethyl tertiary-butyl ether	59	5.696	5.697	(0.673)	462044	50.9659	51.0	
28	8 Vinyl Acetate	43	5.732	5.740	(0.605)	270289	47.0144	47.0	
29	cis-1,2-Dichloroethene	96	6.254	6.254	(0.738)	200224	48.7699	48.8	
M 30	1,2-Dichloroethylene (total)	96				353001	95.0497	95.0	
31	Methyl Methacrylate	41	10.828	10.829	(1.143)	113631	45.2103	45.2	
32	2,2-Dichloropropane	77	6.475	6.469	(0.765)	237670	49.0007	49.0	
33	Bromochloromethane	128	6.683	6.683	(0.789)	92495	46.1521	46.2	
34	Chloroform	83	6.911	6.912	(0.816)	281605	47.1847	47.2	
35	Carbon Tetrachloride	117	7.140	7.141	(0.754)	210811	51.4256	51.4	
36	Tetrahydrofuran	42	7.269	7.262	(0.858)	41023	46.0880	46.1	
\$ 37	Dibromofluoromethane	113	7.340	7.341	(0.867)	141922	48.8375	48.8	
38	3 1,1,1-Trichloroethane	97	7.326	7.320	(0.865)	266775	49.3187	49.3	
39	1,1-Dichloropropene	75	7.619	7.620	(0.805)	239032	52.2942	52.3	
40	2-Butanone	43	7.690	7.684	(0.908)	64390	45.8599	45.8	
41	Benzene	78	8.155	8.156	(0.861)	694476	48.6806	48.7	
* 42	2 Pentafluorobenzene	168	8.470	8.470	(1.000)	673852	50.0000		
43	3 Cyclohexane	56	6.625	6.626	(0.782)	256493	55.2440	55.2	
44	Ethyl Methacrylate	69	12.951	12.952	(1.368)	229675	50.8993	50.9	
\$ 45	5 1,2-Dichloroethane-D4	65	8.470	8.470	(1.000)	146212	47.1110	47.1	
46	Tertiary-amyl methyl ether	73	8.505	8.506	(1.004)	454089	49.5023	49.5	
47	1,2-Dichloroethane	62	8.605	8.606	(0.909)	194030	45.1577	45.2	
	3 Trichloroethene	95	9.349	9.350	(0.987)	181138	48.0382	48.0	
* 49	9 1,4-Difluorobenzene	114	9.470	9.471	(1.000)	978053	50.0000		
50	Dibromomethane	93	10.114	10.114	(1.068)	93806	46.4951	46.5	
	1,2-Dichloropropane	63	10.299	10.300		144294	47.8638	47.9	
	2 Bromodichloromethane	83	10.457			216918	47.5244	47.5	
	3 cis-1,3-dichloropropene	75	11.543			269904	45.6016	45.6	
	1,4-Dioxane	88	10.843			76853	1086.59	1090	
	5 Toluene-D8	98				616667	49.8474	49.8	
	5 2-Chloroethylvinylether	63		11.515		44414	41.9804	42.0	
	7 Toluene	92		11.916		503739	47.9853	48.0	
	3 4-methyl-2-pentanone	43		12.595		122893	45.3130	45.3	
	Tetrachloroethene	164		12.502		191155	50.9236	50.9	
	trans-1,3-Dichloropropene	75		11.544		269904	45.6016	45.6	
	1,1,2-Trichloroethane	83		12.866		121094	46.4089	46.4	
	2 Dibromochloromethane	129		13.117		181290	47.4745	47.5	
	3 1,3-Dichloropropane	76		13.267		270412	48.1804	48.2	
	1,2-Dibromoethane	107		13.438		158848	45.7329	45.7	
	2-Hexanone	43		13.903		88445	45.1279	45.1	
	Chlorobenzene-D5	117		14.239		863568	50.0000	45.0	
	/ Chlorobenzene	112		14.267		579000	47.2483	47.2	
	2 1-Chlorohexane	91		14.289		283420	52.2260	52.2	
	Ethylbenzene	106		14.339		324129	49.3195	49.3	
	1,1,1,2-Tetrachloroethane	131	14.381	14.382	(1.010)	198041	48.9204	48.9	
	Xylenes (total)	106	14 574	1/ 575	(1 000)	1169829	146.790	147	
	. m+p-Xylenes	106		14.575		784665	98.1428	98.1	
	2 o-Xylene	106		15.211		385164	48.6471	48.6	
	Styrene	104		15.297		629393	50.5348	50.5	
	Bromoform	173		15.304		124667	46.3177	46.3	
75	5 Isopropylbenzene	105	15.689	15.690	(0.869)	993841	51.0675	51.1	

Data File: $\t server \g \em \g w.i\W011915.b\W1908.D$ Report Date: 20-Jan-2015 10:10

						CONCENTRA	ATIONS	
		QUANT SIG				ON-COLUMN	FINAL	
C	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/kg)	(ug/Kgdrywt)	REVIEW COD
=		====	====		=======	======	======	========
\$	76 P-Bromofluorobenzene	95	16.096	16.090 (1.700)	236380	46.6986	46.7	
	77 cis-1,4-Dichloro-2-Butene	53	16.239	16.239 (0.899)	64093	48.2749	48.3	
	78 trans-1,4-Dichloro-2-Butene	53	16.754	16.754 (0.928)	53095	47.4145	47.4	
	79 Bromobenzene	156	16.232	16.226 (0.899)	262858	49.0163	49.0	
	80 N-Propylbenzene	91	16.318	16.319 (0.903)	1104513	50.6075	50.6	
	81 1,1,2,2-Tetrachloroethane	83	16.468	16.469 (0.912)	202516	45.5037	45.5	
	82 1,3,5-Trimethylbenzene	105	16.661	16.662 (0.922)	846687	49.5979	49.6	
	83 2-Chlorotoluene	91	16.540	16.540 (0.916)	668988	48.0013	48.0	
	84 1,2,3-Trichloropropane	75	16.654	16.655 (0.922)	173199	46.8443	46.8	
	85 4-Chlorotoluene	91	16.826	16.826 (0.932)	693417	48.2975	48.3	
	86 tert-Butylbenzene	119	17.204	17.204 (0.953)	892946	50.8146	50.8	
	87 Pentachloroethane	117	17.219	17.219 (0.953)	173412	52.1456	52.1	
	88 1,2,4-Trimethylbenzene	105	17.347	17.347 (0.960)	878725	50.5234	50.5	
	89 P-Isopropyltoluene	119	17.848	17.849 (0.988)	1030094	52.3894	52.4	
	90 1,3-Dichlorobenzene	146	17.919	17.920 (0.992)	519187	46.1771	46.2	
*	91 1,4-Dichlorobenzene-D4	152	18.062	18.070 (1.000)	517849	50.0000		
	92 1,4-Dichlorobenzene	146	18.091	18.092 (1.002)	522900	47.7057	47.7	
	93 N-Butylbenzene	91	18.634	18.635 (1.032)	831007	50.8644	50.9	
	94 sec-Butylbenzene	105	17.547	17.548 (0.972)	1139969	50.7974	50.8	
	95 1,2-Dichlorobenzene	146	18.856	18.856 (1.044)	503048	46.3117	46.3	
	96 1,2-Dibromo-3-Chloropropane	75	20.271	20.265 (1.122)	51189	49.5124	49.5	
	97 1,3,5-Trichlorobenzene	180	20.321	20.315 (2.399)	511004	46.7315	46.7	
	98 Hexachlorobutadiene	225	21.364	21.365 (1.183)	220167	51.5983	51.6	
	99 1,2,4-Trichlorobenzene	180	21.379	21.380 (1.184)	406792	47.1315	47.1	
	100 1,2,3-Trimethylbenzene	105	18.169	18.170 (2.145)	978496	49.2872	49.3	
	101 Naphthalene	128	21.901	21.894 (1.213)	1040770	47.9408	47.9	
	102 1,2,3-Trichlorobenzene	180	22.179	22.180 (1.228)	397654	46.4933	46.5	
	103 Methyl Acetate	43	4.266	4.267 (0.504)	109155	54.1598	54.2	
	104 Methylcyclohexane	83	9.284	9.278 (1.096)	361677	56.3708	56.4	
М	153 Total Alkylbenzenes	100			6723941	355.595	356	

Logbooks and Supporting Documents

KATAHDIN ANALYTICAL SERVICES

GCMS-W INSTRUMENT RUNLOG

DATE/TIME OF BFB INJECTION: 01/19/15

AME DATAFILE DF	ALS#	METHOD 5030	P MET 5036	-	Criteria KAS DoD GAPP	PP Y/N	ANALYST	HA I	COMMENTS	
50 ng BFB -16 WBIII 1	クレー	V048FK5L				<u> </u>	気をつ	T		
VSTOOSOWIGA WIGOI !	<u>}</u>	9/87 c3M				>			The state of the s	
	7					7			1-9612519M	
VSTD240 TAMA 03 1	۲۹					>		_	9	
VSTØ 100 W19 A	7 h					>			> Curve	
VST0020419A	>	,				>				
VSTD0jow19A OL 1	و					>		-		
Section Section	7					>				
LCSA -8 1 08 1	-8					入			IND7	
	6					5				
VBCFR 100	10					<u>></u>		_	Car A AND	
ST0230-1 8 11 1	[]		×		Х	2		_	TATA DISP not rade	
	13					>		_	1	
	13					3			285 4 nit needed	
-1PA E 14 1	الم					>				
1) 51 8 8-	51					٨				
16 1	١ و				_	\$			not needed	
SE0195-1 A 17 1	17			X		>			1 75%	m 20.2
1 -1PA B 18 1	8		_}	1		У.		IJ	18158 1531 487	5
Pinee 19 1	ے۔					≥		7	Ì	
	90	7				7	-	1		
P. 150	21					¥		7		
Pinse L 22 !	23	1				5	7	7	. Oliverse and a second	
						1				,
					1	1				
				\bigvee					01/20/18 KBC	
ND/ARD COL	5	STANDARD	2	ECODE			Circle Methods:	hods:		
1967	<u>ହ</u>	IS MIX		79685	ا ا ا		SW846 8260	A	OLM 04.2	
	SS	SS MIX		V9179	42		SW846 8260 SIM	SO SIM	OLC 03.2	
EXTRAS MIX V9688							SW846 8260 SIM	SO SIM	EPA 624	
3 - Revision 1 - 05/14/		G	QAMS562	61				() () () ()	0000010	9

Katahdin Analytical Services 0000230

KATAHDIN ANALYTICAL SERVICES

Organics Vial Prep Log

Methods: SW8260 SW8015 ME DEP 4.2.17 MA DEP VPH

Comments																						irbar	irbar	0000028
Sample Name		FM0671-2 C	TM0671-5B	ST/22/-(C	AT 201-17			7														DI Preservative = Deionized Water +Stirbar	NaHSO4 Preservative = 20% NaSO4 Solution + stirbar	
Preservative Volume (mL)	5 / 10	5 / 10	5 / 10	5 / 10				5 / 10	5 / 10	_		_	5 / 10	5 / 10	5 / 10		5 / 10	5 / 10	5 / 10	5 / 10		DI Preservati	4 Preservative =	
Preservative	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	MEOH / NaHSO4	DI / MEOH / NaHSO4	EOH \ NaHSO4	EOH / NaHSO4	/ MEOH / NaHSO4		~	MEOH NaHSO4	/ MEOH / NaHSO4	EOH / NaHSO4	EOH NaHSO4)	A de la companya de l	NaHSC	
	M √IO	M IO	DI M	M IG	M IQ			M / IQ	M IQ	_ □	 ==	DI /MEOH	Di / MEOH	/ ICI	DI / MEOH	DI / MEOH	DI / M	/ IO	DI / MEOH	Di / MEOH	7	لر		
Sample Weight (g)		4.96	5.00	5.06	5,23																			QAGC308
Vial + Preservative + Sample (g)		38.52	39.01	38.75	38.93												,							/2014
Vial + Preservative (g)	33.92	33.56	33,92	33,69	33,71	34.18	33,85	33,83	33,36	33.43	34.03	32.67	33.58	33.41	32,57	31.98	3a.54	32.35	31.97	3249	AVF			pdated 09/30
Vial Number	84780	84781	84782	84783	84784	84785	84786	84787	84788	84789	84790	84791	84792	84793	84794	84795	84796	84797	84798	84799	10114-3	DK193		,/2006; (
Analyst	D.W.										>	EA A								>	Lot # 09	#	*	on 1 - 11/25
Date	10-33-14										>	10-23-14								>	40 mL Via	MeOH Lot	NasO4 EC	3 - Revisi
Date												ခို ပုံ 0231												

SEMIVOLATILES DATA

QC Summary Section

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: SL

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID	2FBP	#	2FP	#	NBZ i	#	PHL #	TBP #	TPH #
IDWS-0312-011315	SI0230-1		71.8		52.7		53.0		57.7	74.5	95.6
Method Blank Sample	WG156989-1		82.7		64.1		63.9		69.8	75.5	99.0
Laboratory Control S	WG156989-2		74.9		55.1		56.4		58.0	77.6	88.4
Laboratory Control S	WG156989-3		74.6		55.2		56.0		56.9	70.1	86.0

		QC Limits
TPH	TERPHENYL-D14	30-125
NBZ	NITROBENZENE-D5	35-100
PHL	PHENOL-D6	40-100
2FP	2-FLUOROPHENOL	35-105
TBP	2,4,6-TRIBROMOPHENOL	35-125
2FBP	2-FLUOROBIPHENYL	45-105

^{# =} Column to be used to flag recovery limits.

^{* =} Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Method Blank Summary

Lab Name: Katahdin Analytical ServicesSDG: SI0230Project: Navy Clean WE15-03-06 NWIRP Bethpage,Lab Sample ID: WG156989-1Lab File ID: U9270.DDate Extracted: 15-JAN-15Instrument ID: GCMS-UDate Analyzed: 19-JAN-15

Matrix: SL Time Analyzed: 12:15

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed Time Analyzed			
IDWS-0312-011315	SI0230-1	U9278.D	01/19/15	18:08		
Laboratory Control S	WG156989-2	U9282.D	01/19/15	21:00		
Laboratory Control S	WG156989-3	U9283.D	01/19/15	21:43		

Form 5 Semivolatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical Services SDG : SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, **Date Analyzed :** 12-JAN-15

Lab File ID: UD310.D Time Analyzed: 12:47

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	% Rel	
51	30.0 - 60.0% of mass 198	38.0	
68	Less than 2.0% of mass 69	0.6	1.75
69	Less than 100.0% of mass 198	36.4	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	47.6	
197	Less than 1.0% of mass 198	0.2	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.6	
275	10.0 - 30.0% of mass 198	21.1	
365	1.0 - 100.0% of mass 198	2.3	
441	0.0 - 100.0% of mass 443	12.0	81.95
442	40.0 - 100.0% of mass 198	74.5	
443	17.0 - 23.0% of mass 442	14.6	19.62

¹⁻Value is % mass 69

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Initial Calibration	WG156827-4	U9207.D	01/12/15	13:06
Initial Calibration	WG156827-2	U9208.D	01/12/15	13:57
Initial Calibration	WG156827-3	U9209.D	01/12/15	14:41
Initial Calibration	WG156827-5	U9210.D	01/12/15	15:25
Initial Calibration	WG156827-6	U9211.D	01/12/15	16:09
Initial Calibration	WG156827-7	U9212.D	01/12/15	16:53
Independent Source	WG156827-8	U9213.D	01/12/15	17:38

²⁻Value is % mass 443

³⁻Value is % mass 442

Form 5 Semivolatile Organic Instrument Performance Check

Lab Name : Katahdin Analytical ServicesSDG : SI0230Project : Navy Clean WE15-03-06 NWIRP Bethpage,Date Analyzed : 19-JAN-15

Lab File ID: UD313.D Time Analyzed: 11:12

Instrument ID: GCMS-U

m/e	Ion Abundance Criteria	Abun	
51	30.0 - 60.0% of mass 198	34.3	
68	Less than 2.0% of mass 69	0.4	1.38
69	Less than 100.0% of mass 198	32.3	
70	Less than 2.0% of mass 69	0.0	0.0
127	40.0 - 60.0% of mass 198	46.5	
197	Less than 1.0% of mass 198	0.0	
198	Base Peak, 100% relative abundance	100	
199	5.0 - 9.0% of mass 198	6.6	
275	10.0 - 30.0% of mass 198	20.4	
365	1.0 - 100.0% of mass 198	2.6	
441	0.0 - 100.0% of mass 443	12.0	87.35
442	40.0 - 100.0% of mass 198	71.3	
443	17.0 - 23.0% of mass 442	13.7	19.27

¹⁻Value is % mass 69

% Polativa

This check applies to the following samples, LCS, MS, MSD and standards:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Continuing Calibrati	WG157161-2	U9269.D	01/19/15	11:31
Method Blank Sample	WG156989-1	U9270.D	01/19/15	12:15
IDWS-0312-011315	SI0230-1	U9278.D	01/19/15	18:08
Laboratory Control S	WG156989-2	U9282.D	01/19/15	21:00
Laboratory Control S	WG156989-3	U9283.D	01/19/15	21:43

²⁻Value is % mass 443

³⁻Value is % mass 442

Form 8 Internal Standard Area and RT Summary

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Project :Navy Clean WE15-03-06 NWIR SDG: SI0230
Lab ID :WG156827-4 Analytical Date: 01/12/15 13:06
Lab File ID :U9207.D Instrument ID: GCMS-U

		1,4-DICHLORO	BENZENE-D4	NAPHTHA	LENE-D8	ACENAPHT	THENE-D10
	Std .	Area # 324197	RT #_ 8.38	Area #	RT #	Area # 641042	RT #
	Upper Limit	648394	8.88	2434492	11.84	1282084	16.15
	Lower Limit	162098.5	7.88	608623	10.84	320521	15.15
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG157161-2	446276	8.24	1706859	11.21	890706	15.51
Method Blank Sample	WG156989-1	411327	8.25	1662069	11.20	858050	15.50
IDWS-0312-011315	SI0230-1	445944	8.25	1735052	11.20	883016	15.49
Laboratory Control S	WG156989-2	428317	8.25	1640875	11.20	837058	15.51
Laboratory Control S	WG156989-3	450275	8.25	1688411	11.21	837103	15.50

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Form 8 Internal Standard Area and RT Summary

SDG: SI0230

Lab Name : Katahdin Analytical Services **Project :** Navy Clean WE15-03-06 NWIR

Lab ID :WG156827-4Analytical Date: 01/12/15 13:06Lab File ID :U9207.DInstrument ID: GCMS-U

		PHENANTH	IRENE-D10	CHRYSE	ENE-D12	PERYLE	NE-D12
		Area #	RT #	Area #	RT #	Area #	RT #_
	Std.	958107	19.31	749410	25.90	548711	29.17
	Upper Limit	1916214	19.81	1498820	26.40	1097422	29.67
	Lower Limit	479053.5	18.81	374705	25.40	274355.5	28.67
Client Sample ID	Lab Sample ID						
Continuing Calibrati	WG157161-2	1171855	19.16	807837	25.72	533314	28.98
Method Blank Sample	WG156989-1	1285848	19.15	830622	25.71	535582	28.98
IDWS-0312-011315	SI0230-1	1306060	19.15	662678	25.71	363038	28.98
Laboratory Control S	WG156989-2	1151808	19.15	710063	25.72	459100	28.98
Laboratory Control S	WG156989-3	1046502	19.15	609779	25.72	415966	28.99

Area Upper Limit = +100% of internal standard area Area Lower Limit = -50% of internal standard area RT Upper Limit = +0.50 minutes of internal standard RT RT Lower Limit = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Sample Data Section

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-1

Client ID: IDWS-0312-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By:HG

SDG: SI0230

Lab File ID: U9278.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15

Extract Date: 15-JAN-15

Extraction Method: SW846 3550

Lab Prep Batch: WG156989

Analysis Date: 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL **% Solids:** 79.

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	290	ug/Kgdryw	t 1	330	390	180	290
Bis(2-Chloroethyl)Ether	U	290	ug/Kgdryw	t 1	330	390	96.	290
2-Chlorophenol	U	290	ug/Kgdryw	t 1	330	390	190	290
1,3-Dichlorobenzene	U	290	ug/Kgdryw	t 1	330	390	93.	290
1,4-Dichlorobenzene	U	290	ug/Kgdryw	t 1	330	390	100	290
1,2-Dichlorobenzene	U	290	ug/Kgdryw	t 1	330	390	100	290
2-Methylphenol	U	290	ug/Kgdryw	t 1	330	390	240	290
2,2'-Oxybis(1-Chloropropane)	U	290	ug/Kgdryw	t 1	330	390	100	290
3&4-Methylphenol	U	290	ug/Kgdryw	t 1	330	390	220	290
N-Nitroso-Di-N-Propylamine	U	290	ug/Kgdryw	t 1	330	390	98.	290
Hexachloroethane	U	290	ug/Kgdryw	t 1	330	390	110	290
Nitrobenzene	U	290	ug/Kgdryw	t 1	330	390	110	290
Isophorone	U	290	ug/Kgdryw	t 1	330	390	89.	290
2-Nitrophenol	U	290	ug/Kgdryw	t 1	330	390	200	290
2,4-Dimethylphenol	U	290	ug/Kgdryw	t 1	330	390	200	290
Bis(2-Chloroethoxy)Methane	U	290	ug/Kgdryw	t 1	330	390	110	290
2,4-Dichlorophenol	U	290	ug/Kgdryw	t 1	330	390	180	290
1,2,4-Trichlorobenzene	U	290	ug/Kgdryw	t 1	330	390	96.	290
Naphthalene	U	290	ug/Kgdryw	t 1	330	390	100	290
4-Chloroaniline	U	290	ug/Kgdryw	t 1	330	390	140	290
Hexachlorobutadiene	U	290	ug/Kgdryw	t 1	330	390	98.	290
4-Chloro-3-Methylphenol	U	290	ug/Kgdryw	t 1	330	390	200	290
2-Methylnaphthalene	U	290	ug/Kgdryw	t 1	330	390	110	290
Hexachlorocyclopentadiene	U	290	ug/Kgdryw	t 1	330	390	97.	290
2,4,6-Trichlorophenol	U	290	ug/Kgdryw	t 1	330	390	180	290
2,4,5-Trichlorophenol	U	730	ug/Kgdryw	t 1	820	970	180	730
2-Chloronaphthalene	U	290	ug/Kgdryw	t 1	330	390	100	290
2-Nitroaniline	U	730	ug/Kgdryw	t 1	820	970	89.	730
Dimethyl Phthalate	U	290	ug/Kgdryw	t 1	330	390	93.	290
Acenaphthylene	U	290	ug/Kgdryw	t 1	330	390	83.	290
2,6-Dinitrotoluene	U	290	ug/Kgdryw	t 1	330	390	94.	290
3-Nitroaniline	U	730	ug/Kgdryw	t 1	820	970	110	730
Acenaphthene	U	290	ug/Kgdryw	t 1	330	390	77.	290
2,4-Dinitrophenol	U	730	ug/Kgdryw	t 1	820	970	450	730
4-Nitrophenol	U	730	ug/Kgdryw	t 1	820	970	370	730

Page 1 of

SDG: SI0230

% Solids: 79.

Report of Analytical Results

Client: ENSAFE Sample Date: 13-JAN-15 Analysis Date: 19-JAN-15

Lab ID: SI0230-1 Received Date: 14-JAN-15 Analyst: JCG

Client ID: IDWS-0312-011315 Extract Date: 15-JAN-15 Analysis Method: SW846 8270D Project: Navy Clean WE15-03-06 NWIRP Beth_I Extracted By: HG Matrix: SL

Extraction Method: SW846 3550

Lab File ID: U9278.D Lab Prep Batch: WG156989 Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dibenzofuran	U	290	ug/Kgdrywt	t 1	330	390	94.	290
2,4-Dinitrotoluene	U	290	ug/Kgdrywt	t 1	330	390	100	290
Diethylphthalate	U	290	ug/Kgdrywt	t 1	330	390	95.	290
4-Chlorophenyl-Phenylether	U	290	ug/Kgdrywt	t 1	330	390	93.	290
Fluorene	U	290	ug/Kgdrywt	t 1	330	390	96.	290
4-Nitroaniline	U	730	ug/Kgdrywt	t 1	820	970	160	730
4,6-Dinitro-2-Methylphenol	U	730	ug/Kgdrywt	t 1	820	970	400	730
N-Nitrosodiphenylamine	U	290	ug/Kgdrywt	t 1	330	390	260	290
4-Bromophenyl-Phenylether	U	290	ug/Kgdrywt	t 1	330	390	100	290
Hexachlorobenzene	U	290	ug/Kgdrywt	t 1	330	390	97.	290
Pentachlorophenol	U	730	ug/Kgdrywt	t 1	820	970	280	730
Phenanthrene	U	290	ug/Kgdrywt	t 1	330	390	98.	290
Anthracene	U	290	ug/Kgdrywt	t 1	330	390	100	290
Carbazole	U	290	ug/Kgdrywt	t 1	330	390	130	290
Di-N-Butylphthalate	U	290	ug/Kgdrywt	t 1	330	390	120	290
Fluoranthene	J	140	ug/Kgdrywt	t 1	330	390	120	290
Pyrene	J	150	ug/Kgdrywt	t 1	330	390	120	290
Butylbenzylphthalate	U	290	ug/Kgdrywt	t 1	330	390	110	290
3,3'-Dichlorobenzidine	U	290	ug/Kgdrywt	t 1	330	390	140	290
Benzo(a)anthracene	U	290	ug/Kgdrywt	t 1	330	390	100	290
Chrysene	U	290	ug/Kgdrywt	t 1	330	390	110	290
Bis(2-Ethylhexyl)Phthalate	U	290	ug/Kgdrywt	t 1	330	390	120	290
Di-N-Octylphthalate	U	290	ug/Kgdrywt	t 1	330	390	250	290
Benzo(b)fluoranthene	U	290	ug/Kgdrywt	t 1	330	390	160	290
Benzo(k)fluoranthene	U	290	ug/Kgdrywt	t 1	330	390	98.	290
Benzo(a)pyrene	U	290	ug/Kgdrywt	t 1	330	390	110	290
Indeno(1,2,3-cd)pyrene	U	290	ug/Kgdrywt	t 1	330	390	140	290
Dibenzo(a,h)anthracene	U	290	ug/Kgdrywt	t 1	330	390	150	290
Benzo(g,h,i)perylene	U	290	ug/Kgdrywt	t 1	330	390	120	290
2-Fluorophenol		52.7						
Phenol-d6		57.7						
Nitrobenzene-d5		53.0						
2-Fluorobiphenyl		71.8						
2,4,6-Tribromophenol		74.5						
Terphenyl-d14		95.6						

Page 2 of 2

Data File: \\target_server\gg\chem\gcms-u.i\U011915.b\U9278.D

Report Date: 20-Jan-2015 10:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\U011915.b\U9278.D

Lab Smp Id: SI0230-1 Client Smp ID: IDWS-0312-011315 Inj Date : 19-JAN-2015 18:08 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : SI0230-1 Inst ID: gcms-u.i

Misc Info: WG157161, WG156989, WG156827-4

Comment

: \\target_server\gg\chem\gcms-u.i\U011915.b\U8270C70.m Method

Meth Date: 19-Jan-2015 14:50 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 16:53 Cal File: U9212.D

Als bottle: 11

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8270bnaDoD.sub

Target Version: 4.12 Processing Host: V200T4

Concentration Formula: Amt * DF * (Vt/Ws*Vi)*(100/(100-M))*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt		Final Volume (L)
Ws	0.03180	Weight of Sample (Kg)
Vi	1.000	Volume injected (uL)
M	20.570	% Moisture
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
=======================================	====	====		=======	======	======	========
\$ 8 2-Fluorophenol	112	5.589	5.590 (0.678)	763985	52.6733	2080	
\$ 14 Phenol-D6	99	7.690	7.701 (0.932)	902609	57.7112	2280	
* 19 1,4-Dichlorobenzene-D4	152	8.249	8.240 (1.000)	445944	40.0000		
\$ 33 Nitrobenzene-D5	82	9.532	9.544 (0.851)	355185	26.5469	1050	
* 44 Naphthalene-D8	136	11.198	11.210 (1.000)	1735052	40.0000		
\$ 64 2-Fluorobiphenyl	172	13.952	13.953 (0.900)	796495	35.8630	1420	
* 77 Acenaphthene-D10	164	15.494	15.505 (1.000)	883016	40.0000		
\$ 101 2,4,6-Tribromophenol	330	17.481	17.493 (1.128)	278650	74.5418	2950	
* 114 Phenanthrene-D10	188	19.147	19.159 (1.000)	1306060	40.0000		
126 Fluoranthene	202	22.149	22.161 (1.157)	109930	3.45183	137(a)	
128 Pyrene	202	22.677	22.678 (0.882)	87940	3.81201	151(a)	
\$ 129 Terphenyl-D14	244	23.267	23.268 (0.905)	692703	47.8301	1890	
* 139 Chrysene-D12	240	25.709	25.721 (1.000)	662678	40.0000		
* 150 Perylene-D12	264	28.980	28.981 (1.000)	363038	40.0000		

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Instrument: gcms-u₊i

Data File: \\target_server\gg\chem\gcms-u.i\U011915.b\U9278.D

Date : 19-JAN-2015 18:08 Client ID: IDWS-0312-011315

Instrument: gcms-u.i

Sample Info: SI0230-1

Concentration: 137 ug/Kgdrywt

Standards Data Section

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Nature ID: GCMS-U

Lab File IDs: U9208.D U9209.D U9207.D Column ID:

U9210.D U9211.D U9212.D Calibration Date(s): 12-JAN-15 13:06

12-JAN-15 16:53

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max	
	10.0000	25.0000	50.0000	75.0000	100.0000	125.0000	New	b	m1	m2	%RSD	%RSD	
Phenol	1.62061	1.60979	1.54510	1.45363	1.39809	1.36202	AVG		1.49821		7.32309	30.00000	О
Bis(2-Chloroethyl)ether	1.24446	1.19577	1.11664	1.04094	0.98539	0.94961	AVG		1.08880		10.77416	15.00000	О
2-Chlorophenol	1.34503	1.33866	1.30231	1.22041	1.17185	1.11662	AVG		1.24915		7.54342	15.00000	О
1,3-Dichlorobenzene	1.53775	1.53026	1.42461	1.34895	1.28365	1.21636	AVG		1.39026		9.42517	15.00000	О
1,4-Dichlorobenzene	1.57275	1.52759	1.41946	1.31705	1.24232	1.16336	AVG		1.37375		11.74239	30.00000	О
1,2-Dichlorobenzene	1.49831	1.46707	1.37059	1.27310	1.22655	1.16583	AVG		1.33358		10.03684	15.00000	О
2,2'-Oxybis(1-chloropropane	1.74469	1.72269	1.64120	1.53791	1.45589	1.39913	AVG		1.58359		8.97673	15.00000	О
2-Methylphenol	1.25752	1.24902	1.18897	1.18677	1.18931	1.17894	AVG		1.20842		2.89998	15.00000	О
N-Nitroso-di-n-propylamine	0.88423	0.84347	0.75764	0.75548	0.65347	0.63809	AVG		0.75540		13.03917	15.00000	О
Hexachloroethane	0.60221	0.59999	0.55891	0.52826	0.45113	0.40629	AVG		0.52447		15.32328	15.00000	W
3&4-Methylphenol	1.31860	1.33574	1.29172	1.26838	1.24668	1.21225	AVG		1.27890		3.59383	15.00000	О
Nitrobenzene	0.35103	0.33264	0.31649	0.29451	0.28365	0.27186	AVG		0.30836		9.84791	15.00000	О
Isophorone	0.63190	0.63920	0.60755	0.58535	0.57762	0.57206	AVG		0.60228		4.74042	15.00000	О
2-Nitrophenol	0.18110	0.19171	0.18370	0.17953	0.17934	0.17055	AVG		0.18099		3.79802	30.00000	О
2,4-Dimethylphenol	0.33361	0.34286	0.33151	0.29636	0.28596	0.27378	AVG		0.31068		9.29864	15.00000	О
Bis(2-Chloroethoxy)methane	0.39434	0.42838	0.44950	0.42662	0.39602	0.38098	AVG		0.41264		6.33403	15.00000	О
2,4-Dichlorophenol	0.26707	0.28296	0.28034	0.27147	0.25932	0.24618	AVG		0.26789		5.11892	30.00000	О
1,2,4-Trichlorobenzene	0.30394	0.31054	0.28841	0.27124	0.25451	0.24212	AVG		0.27846		9.80012	15.00000	О
Naphthalene	0.93353	0.93619	0.83209	0.77212	0.71726	0.67220	AVG		0.81057		13.59211	15.00000	О
4-Chloroaniline	0.39637	0.39520	0.35365	0.31490	0.26034	0.27728	AVG		0.33296		17.52425	15.00000	W
Hexachlorobutadiene	0.15432	0.15765	0.14356	0.13406	0.12552	0.11657	AVG		0.13861		11.68526	30.00000	О
4-Chloro-3-Methylphenol	0.27318	0.28437	0.28463	0.26797	0.25620	0.23409	AVG		0.26674		7.21260	30.00000	О
2-Methylnaphthalene	0.72475	0.75639	0.66809	0.58145	0.53107	0.69628	AVG		0.65967		13.15565	15.00000	О
Hexachlorocyclopentadiene	0.27878	0.29605	0.28546	0.26335	0.25142	0.22566	AVG		0.26679		9.61280	15.00000	О
2,4,6-Trichlorophenol	0.36634	0.37960	0.36461	0.33460	0.31696	0.29547	AVG		0.34293		9.54679	30.00000	О
2,4,5-Trichlorophenol	0.36725	0.36488	0.35983	0.34407	0.33569	0.31471	AVG		0.34774		5.85172	15.00000	О
2-Chloronaphthalene	306531	560847	1048803	1601998	2063095	2451717	QUA	-0.02509	0.66353	0.06527	0.99856	0.99000	О
2-Nitroaniline	0.31974	0.33913	0.33164	0.32290	0.32032	0.30232	AVG		0.32268		3.86924	15.00000	О
Dimethyl Phthalate	1.24173	1.22913	1.13041	1.07393	1.03512	0.95127	AVG		1.11026		10.19527	15.00000	О
Acenaphthylene	1.85101	1.79315	1.60358	1.49292	1.40914	1.26050	AVG		1.56838		14.46904	15.00000	О
2,6-Dinitrotoluene	0.25920	0.26313	0.25392	0.24746	0.23241	0.21800	AVG		0.24568		7.05199	15.00000	О
3-Nitroaniline	0.32694	0.34862	0.33754	0.30529	0.27263	0.25677	AVG		0.30797		11.94333	15.00000	О
Acenaphthene	197695	409561	760682	1140519	1382507	1645807	QUA	0.00516	0.76215	0.23893	0.99985	0.99000	О
2,4-Dinitrophenol	17356	51198	125673	227739	295143	371833	LNR	0.08325	0.17598		0.99785	0.99000	О
Dibenzofuran	1.58653	1.51740	1.36118	1.26629	1.21414	1.12057	AVG		1.34435		13.38962	15.00000	О
2,4-Dinitrotoluene	0.34845	0.37190	0.35318	0.34690	0.32765	0.31775	AVG		0.34431		5.58205	15.00000	О
4-Nitrophenol	0.17459	0.22420	0.24804	0.21905	0.20690	0.19622	AVG		0.21150		11.90695	15.00000	0

Form 6 Initial Calibration Summary

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Nature ID: GCMS-U

Lab File IDs: U9208.D U9209.D U9207.D Column ID:

U9210.D U9211.D U9212.D **Calibration Date(s):** 12-JAN-15 13:06

12-JAN-15 16:53

	_												
Diethylphthalate	239559	499955	930005	1360869	1572233	1789501	QUA	0.04872	0.36930	0.31493	0.99747	0.99000	О
Fluorene	217197	460874	848725	1261841	1512992	1726003	QUA	0.02987	0.54025	0.27862	0.99798	0.99000	О
4-Chlorophenyl-phenylether	0.57967	0.55986	0.51820	0.48761	0.46712	0.42895	AVG		0.50690		11.24928	15.00000	О
4-Nitroaniline	0.30506	0.31417	0.31693	0.30870	0.27813	0.27878	AVG		0.30030		5.79954	15.00000	О
4,6-Dinitro-2-Methylphenol	0.09878	0.12589	0.13438	0.13819	0.13549	0.13337	AVG		0.12769		11.5479€	15.00000	О
N-Nitrosodiphenylamine	0.61924	0.63067	0.59739	0.56742	0.56312	0.54480	AVG		0.58711		5.79567	30.00000	О
4-Bromophenyl-phenylether	0.19915	0.20710	0.19562	0.18759	0.18833	0.18929	AVG		0.19451		3.94741	15.00000	О
Hexachlorobenzene	0.24201	0.24220	0.23983	0.22260	0.21993	0.21041	AVG		0.22950		5.93704	15.00000	О
Pentachlorophenol	0.12732	0.12970	0.13760	0.12403	0.12220	0.11890	AVG		0.12663		5.19481	30.00000	О
Phenanthrene	1.17464	1.12724	1.05652	0.98590	0.94343	0.91379	AVG		1.03359		10.04981	15.00000	О
Anthracene	1.14858	1.12504	1.08167	0.99179	0.94084	0.88762	AVG		1.02925		10.23066	15.00000	О
Carbazole	1.00909	0.99963	0.99845	0.87080	0.81175	0.80944	AVG		0.91653		10.54735	15.00000	О
Di-n-butylphthalate	1.43957	1.43090	1.38131	1.19313	1.11974	1.09457	AVG		1.27654		12.43756	15.00000	О
Fluoranthene	1.15299	1.10579	1.05072	0.90891	0.82079	0.81294	AVG		0.97536		15.13311	30.00000	О
Pyrene	1.44168	1.48642	1.39861	1.35717	1.38568	1.28533	AVG		1.39248		4.98125	15.00000	О
Butylbenzylphthalate	0.73990	0.71437	0.71422	0.67681	0.66260	0.64266	AVG		0.69176		5.33847	15.00000	О
Benzo(a)anthracene	1.04394	0.99812	0.97464	0.95037	0.93965	0.89979	AVG		0.96775		5.16330	15.00000	О
3,3'-Dichlorobenzidine	0.30663	0.30735	0.29939	0.28866	0.28506	0.27262	AVG		0.29328		4.64852	15.00000	О
Chrysene	1.05454	0.96810	0.88997	0.84501	0.77959	0.73089	AVG		0.87802		13.65238	15.00000	О
bis(2-Ethylhexyl)phthalate	1.03439	0.95503	0.99943	0.90453	0.90232	0.87659	AVG		0.94538		6.55345	15.00000	О
Di-n-octylphthalate	2.11655	2.04579	2.06740	2.23954	2.19520	2.18288	AVG		2.14123		3.58617	30.00000	О
Benzo(b)fluoranthene	1.17078	1.07769	1.03340	1.04962	1.05685	1.00683	AVG		1.06586		5.31246	15.00000	О
Benzo(k)fluoranthene	1.17586	1.20167	1.13188	1.08253	1.06263	1.02076	AVG		1.11256		6.24572	15.00000	О
Benzo(a)pyrene	0.96383	0.94016	0.97924	0.95032	0.96940	0.87711	AVG		0.94668		3.88594	30.00000	О
Indeno(1,2,3-cd)pyrene	142336	172799	382375	426291	513380	610433	QUA	-0.03997	1.98329	-0.06749	0.99412	0.99000	О
Dibenzo(a,h)anthracene	0.57989	0.60315	0.58659	0.51665	0.58939	0.57513	AVG		0.57513		5.25228	15.00000	О
Benzo(g,h,i)perylene	0.65252	0.66552	0.62828	0.55225	0.59793	0.56961	AVG		0.61102		7.43912	15.00000	О
2-Fluorophenol	1.30496	1.34230	1.30184	1.30340	1.29671	1.25673	AVG		1.30099		2.09244	15.00000	П
Phenol-D6	1.45976	1.48312	1.41703	1.37475	1.34393	1.33866	AVG		1.40288		4.30813	15.00000	
Nitrobenzene-D5	0.31600	0.32665	0.31774	0.30711	0.29697	0.28625	AVG		0.30845		4.81045	15.00000	
2-Fluorobiphenyl	1.20695	1.14011	1.03588	0.94545	0.90076	0.80727	AVG		1.00607		14.97517	15.00000	
2,4,6-Tribromophenol	0.17248	0.18868	0.17370	0.16902	0.15866	0.15349	AVG		0.16934		7.32020	15.00000	
Terphenyl-D14	0.89889	0.91750	0.87893	0.85332	0.87548	0.82099	AVG		0.87419		3.88817	15.00000	П

Legend: O = Kept Original Curve

Y = Failed Minimum RF

W = Failed %RSD Value

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9213.D

Report Date: 13-Jan-2015 13:01

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: 021497

Sample Matrix: LIQUID Fraction: SV

Lab Smp Id: WG156827-8

Level: LOW Operator: JCG

Data Type: MS DATA SampleType: INDCHECK
SpikeList File: INDcheck8270.spk Quant Type: ISTD
Sublist File: all_DOD.sub
Method File: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m
Misc Info: WG156827, WG156827, WG156827-4, SI0027-6

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
1 1,4-Dioxane 2 N-Nitrosodimethyla 3 Pyridine 5 2-Picoline 6 N-Nitrosomethyleth 7 Methyl Methanesulf 9 N-Nitrosodiethylam 10 Ethyl Methanesulfo 11 Benzaldehyde 12 Aniline 15 Phenol 16 Bis(2-Chloroethyl) 17 2-Chlorophenol 18 1,3-Dichlorobenzen 20 1,4-Dichlorobenzen 21 1,2-Dichlorobenzen 21 1,2-Dichlorobenzen 22 Benzyl alcohol 24 2,2'-Oxybis(1-chlo 25 2-Methylphenol 27 Acetophenone 26 N-Nitrosopyrrolidi 29 o-Toluidine 28 N-Nitrosomorpholin 30 N-Nitroso-di-n-pro 31 Hexachloroethane 32 3&4-Methylphenol 34 Nitrobenzene 35 N-Nitrosopiperidin 36 Isophorone 37 2-Nitrophenol 38 2,4-Dimethylphenol 39 0,0,0-Triethylphos 40 Bis(2-Chloroethoxy 41 2,4-Dichlorophenol 42 1,2,4-Trichloroben 43 Benzoic acid 45 Naphthalene 48 2,6-Dichlorophenol 46 4-Chloroaniline 47 Hexachloropropene	50.0 50.0	8.5.6.7.0.9.2.9.1.8.5.4.7.3.7.4.6.9.4.0.6.1.5.7.0.5.6.8.6.5.3.4.3.8.3.9.5.0.8.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	105.61 95.04 115.22 117.40 103.96 85.73 104.43 101.74 26.23* 105.69 110.77 107.46 110.59 111.42 110.77 97.10 79.82* 100.32 97.21 104.16 110.98 101.46 110.98 101.46 110.98 101.46 110.81 110.69 110.81 110.69 110.81 110.81 110.81 110.81 110.88 117.88 115.03 105.66 112.88	80-120 80-120

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9213.D Report Date: 13-Jan-2015 13:01

ADDED	1	CONC	CONC	ે ક	<u> </u>
S0 Hexachlorobutadien	SPIKE COMPOUND	ADDED	1		LIMITS
49 A.A-Dimethylphene 50.0 0.000 * 80-120		ug/L	ug/L		
49 A.A-Dimethylphene 50.0 0.000 * 80-120	50 Hexachlorobutadien	50.0	56.3	112.63	80-120
S2 p-Phenylenediamine	49 A,A-Dimethylphene	50.0	0.000	*	80-120
Signature					
55 4-Chloro-3-Methylp					
Sosafrole	55 4-Chloro-3-Methylp				80-120
57 1-Methylnaphthalen	54 Isosafrole				80-120
100					
Society					
62 2,4,6-Trichlorophe 63 2,4,5-Trichlorophe 63 2,4,5-Trichlorophe 65 2-Chloronaphthalen 66 1,1'-Biphenyl 67 1-Chloronaphthalen 69 2-Nitroaniline 69 2-Nitroaniline 69 2-Nitroaniline 69 2-Nitroaniline 60 1,4-Naphthoquinone 70 1,4-Naphthoquinone 70 1,4-Naphthoquinone 70 1,4-Naphthoquinone 70 2,6-Dinitrotoluene 70 2,6-Dinitrotoluene 70 3-Nitroaniline 70 3-Nitroaniline 70 0,0 55.0 70 1,6-Nitroaniline 70 0,0 50.0 70 1,6-Nitroaniline 70 0,0 50.0 70 1,6-Nitroaniline 70 0,0 50.0 71 100.20 72 1,3-Dinitrotoluene 74 Acenaphthylene 75 0,0 50.0 75 2,6-Dinitrotoluene 75 0,0 50.0 76 2,1 100.20 77 3-Nitroaniline 79 Acenaphthene 70 0,0 55.0 79 Acenaphthene 70 0,0 55.0 70 109.93 7	58 Diethyl Adipate	50.0			80-120
63 2,4,5-Trichlorophe					
61 Safrole 65 2-Chloronaphthalen 66 1,1'-Biphenyl 67 1-Chloronaphthalen 69 2-Nitroaniline 69 2-Nitroaniline 69 2-Nitroaniline 69 2-Nitroaniline 69 2-Nitroaniline 60 1,4-Naphthoquinone 70 1,4-Naphthoquinone 70 1,4-Naphthoquinone 70 1,3-Dinitrobenzene 70 1,3-Dinitrobenzene 70 1,3-Dinitrobenzene 70 1,4-Naphthoquinone 73 Dimethyl Phthalate 74 Acenaphthylene 75 2,6-Dinitrotoluene 75 2,6-Dinitrotoluene 76 3-Nitroaniline 77 Acenaphthylene 78 3-Nitroaniline 79 Acenaphthene 79 Acenaphthene 70 1,4-Naphthylene 70 2,4-Dinitrophenol 79 Acenaphthene 70 0,5-Dinitrophenol 70 1,4-Naphthylene 70 1,3-Dinitrophenol 70 1,4-Naphthylene 71 1,3-Dinitrophenol 72 1,3-Dinitroboluene 73 Dimethyl Phthalate 74 Acenaphthylene 75 2,6-Dinitrotoluene 75 2,6-Dinitrotoluene 76 2,6-Dinitrotoluene 77 2,6-Dinitrophenol 78 3-Nitroaniline 79 Acenaphthylene 79 Acenaphthylene 79 Acenaphthene 79 Acenaphthylene 70 Acenaph					
66 1,1'-Biphenyl 67 1-Chloronaphthalen 69 2-Nitroaniline 70 1,4-Naphthoquinone 70 2,6-Dinitrotoluene 70 2,6-Dinitrotoluene 70 2,6-Dinitrotoluene 70 3-Nitroaniline 70 4Acenaphthyleme 70 4Acenaphthyleme 71 2,0 4-Dinitrophenol 72 3-Nitroaniline 73 2-Diphenophol 74 Acenaphthophol 75 2,6-Dinitrophenol 75 2,6-Dinitrophenol 76 3-Nitroaniline 77 4 Acenaphthyleme 78 3-Nitroaniline 79 4-Naphthylamine 80 2,4-Dinitrophenol 80 2,4-Dinitrotoluene 81 4-Naphthylamine 82 4-Naphthylamine 83 2,4-Dinitrotoluene 84 1-Naphthylamine 85 0.0 85 2-T 105543 80-120 86 4-Naphthylamine 87 2,3,4,6-Tetrachlor 88 2-Naphthylamine 89 Diethylphthalate 80 0.0 81 2,3-4,6-Tetrachlor 80 0.0 81 2-Naphthylamine 80 0.0 81 2-Naphthylamine 80 0.0 81 2-Naphthylamine 80 0.0 82 10 2,4-Dinitrophenyl-phe 80 0.0 81 2-Naphthylamine 80 0.0 81 2-Naphth	61 Safrole	50.0	46.5		80-120
67 1-Chloronaphthalen					
69 2-Nitroaniline 50.0 67.0 133.99* 80-120 70 1,4-Naphthoquinone 50.0 67.0 133.99* 80-120 73 Dimethyl Phthalate 50.0 51.8 103.55* 80-120 75 2,6-Dinitrotoluene 50.0 53.7 107.48 80-120 75 2,6-Dinitrotoluene 50.0 53.2 106.32 80-120 78 Acenaphthylene 50.0 55.0 109.93 80-120 79 Acenaphthene 50.0 55.0 109.93 80-120 80 2,4-Dinitrophenol 50.0 55.2 110.36 80-120 81 Pentachlorobenzene 50.0 53.8 107.54 80-120 82 Dibenzofuran 50.0 53.8 107.54 80-120 83 2,4-Dinitrotoluene 50.0 53.7 105.43 80-120 84 1-Naphthylamine 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 85 2-Naphthylamine 50.0 48.3 96.59 80-120 89 Diethylpthalate 50.0 51.5 103.05 80-120 90 Fluorene <					
72 1,3-Dinitrobenzene	69 2-Nitroaniline	50.0	55.7	111.36	80-120
73 Dimethyl Phthalate					
75 2,6-Dinitrotoluene					
78 3-Nitroaniline 79 Acenaphthene 80 2,4-Dinitrophenol 81 Pentachlorobenzene 82 Dibenzofuran 86 4-Nitrophenol 86 4-Nitrophenol 87 2,3-Dinitrophenol 88 2,4-Dinitrotoluene 89 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 80 2,4-Dinitrotoluene 81 2,3-A-Dinitrotoluene 82 2,4-Dinitrotoluene 83 2,4-Dinitrotoluene 84 1-Naphthylamine 850.0 853.7 107.39 80-120 84 1-Naphthylamine 850.0 853.7 107.39 80-120 88 2-Naphthylamine 850.0 88 2-Naphthylamine 850.0 88 2-Naphthylamine 850.0 89 Diethylphthalate 850.0 89 Diethylphthalate 850.0 80 15.5 103.05 80-120 80 20,0-diethyl-o-2-py 80 20,0-diethyl-o-2-py 80 4.6-Dinitro-2-Meth 80 20,0-diethylro-2-Meth 80 30 30 31 80-120 80 120 8	75 2,6-Dinitrotoluene	50.0	53.2	106.32	80-120
79 Acenaphthene 50.0 55.2 110.36 80-120 80 2,4-Dinitrophenol 50.0 50.0 99.98 80-120 81 Pentachlorobenzene 50.0 53.8 107.54 80-120 82 Dibenzofuran 50.0 52.7 105.43 80-120 86 4-Nitrophenol 50.0 53.3 106.54 80-120 83 2,4-Dinitrotoluene 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 0,0-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-12					
80 2,4-Dinitrophenol 50.0 50.0 99.98 80-120 81 Pentachlorobenzene 50.0 53.8 107.54 80-120 82 Dibenzofuran 50.0 52.7 105.43 80-120 86 4-Nitrophenol 50.0 53.3 106.54 80-120 83 2,4-Dinitrotoluene 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 0,0-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15					
82 Dibenzofuran 50.0 52.7 105.43 80-120 86 4-Nitrophenol 50.0 53.3 106.54 80-120 83 2,4-Dinitrotoluene 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 0,0-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 53.3 106.52 80-120 95 4-Nitro-O-Toluidin 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 93 Sulfotepp 50.0 53.8 107.51 <t< td=""><td>80 2,4-Dinitrophenol</td><td>50.0</td><td>50.0</td><td>99.98</td><td>80-120</td></t<>	80 2,4-Dinitrophenol	50.0	50.0	99.98	80-120
86 4-Nitrophenol 50.0 53.3 106.54 80-120 83 2,4-Dinitrotoluene 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.4 104.75 80-120 92 O,O-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 57.1 114.14 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 93 Sulfotepp 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 56.4 112.74 80-12					
83 2,4-Dinitrotoluene 50.0 53.7 107.39 80-120 84 1-Naphthylamine 50.0 48.0 96.02 80-120 87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 0,0-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 93 Sulfotepp 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 102 Phorate 50.0 56.4 112.74 80-120 <td></td> <td></td> <td></td> <td></td> <td></td>					
87 2,3,4,6-Tetrachlor 50.0 48.3 96.59 80-120 88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 0,0-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 103 Diallate 50.0 56.4 112.74 80-120 103 Phorate 50.0 31.7 63.34* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 106 Hexachlorobenzene 50.0 51.5 103.08	83 2,4-Dinitrotoluene	50.0	53.7	107.39	80-120
88 2-Naphthylamine 50.0 51.5 103.05 80-120 89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 O,O-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 104 4-Bromophenyl-phen 50.0 55.4 10.91 80-120 107 Phenacetin 50.0 54.5 103.08 80-120 <					
89 Diethylphthalate 50.0 53.4 106.81 80-120 90 Fluorene 50.0 52.4 104.75 80-120 91 4-Chlorophenyl-phe 50.0 52.7 105.37 80-120 92 O,O-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 104 4-Bromophenyl-phen 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 54.5 109.07 <					
91 4-Chlorophenyl-phe 92 0,0-diethyl-o-2-py 94 5-Nitro-O-Toluidin 95 4-Nitroaniline 96 4,6-Dinitro-2-Meth 97 N-Nitrosodiphenyla 99 1,2-Diphenylhydraz 90 Sulfotepp 90 Sulfotepp 90 Sulfotepp 90 Sulfotepp 91 Sulfotepp 91 Sulfotepp 91 Sulfotepp 91 Sulfotepp 91 Sulfotepp 92 Sulfotepp 92 Sulfotepp 93 Sulfotepp 94 4-Bromophenyl-phen 95 Sulfotepp 95	89 Diethylphthalate	50.0	53.4	106.81	80-120
92 O,O-diethyl-o-2-py 50.0 53.3 106.52 80-120 94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 105 1,3,5-Trinitrobenz 50.0 31.7 63.34* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 108 Dimethoate 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
94 5-Nitro-O-Toluidin 50.0 50.2 100.31 80-120 95 4-Nitroaniline 50.0 51.4 102.76 80-120 96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 108 Dimethoate 50.0 54.5 109.07 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
96 4,6-Dinitro-2-Meth 50.0 57.1 114.14 80-120 97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120	94 5-Nitro-O-Toluidin	50.0	50.2	100.31	80-120
97 N-Nitrosodiphenyla 100 92.1 92.15 80-120 99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
99 1,2-Diphenylhydraz 50.0 54.1 108.14 80-120 93 Sulfotepp 50.0 53.8 107.51 80-120 103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
103 Diallate 50.0 56.4 112.74 80-120 102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120	99 1,2-Diphenylhydraz	50.0	54.1	108.14	80-120
102 Phorate 50.0 31.7 63.34* 80-120 105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
105 1,3,5-Trinitrobenz 50.0 25.4 50.71* 80-120 104 4-Bromophenyl-phen 50.0 55.4 110.91 80-120 107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
107 Phenacetin 50.0 51.5 103.08 80-120 106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120	105 1,3,5-Trinitrobenz	50.0	25.4	50.71*	80-120
106 Hexachlorobenzene 50.0 54.5 109.07 80-120 108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					80-120
108 Dimethoate 50.0 51.8 103.57 80-120 109 Atrazine 50.0 25.4 50.91* 80-120 111 Pentachlorophenol 50.0 59.6 119.10 80-120					
111 Pentachlorophenol 50.0 59.6 119.10 80-120	108 Dimethoate	50.0	51.8	103.57	80-120
					80-120

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9213.D Report Date: 13-Jan-2015 13:01

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 8 2-Fluorophenol \$ 14 Phenol-D6 \$ 33 Nitrobenzene-D5 \$ 64 2-Fluorobiphenyl \$ 101 2,4,6-Tribromophe \$ 129 Terphenyl-D14	100 100 50.0 50.0 100 50.0	0.000 0.000 0.000 0.000 0.000	* * * * *	20-110 10-115 40-110 50-110 40-125 50-135

Data File: $\t server \g \em \g u.i\U011215.b\U9213.D$ Report Date: 13-Jan-2015 13:01

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9207.D

Report Date: 13-Jan-2015 10:03

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9207.D

Lab Smp Id: WG156827-4

Inj Date : 12-JAN-2015 13:06 Operator : JCG Smp Info : WG156827-4 Inst ID: gcms-u.i

Misc Info : Comment

Method : \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal Date : 05-JAN-2015 15:06 Cal File: U9110.D

Als bottle: 2 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description
DF	1.000	Dilution Factor
U£	1.000	Correction Factor
Vt	0.00100	Final Volume (L)
Vo	1.000	Sample Volume (L)
Vi	1.000	Volume injected (uL)
Cpnd Variable		Local Compound Variable

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 1,4-Dioxane	58	2.648	2.649 (0.316)	188844	50.0000	51.0	
3 Pyridine	79	3.125	3.125 (0.373)	613317	50.0000	52.4	
2 N-Nitrosodimethylamine	42	3.104	3.114 (0.370)	239638	50.0000	53.5	
4 Ethyl Methacrylate	69	3.911	3.911 (0.467)	420152	50.0000	50.2	
5 2-Picoline	93	4.439	4.429 (0.530)	577330	50.0000	49.3	
6 N-Nitrosomethylethylamine	88	4.708	4.708 (0.562)	257016	50.0000	49.5	
7 Methyl Methanesulfonate	80	5.329	5.350 (0.636)	315185	50.0000	50.6	
\$ 8 2-Fluorophenol	112	5.753	5.754 (0.686)	527564	50.0000	50.0	
9 N-Nitrosodiethylamine	102	6.105	6.137 (0.728)	259574	50.0000	49.2	
10 Ethyl Methanesulfonate	79	6.820	6.861 (0.814)	409401	50.0000	49.9	
11 Benzaldehyde	77	7.420	7.420 (0.885)	132806	50.0000	52.7	
13 Pentachloroethane	117	7.741	7.741 (0.923)	201675	50.0000	51.2	
12 Aniline	93	7.699	7.720 (0.919)	762815	50.0000	51.1	
16 Bis(2-Chloroethyl)ether	93	7.896	7.917 (0.942)	452515	50.0000	51.3	
\$ 14 Phenol-D6	99	7.855	7.865 (0.937)	574248	50.0000	50.5	
15 Phenol	94	7.886	7.896 (0.941)	626147	50.0000	51.6	
17 2-Chlorophenol	128	7.979	7.989 (0.952)	527756	50.0000	52.1	
18 1,3-Dichlorobenzene	146	8.248	8.258 (0.984)	577317	50.0000	51.2	
* 19 1,4-Dichlorobenzene-D4	152	8.382	8.393 (1.000)	324197	40.0000		
20 1,4-Dichlorobenzene	146	8.424	8.434 (1.005)	575231	50.0000	51.7	
21 1,2-Dichlorobenzene	146	8.755	8.765 (1.044)	555428	50.0000	51.4	

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9207.D}}$ Report Date: 13-Jan-2015 10:03

								AMOUN	ITS	
			QUANT SIG					CAL-AMT	ON-COL	
	ompoi		MASS	RT	EXP RT		RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
==			====			- ======		======	======	=======
		Benzyl alcohol	108	8.827		(1.053)	351971	50.0000	50.8	
		Bis(2-Chloroisopropyl)ether	45	9.138		(1.090)	667713	50.0000	52.0	
		2,2'-Oxybis(1-chloropropane)	45	9.138		(1.090)	665092	50.0000	51.8	
		2-Methylphenol	108	9.231		(1.101)	481827	50.0000	49.2	
		Acetophenone	105	9.366		(0.826)	681597	50.0000	51.1	
		Hexachloroethane	117	9.511		(1.135)	226497	50.0000	53.3	
		N-Nitrosopyrrolidine	100	9.335		(1.114)	257782	50.0000	53.8	
		o-Toluidine	106	9.448		(1.127)	710933	50.0000	50.6	
		N-Nitrosomorpholine	56	9.428		(1.125)	350040	50.0000	53.2	
		N-Nitroso-di-n-propylamine	70	9.459		(1.128)	307030	50.0000	50.1	
		3&4-Methylphenol	108	9.614		(1.147)	523466	50.0000	50.5	
\$		Nitrobenzene-D5	82	9.676		(0.853)	483453	50.0000	51.5	
		Nitrobenzene	77	9.718		(0.857)	481555	50.0000	51.3	
		N-Nitrosopiperidine	114	10.080		(0.889)	270831	50.0000	50.8	
		Isophorone	82	10.339		(0.911)	924416	50.0000	50.4	
		2-Nitrophenol	139	10.483		(0.924)	279510	50.0000	50.7	
		2,4-Dimethylphenol	107	10.794	10.835		504414	50.0000	53.4	
		Bis(2-Chloroethoxy)methane	93	10.949		(0.965)	683939	50.0000	54.5	
		0,0,0-Triethylphosphorothioat	198	10.929		(0.964)	204737	50.0000	51.0	
		2,4-Dichlorophenol	162	11.146		(0.983)	426559	50.0000	52.3	
		1,2,4-Trichlorobenzene	180	11.249	11.260	,	438831	50.0000	51.8	
*		Naphthalene-D8	136		11.353		1217246	40.0000		
		Benzoic acid	122		11.488		179210	50.0000	45.2(Q)	
		Naphthalene	128		11.415		1266077	50.0000	51.3	
		A,A-Dimethylphenethylamine	58		12.140		1236920	50.0000	55.4(M)	М9
		Hexachloropropene	213		11.653		250177	50.0000	51.4	
		2,6-Dichlorophenol	162		11.684		364227	50.0000	51.6	
		4-Chloroaniline	127	11.643		(1.026)	538097	50.0000	53.1	
		Hexachlorobutadiene	225	11.798		(1.040)	218439	50.0000	51.8	
		N-Nitroso-Di-N-Butylamine	84		12.605		355110	50.0000	51.0	
		Caprolactam	113	12.626		(1.113)	157385	50.0000	49.1(Q)	
		p-Phenylenediamine	108		12.626		408617	50.0000	53.8	
		Isosafrole	162		13.019		351472	50.0000	51.3	
		2-Methylnaphthalene	142		13.133		1016536	50.0000	50.6	
		4-Chloro-3-Methylphenol	107		13.092		433081	50.0000	53.4(Q)	
		1-Methylnaphthalene	142		13.361		858061	50.0000	51.9	
		1,2,4,5-Tetrachlorobenzene	216		13.568		379779	50.0000	48.8	
		Hexachlorocyclopentadiene	237		13.578		228736	50.0000	53.5	
		2,4,6-Trichlorophenol	196	13.920	13.951		292159	50.0000	53.2	
\$		2-Fluorobiphenyl	172		14.116		830050	50.0000	51.5	
		2,4,5-Trichlorophenol	196		14.075		288335	50.0000	51.7	
		Safrole	104		13.723		33357	50.0000	50.3	
		2-Chloronaphthalene	162		14.313		1048803	50.0000	49.4	
		1,1'-Biphenyl	154		14.334		930154	50.0000	50.2	
		1-Chloronaphthalene	162		14.355		797922	50.0000	51.0	
		Diphenylether	170		14.613		548386	50.0000	50.7	
		2-Nitroaniline	65		14.686		265743	50.0000	51.4	
		1,4-Naphthoquinone	158	14.758		(0.943)	185679	50.0000	39.8	
		1,4-Dinitrobenzene	75		15.038		170941	50.0000	52.2	
		Acenaphthylene	152		15.307		1284950	50.0000	51.1	۸ - ۷
		Dimethyl Phthalate	163		15.276		905798	50.0000	50.9	4/4
		1,3-Dinitrobenzene	168		15.255		144501	50.0000	51.8(Q)	aul
	75	2,6-Dinitrotoluene	165	15.296	15.338	(0.978)	203469	50.0000	51.7	\

50 15.389 15.441 (0.983) 142407 50.0000

76 1,2-Dinitrobenzene

11:03 am, Jan 20, 2015

50.4

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9207.D}}$ Report Date: 13-Jan-2015 10:03

Commound						AMOUN	TS	
77 Acmanghthene-nilo 164 15.668 15.058 1.000		QUANT SIG				CAL-AMT	ON-COL	
72 Accomplithence-ID10	Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
79 Accesses 15.0 15.73 15.732 15.000 7.562 15.000 49.8 28 Accesses 15.000 15.762 11.000 270474 15.000 47.9 28 Stithendrümn 148 15.90 16.002 10.202 13.2673 50.000 47.9 28 Stithendrümn 149 16.000 16.137 (1.033) 1900119 50.000 50.4 28 Stithendrümn 142 16.200 16.000 16.000 50.4 28 Stithendrümn 142 16.200 16.000 16.000 50.3 28 Stithendrümn 142 16.200 16.000 16.000 50.3 28 Stithendrümn 142 16.200 16.000 16.000 51.4 29 Stithendrümn 142 16.200 16.000 16.000 51.4 20 Stithendrümn 142 16.000 16.000 16.000 51.2 20 Stithendrümn 143 16.01 16.000 16.000 51.2 20 Stithendrümn 143 16.01 16.000 16.000 51.2 20 Stithendrümn 143 16.01 16.000 16.000 16.1 20 Stithendrümn 139 16.300 16.000 21329 30.000 51.5 20 Stithendrümn 139 16.300 16.000 21329 30.000 51.5 20 Stithendrümn 149 16.300 17.000 17.000 21329 30.000 50.5 20 Stithendrümn 140 16.000 17.0		====	====		======	======	======	========
78 3-44tronmilline 138 15.700 15.762 1.0013 270474 50.0000 54.8 80 2.4-Dintrochemon 148 15.700 16.042 1.0223 125673 50.0000 47.9 82 Tibomanfuron 148 16.093 16.124 1.0281 34992 50.0000 50.4 83 1-Reputhtylamine 149 16.393 16.425 1.0281 34992 50.0000 51.5 84 1-Reputhtylamine 149 16.393 16.426 1.0281 34992 50.0000 51.5 85 2.4.5.5.6.Fetrachilorophemol 232 16.478 16.597 1.0331 225047 30.0000 51.6 85 2.4.5.5.6.Fetrachilorophemol 139 16.597 16.397 10.393 225047 30.0000 51.6 85 4-Reputhylamine 149 16.611 16.668 16.907 10.333 250477 30.0000 51.6 86 4-Reputhylamine 149 16.590 16.352 10.6012 3411077 50.0000 50.6 87 2.3.4.6.Fetrachilorophemol 232 16.478 17.066 10.093 193329 50.0000 50.6 89 4-Reputhylamine 149 16.590 17.036 10.093 193329 50.0000 50.6 90 2-Reputhylamine 149 17.046 10.093 30.0000 30.0000 49.9 91 4-Chilorophemyl-phemylether 249 17.136 17.086 10.093 30.0000 49.9 91 4-Chilorophemyl-phemylether 240 17.118 17.129 11.084 14.5235 10.0000 49.9 91 4-Chilorophemyl-phemylether 240 17.118 17.129 11.084 14.5235 10.0000 50.0 92 4-Reputhylamine 158 17.129 17.129 17.222 10.097 18872 50.0000 50.9 93 4-Reputhylamine 158 17.349	* 77 Acenaphthene-D10	164	15.648	15.659 (1.000)	641042	40.0000		
82 Dibenoturan 83 Dibenoturan 84 1-Applity) 83 Dibenoturan 85 Cantendrophenot 86 1	79 Acenaphthene	153	15.731	15.752 (1.005)	760682	50.0000	49.8	
## Dibemochusem ## Portanch Incompanies ## Portanch In	78 3-Nitroaniline	138	15.700	15.762 (1.003)	270474	50.0000	54.8	
8 Pentachl crohemene 250 16.093 16.124 (1.024) 38127 50.0000 51.5 83 2.4-Shirthylashine 143 16.39 16.352 (1.042) 38107 50.0000 51.3 85 2.7.5,6-Tekrachicrophenol 212 18.478 18.597 (1.053) 81077 50.0000 51.3 86 4-Nitrophenol 139 16.597 16.476 (1.055) 189759 50.0000 50.6 87 2.3.4,6-Tekrachicrophenol 139 16.597 16.476 (1.055) 189759 50.0000 50.6 89 Pluorene 166 17.014 17.046 (1.087) 848723 50.0000 50.6 90 Pluorene 166 17.014 17.046 (1.087) 848723 50.0000 50.6 90 Pluorene 166 17.014 17.046 (1.087) 848723 50.0000 50.6 91 4-Chlorophenol-phenylethere 204 17.118 27.139 (1.094) 415233 50.0000 50.9 92 5-Nitro-0-Touldine 152 17.180 17.322 (1.082) 3005 50.0000 50.9 93 5-Nitro-0-Touldine 132 17.180 17.322 17.110 17.322 (1.093) 279853 50.0000 50.9 94 5-Nitro-0-Touldine 139 17.242 17.313 (1.102) 289959 50.0000 50.8 95 4-Ritrosodiphenylamine 198 17.304 17.485 (0.896) 810089 50.0000 50.9 97 N-Nitrosodiphenylamine 169 17.49 17.491 (1.094) 71.5459 50.0000 50.9 98 N-Ritrosodiphenylamine 77 17.501 27.532 (0.996) 91088 50.0000 50.9 99 1710 17.040 17.322 17.335 (1.098) 27.5459 50.0000 50.9 99 1710 17.040 17.322 17.335 (1.098) 27.5459 50.0000 50.9 99 1710 17.040 17.040 17.040 17.5459 50.0000 50.9 99 1710 17.04	80 2,4-Dinitrophenol	184	15.990	16.042 (1.022)	125673	50.0000	47.9	
84 1-Naphthylamine	82 Dibenzofuran	168	16.166	16.197 (1.033)	1090719	50.0000	50.6	
83 2,4-Dinitrocolumne	81 Pentachlorobenzene	250	16.093	16.124 (1.028)	349292	50.0000	50.3	
88 2 3, 3, 5, 6-Textanchorophenol 232 16.476 16.507 (1.053) 226947 80.0000 49.7 86 4-Mittrophenol 133 16.507 16.476 (1.055) 198759 50.0000 58.6 87 2, 3, 4, 6-Textanchorophenol 232 16.507 16.476 (1.055) 198759 50.0000 50.6 87 2, 3, 4, 6-Textanchorophenol 232 16.507 16.476 (1.057) 849759 50.0000 49.3 88 Dichylphchalate 149 16.994 17.035 (1.086) 930005 50.0000 49.9 98 Dichylphchalate 149 16.994 17.035 (1.086) 930005 50.0000 49.9 91 4-Chicrophenyl-phenylether 204 17.18 27.139 (1.086) 930005 50.0000 50.0 92 0,0-diethyl-o-2-pyraxinylphos 107 17.170 17.242 (1.0991) 184972 30.0000 50.0 94 4-Nitronanitine 138 17.242 17.135 (1.102) 233955 30.0000 50.0 95 4-Nitronanitine 189 17.449 17.491 (0.994) 715459 50.0000 50.9 98 N-Nitronadiphenylamine 169 17.449 17.491 (0.994) 715459 50.0000 50.9 99 N-Nitronadiphenylamine 169 17.449 17.491 (0.994) 715459 50.0000 50.9 99 N-Nitronadiphenylamine 77 17.501 17.532 (0.966) 941088 50.0000 50.9 99 N-12-Diphynylhydrahen 77 17.501 17.532 (0.966) 941088 50.0000 50.2 100 Acobensene 77 17.501 17.532 (0.966) 941088 50.0000 50.2 101 Acobensene 77 17.501 17.532 (0.966) 941088 50.0000 50.3 102 4, 6-Chirubromophenol 330 17.635 17.667 10.441 15.458 50.0000 50.3 103 Dialiate 86 18.396 18.399 (0.948) 12.999 50.0000 50.3 104 4, 6-Chirubromophenol 230 18.391 18.170 (0.949) 15.532 50.0000 50.3 105 Mexicahlorobensene 244 18.401 18.432 (0.955) 287226 50.0000 50.3 106 Netachhorobensene 27 18.991 19.504 19.991 19.504 19.0000 50.0000 50.0000 101 Phenoethi 169 18.991 19.504 19.991 19.504 19.0000 50.0000 50.0000 50.0000 102 Phenoethorophenol 169 18.991 19.504 19.991 19.504 19.0000 50.0000 50.0000 103 Phenoethorophenol 17 19.992	84 1-Naphthylamine	143	16.393	16.435 (1.048)	981273	50.0000	51.6	
88 2-Neghthylamine	83 2,4-Dinitrotoluene	165	16.300	16.362 (1.042)	283006	50.0000	51.3	
88 A-Nitrophenol 139 16.507 16.476 (1.055) 15.8729 50.0000 50.6 90 Fluorene 166 17.014 17.046 (1.087) 848725 50.0000 49.3 91 Belinty-phthalate 149 16.994 17.035 (1.088) 930035 50.0000 49.9 91 A-chlorophenyl-phenylether 240 17.118 17.139 11.094 41525 50.0000 51.1 92 O.0-dicthyl-o-2-pyroxinylpho 107 17.710 17.222 (1.097) 184872 50.0000 50.0 93 A-Nitrod-Toluidine 152 17.180 17.324 (1.098) 27963 50.0000 50.0 94 A-Nitrod-Toluidine 138 17.242 17.315 (1.102) 253955 30.0000 50.9 95 A-Nitrod-Merbyl-phenol 188 17.242 17.315 (1.102) 253955 30.0000 52.6 97 N-Nitrod-Diphyl-phenol 189 17.449 17.491 0.0940 715459 50.0000 50.9 98 N-Nitrod-Diphyl-phenol 196 17.449 17.491 0.0940 715459 50.0000 50.9 99 1,2-Diphenylhydrazine 77 17.501 17.522 (0.906) 941088 50.0000 50.9 99 1,2-Diphenylhydrazine 77 17.501 17.522 (0.906) 941088 50.0000 50.4 101 2,4-6-Turbromophenol 330 17.651 17.657 17	85 2,3,5,6-Tetrachlorophenol	232	16.476	16.507 (1.053)	226047	50.0000	51.8	
RF 2, 3, 4, 6—Tetrachlorephenol 232 16.590 16.632 (1.060) 213229 50.0000 49.3 RF 2, 3, 4, 6—Tetrachlorephenylether 149 16.994 17.035 (1.086) 930005 50.0000 49.9 RF 4—Chlorephenyl-phenylether 204 17.118 17.138 (1.094) 415235 50.0000 50.0 RF 4—Chlorephenyl-phenylether 204 17.118 17.138 (1.094) 415235 50.0000 50.0 RF 5—Nitro-O-Toluidine 152 17.180 17.242 (1.099) 273553 50.0000 50.0 RF 5—Nitro-O-Toluidine 152 17.180 17.242 (1.099) 273553 50.0000 50.0 RF 5—Nitrosodiphenylamine 198 17.304 17.355 (0.886) 160939 50.0000 50.9 RF N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715699 50.0000 50.9 RF N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715699 50.0000 50.9 RF N-Nitrosodiphenylamine 177 17.501 17.532 (0.906) 941088 50.0000 50.9 RF N-Nitrosodiphenylamine 177 17.501 17.532 (0.906) 941088 50.0000 50.9 RF N-Nitrosodiphenylamine 177 17.501 17.532 (0.906) 941088 50.0000 50.1 RF ST N-Nitrosodiphenylamine 189 17.449 17.491 (0.904) 715699 50.0000 50.1 RF ST N-Nitrosodiphenylamine 180 17.491 (0.904) 715699 50.0000 50.1 RF ST N-Nitrosodiphenylamine 177 17.501 17.532 (0.906) 941088 50.0000 50.1 RF ST N-Nitrosodiphenylamine 180 17.491 17.491 (0.904) 715699 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 17.491 17.491 (0.904) 715699 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 17.491 17.491 (0.904) 715699 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 17.491 17.491 (0.904) 715699 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 18.236 18.257 (0.904) 354408 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 18.236 18.257 (0.904) 354408 50.0000 50.4 RF ST N-Nitrosodiphenylamine 180 18.236 18.257 (0.904) 354408 50.0000 50.3 RF ST N-Nitrosodiphenylamine 180 18.236 18.257 (0.904) 35440	88 2-Naphthylamine	143	16.611	16.663 (1.062)	841077	50.0000	49.7	
99 Plucence	86 4-Nitrophenol	139	16.507	16.476 (1.055)	198759	50.0000	58.6	
89 DicthyInhthalace	87 2,3,4,6-Tetrachlorophenol	232	16.590	16.632 (1.060)	213229	50.0000	50.6	
91 4-Chlorophenyl-phenylether 204 17.118 17.139 (1.094) 415.335 50.0000 51.1 92 0.0-diethyl-o-2-pyrazinylphos 107 17.170 17.222 (1.097) 184872 50.0000 50.0 94 5-Nitro-O-Tchindine 138 17.242 17.315 (1.102) 253955 50.0000 52.8 95 4-Nitrosaniline 188 17.242 17.315 (1.102) 253955 50.0000 52.8 97 N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 98 N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 99 1.2-Diphenylhydrazine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Axobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.2 101 24.6-Tribromophenol 330 17.653 17.656 17.657 (1.127) 39189 50.0000 51.3 93 Sulfotep 97 17.70 17.232 (0.889) 213070 50.0000 51.4 101 24.6-Tribromophenol 368 18.336 18.339 (0.948) 234287 50.0000 51.4 102 4-Bromophenyl-phenylether 248 18.308 18.339 (0.948) 234287 50.0000 52.4 104 4-Bromophenyl-phenylether 75 18.225 18.267 (0.944) 552175 50.0000 53.4 105 13.5-Tribritobenzene 213 18.391 18.797 (0.949) 455832 50.0000 55.7 107 Thenacetin 108 18.432 18.515 (0.944) 455275 50.0000 52.2 108 Dimethoate 87 18.600 18.941 18.912 18.912 18.912 18.912 119 Patrachlorophenol 266 18.941 18.912 (0.983) 727069 50.0000 55.7 119 Atraine 200 18.940 18.971 (0.983) 164797 50.0000 55.2 110 Pentachlorophenol 266 18.941 19.012 (0.983) 727069 50.0000 55.1 111 Pentachlorophenol 188 19.312 19.333 (1.000) 598107 40.0000 112 4-Aminobiphenyl 169 18.941 19.012 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.941 19.012 (0.983) 727069 50.0000 55.5 113 Phenanthrene 178 19.498 19.550 (1.005) 19547 50.0000 54.2 114 Phenanthrene 178 19.498 19.550 (1.005) 19547 50.00	90 Fluorene	166	17.014	17.046 (1.087)	848725	50.0000	49.3	
94 SNitro-O-Toluidine 152 17.10 17.222 (1.097) 184872 50.0000 50.0 50.0 94 S-Nitro-O-Toluidine 152 17.180 17.242 (1.098) 279563 50.0000 52.8 50.0000 52.8 54-Nitromiline 138 17.422 17.315 (1.102) 253955 50.0000 52.8 56.0000 52.8 56.4 5-Dinitro-2-Wethylphenol 198 17.304 17.356 (0.896) 160939 50.0000 52.6 50.9 98 N-Nitromodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 98 N-Nitromodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 99 1.2-Diphenylhydraxine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Abobernene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 51.3 10.2 4.6-Tribromophenol 330 17.635 17.667 (1.127) 139189 50.0000 51.3 10.4 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	89 Diethylphthalate	149	16.994	17.035 (1.086)	930005	50.0000	49.9	
98 4-Nitron-Toluidine 152 17.180 17.242 (1.098) 279563 50.0000 50.9 98 4-Nitronalline 138 17.242 17.315 (1.102) 253955 50.0000 52.8 96 4.6-Dinitro-2-Methylphenol 198 17.304 17.355 (0.896) 150939 50.0000 52.6 97 N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 98 N-Nitrosodiphenylamine/DPA 169 17.449 17.491 (0.904) 715459 50.0000 50.9 99 1,2-Diphenylhydraxine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.2 101 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 \$101 2.4,6-Tribromophenol 330 17.635 17.667 (1.127) 139189 50.0000 51.3 93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 562175 50.0000 51.4 104 A-Bromophenyl-phenylether 248 18.308 18.339 (0.948) 234287 50.0000 50.3 102 Phorate 75 18.225 18.257 (0.944) 562175 50.0000 53.4 105 13.5-Trihitrobenzene 231 18.339 18.370 (0.994) 155832 50.0000 52.2 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 52.2 108 Dimethoate 87 18.660 18.722 (0.966) 373266 50.0000 52.2 110 Phoraterine 200 18.940 18.971 (0.981) 211612 50.0000 56.7 109 Atracine 200 18.940 18.971 (0.981) 211612 50.0000 56.7 109 Atracine 200 18.981 19.022 (0.983) 164797 50.0000 52.2 111 Pentachlorophenol 266 18.981 19.022 (0.983) 164797 50.0000 52.2 112 Pentachlorophenol 266 18.981 19.022 (0.983) 164797 50.0000 52.2 113 Pronamide 173 19.332 19.333 (1.000) 958107 50.0000 52.5 115 Phenanthrene-100 188 19.332 19.333 (1.000) 958107 50.0000 52.5 115 Phenanthrene 178 19.498 19.530 (1.001) 1295441 50.0000 52.5 116 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 52.5 115 Phenanthrene 179 19.499 19.581 (1.003) 1256526 50.0000 52.5 116 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 52.5 117 Dinoseb 211 19.540 19.561 (1.012) 471886 50.0000 56.3 120 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 56.3 121 Dibutylphthalate 49 21.113 21.144 (1.036) 1259441 50.0000 57.7 125 Isodrin 193 21.341 (1.136) 125931 50.0000 57.7 126 Flororathere 97	91 4-Chlorophenyl-phenylether	204	17.118	17.139 (1.094)	415235	50.0000	51.1	
95 4-Nitroaniline 138 17.242 17.315 (1.102) 253955 50.0000 52.6 96 4,6-Dinitro-2-Methylphenol 198 17.340 17.356 (0.986) 16.0039 50.0000 52.6 97 N-Nitroaodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 98 N-Nitroaodiphenylamine/DPA 169 17.449 17.491 (0.904) 715459 50.0000 50.9 99 1.2-Diphenylhydraxine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 51.3 93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 354458 50.0000 52.4 104 4-Bromophenyl-phenylether 248 18.308 18.318 (0.944) 354458 50.0000 52.4 105 Phorate 75 18.225 18.267 (0.944) 552175 50.0000 53.4 105 Phorate 75 18.225 18.267 (0.944) 552175 50.0000 53.4 105 Hayanacetin 188 18.432 18.139 18.370 (0.949) 155832 50.0000 56.7 107 Phenacetin 188 18.432 18.151 (0.954) 499500 50.000 55.2 108 Dimethate 87 18.660 18.202 (0.953) 287226 50.0000 55.7 109 Alrazine 200 18.940 18.931 (0.953) 287226 50.0000 55.7 109 Alrazine 200 18.940 18.931 (0.982) 106432 50.0000 55.7 109 Phorate 100 188 19.312 19.333 (1.000) 958107 40.0000 52.2 111 Pentachicrophenol 266 18.981 19.012 (0.983) 164797 50.0000 52.3 110 Pentachicroprienol 266 18.981 19.101 (0.983) 164797 50.0000 52.3 110 Pentachicroprienol 276 18.991 19.101 (0.983) 164797 50.0000 52.5 111 Phenanthrene 178 19.374 19.405 (1.003) 1255326 50.0000 52.5 115 Phenanthrene 178 19.374 19.405 (1.003) 1255326 50.0000 52.5 116 Dimethoa 211 19.540 19.550 (1.003) 1255326 50.0000 52.5 117 Dinoseb 211 19.540 19.550 (1.003) 125541 50.0000 52.5 118 Diaulfoton 88 19.540 19.551 (1.012) 471886 50.0000 52.5 119 Orabacole 167 19.995 20.026 (1.055) 1395777 50.0000 54.5 120 Methyl Parathion 291 21.475 21.496 (1.112) 89103 50.0000 57.7 123 Ethyl Darathion 97 21.274 21.2745 (1.125) 35683 50.0000 57.7 123 Ethyl Darathion 99 20.440 20.461 (1.058) 135000 50.000 57.7 125 Isodrin 99 20.22 22.832 22.933 (0.082) 130162 50.0000 50.3	92 O,O-diethyl-o-2-pyrazinylphos	107	17.170	17.222 (1.097)	184872	50.0000	50.0	
96 4,6-Dinitro-2-Methylphenol 198 17.304 17.356 0.896) 160339 50.0000 52.6	94 5-Nitro-O-Toluidine	152	17.180	17.242 (1.098)	279563	50.0000	50.9	
97 N-Nitrosodiphenylamine 169 17.449 17.491 (0.904) 715459 50.0000 50.9 98 N-Nitrosodiphenylamine/DPA 169 17.439 17.491 (0.904) 715459 50.0000 50.9 99 1,2-biphenylyhydrazine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobensene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 \$ 101 2.4,6-Tribromophenol 330 17.635 17.667 (1.127) 139189 50.0000 51.3 93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 55448 50.0000 52.4 104 4-Bromophenyl-phenylether 248 18.308 18.257 (0.944) 55458 50.0000 52.4 104 4-Bromophenyl-phenylether 75 18.225 18.267 (0.944) 55458 50.0000 53.4 105 1,3,5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 53.4 105 1,3,5-Trinitrobenzene 284 18.401 18.432 (0.953) 287226 50.0000 53.0 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 55.7 109 Abrasine 200 18.940 18.971 (0.981) 21512 50.0000 55.7 109 Atraxine 200 18.940 18.971 (0.981) 21512 50.0000 56.9 112 4-Aminobiphenyl 169 18.981 19.012 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 727069 50.0000 52.0 113 Pronamide 173 19.312 19.333 (1.000) 958107 40.0000 15.1 114 Phenanthrene 10 188 19.512 (1.982) 10.6432 50.0000 52.5 115 Phenanthrene 178 19.949 19.5561 (1.012) 189173 50.0000 52.5 116 Anthracene 178 19.949 19.5561 (1.012) 189173 50.0000 52.5 119 Carbasole 167 19.995 20.036 (1.035) 119577 50.0000 54.1 110 Pontachloro-involument 199 20.440 20.61 (1.012) 189173 50.0000 52.5 110 Din-butylphthalate 149 21.13 21.134 (1.093) 1654304 50.0000 54.1 120 Arthracene 178 19.498 19.530 (1.012) 189173 50.0000 55.7 121 Strongthene 291 21.475 (21.496 (1.12) 8105 35688 50.0000 57.7 125 Isodrin 199 20.442 (2.481 (1.012) 35688 50.0000 57.7 125 Isodrin 199 21.475 (21.496 (1.12) 8105 35688 50.0000 57.7 125 Isodrin 199 22.432 22.334 (1.088) 130162 50.0000 55.3 126 Pivorathene 202 22.2482 22.837 (0.882) 1310162 50.0000 55.3	95 4-Nitroaniline	138	17.242	17.315 (1.102)	253955	50.0000	52.8	
98 N-Nitrosodiphenylamine/DFA 169 17.449 17.491 (0.904) 715459 50.0000 50.9 99 1,2-Diphenylhydrazine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 51.000 50.4 51.0000 50.4 51.00000 50.4 51.00000 50.4 51.00000 51.3 93 Sulfotepp 97 17.701 17.532 (0.908) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 354458 50.0000 52.4 104 4-Bromophenyl-phenylether 248 18.308 18.339 (0.948) 234287 50.0000 53.4 105 13.5-Trinitrobenzene 75 18.225 18.267 (0.944) 562457 50.0000 53.4 105 13.5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 53.4 105 13.5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 53.0 106 Hexachlorobenzene 87 18.625 18.627 (0.944) 56215 50.0000 52.2 108 Dimethoate 87 18.600 18.232 (0.966) 373266 50.0000 52.2 108 Dimethoate 87 18.600 18.232 (0.966) 373266 50.0000 55.7 109 Atraxine 109 18.991 19.022 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 267 18.991 (0.982) 10.6432 50.0000 52.0 113 Pronamide 173 19.312 19.333 (1.000) 958107 40.0000 52.5 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 52.5 115 Phenanthrene 178 19.349 19.561 (1.012) 47186 50.0000 52.5 115 Phenanthrene 178 19.349 19.561 (1.012) 47186 50.0000 52.5 115 Phenanthrene 178 19.349 19.561 (1.012) 47186 50.0000 52.5 115 Phenanthrene 178 19.349 19.561 (1.012) 18937 50.0000 52.5 115 Phenanthrene 179 20.026 (1.055) 119577 50.0000 54.5 11 12 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 57.7 125 Eacdrin 193 21.391 21.391 (1.106) 89054 50.0000 57.7 125 Eacdrin 193 21.391 21.391 (1.106) 89054 50.0000 57.7 125 Eacdrin 193 21.391 21.391 (1.081) 135000 55.3 1106000 55.3 112 125 Eacdrin 193 21.391 21.495 (1.105) 135000 55.3 112 125 Eacdrin 193 21.391 21.495 (1.105) 135000 55.3 112 125 Eacdrin 193 21.391 21.495 (1.105) 135000 55.3 112 125 Eacdrin 193 21.391 21.495 (1.105) 1350000 55.3 112 125 Eacdrin 194 22.28	96 4,6-Dinitro-2-Methylphenol	198	17.304	17.356 (0.896)	160939	50.0000	52.6	
99 1,2-Diphenylhydrazine 77 17.501 17.532 (0.906) 941088 50.0000 50.2 100 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 5.1 1.0000 Azobenzene 77 17.501 17.532 (0.906) 941088 50.0000 50.4 5.1 1.3 5.101 2,4 6-Tribromophenol 330 17.635 17.667 (1.127) 139189 50.0000 51.3 93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 354458 50.0000 52.4 104 4-Rromophenyl-phenylether 248 18.308 18.339 (0.948) 243487 50.0000 52.4 104 4-Rromophenyl-phenylether 75 18.225 18.267 (0.944) 562175 50.0000 53.3 102 Phorate 75 18.225 18.267 (0.944) 562175 50.0000 53.4 105 13.3 5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 53.0 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 53.0 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 55.7 109 Atrazine 200 18.940 18.971 (0.991) 211612 50.0000 55.7 1109 Atrazine 200 18.940 18.971 (0.991) 211612 50.0000 55.7 111 Pentachloronitrobenzene 237 18.971 18.991 (0.993) 164797 50.0000 54.2 111 Pentachloronitrobenzene 237 18.971 18.991 (0.993) 164797 50.0000 52.0 113 Promamice 173 19.312 19.333 (1.000) 958107 40.0000 15.1 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 52.5 115 Phenanthrene 178 19.498 19.500 (1.003) 1265326 50.0000 52.5 115 Phenanthrene 178 19.498 19.500 (1.003) 1265326 50.0000 52.5 115 Phenanthrene 178 19.498 19.500 (1.002) 1295441 50.0000 52.5 115 Phenanthrene 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 11 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 11 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 11 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 55.4 11 1224 Nitroquinoline-1-0xide 190 21.405 21.313 21.314 (1.093) 1654304 50.0000 50.7 123 Ethich Phenophyl Parathion 291 21.475 21.495 (1.125) 356481 50.0000 53.9 125 125 125 I25 I25 I25 I25 I25 I25 I25 I25 I25 I	97 N-Nitrosodiphenylamine	169	17.449	17.491 (0.904)	715459	50.0000	50.9	
100 Arobenzene	98 N-Nitrosodiphenylamine/DPA	169	17.449	17.491 (0.904)	715459	50.0000	50.9	
\$ 101 2,4,6-Tribromophenol 330 17.635 17.667 (1.127) 139189 50.0000 51.4 93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.257 (0.944) 354458 50.0000 52.4 104 4-Bromophenyl-phenylether 248 18.308 18.339 (0.948) 234287 50.0000 50.3 102 Phorate 75 18.225 18.267 (0.944) 562175 50.0000 53.4 105 1,3,5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 56.7 107 Phenacetin 108 18.432 18.515 (0.954) 499500 50.0000 53.0 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 52.2 108 Dimethoate 87 18.660 18.722 (0.966) 373266 50.0000 55.7 109 Atrazine 200 18.940 18.971 (0.981) 211612 50.0000 56.9 112 4-Aminobiphenyl 169 18.981 19.022 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.2 110 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 * 113 Pronamide 173 19.312 19.333 (1.000) 358107 40.0000 * 114 Phenanthrene-D10 188 19.374 19.405 (1.003) 1265326 50.0000 52.5 115 Phenanthrene 178 19.498 19.530 (1.010) 1265326 50.0000 52.5 116 Diarbacole 178 19.498 19.530 (1.010) 1265326 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 52.5 119 Carbazole 167 19.995 20.026 (1.035) 189173 50.0000 54.5 120 Methyl Parathion 199 20.440 20.461 (1.058) 329298 50.0000 54.5 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.5 122 4-Mitroquinoline-1-0xide 190 21.361 21.391 (1.100) 189077 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 35688 50.0000 57.7 125 Isodrin 193 21.931 21.475 (1.126) 1258377 50.0000 53.9 126 Pluoranthene 202 22.285 22.873 (0.881) 310162 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.881) 310162 50.0000 50.2	99 1,2-Diphenylhydrazine	77	17.501	17.532 (0.906)	941088	50.0000	50.2	
93 Sulfotepp 97 17.170 17.222 (0.889) 213070 50.0000 51.4 103 Diallate 86 18.236 18.237 (0.944) 354458 50.0000 52.4 104 4-Bromophenyl-phenylether 248 18.308 18.339 (0.948) 213070 50.0000 50.3 102 Phorate 75 18.225 18.267 (0.944) 562175 50.0000 53.4 105 1.3,5-Trinitrobenzene 213 18.319 18.370 (0.949) 155832 50.0000 56.7 107 Phenacetin 108 18.432 18.515 (0.954) 499500 50.0000 53.0 106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 52.2 108 Dimethoate 87 18.660 18.722 (0.966) 373366 50.0000 55.7 109 Atrazine 200 18.940 18.971 (0.981) 211612 50.0000 56.9 112 4-Aminobiphenyl 169 18.981 19.022 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.2 111 Pentachloronitrobenzene 237 18.971 18.991 (0.982) 106432 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 * 113 Pronamide 173 19.312 19.333 (1.000) 373045 50.0000 52.5 115 Phenanthrene 178 19.498 19.530 (1.010) 1265346 50.0000 52.5 116 Dianthrene 178 19.498 19.530 (1.010) 126541 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 52.5 118 Disulfoton 109 20.440 20.461 (1.012) 189173 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 54.5 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.5 122 Methyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 35688 50.0000 57.7 125 Edyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 57.7 125 Edyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 57.7 126 Fluoranthene 202 22.234 22.345 (1.156) 1258377 50.0000 53.9 126 Fluoranthene 202 22.285 22.873 (0.882) 3130162 50.0000 53.9 127 Penzidine 184 22.821 22.831 (0.881) 367317 50.0000 53.9	100 Azobenzene	77	17.501	17.532 (0.906)	941088	50.0000	50.4	
103 Diallate	\$ 101 2,4,6-Tribromophenol	330	17.635	17.667 (1.127)	139189	50.0000	51.3	
104 4-Bromophenyl-phenylether	93 Sulfotepp	97	17.170	17.222 (0.889)	213070	50.0000	51.4	
102 Phorate	103 Diallate	86	18.236	18.257 (0.944)	354458	50.0000	52.4	
105 1,3,5-Trinitrobenzene	104 4-Bromophenyl-phenylether	248	18.308	18.339 (0.948)	234287	50.0000	50.3	
107 Phenacetin 108	102 Phorate	75	18.225	18.267 (0.944)	562175	50.0000	53.4	
106 Hexachlorobenzene 284 18.401 18.432 (0.953) 287226 50.0000 52.2 108 Dimethoate 87 18.660 18.722 (0.966) 373266 50.0000 55.7 109 Atrazine 200 18.940 18.971 (0.981) 211612 50.0000 56.9 112 4-Aminobiphenyl 169 18.981 19.022 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.3 110 Pentachloronitrobenzene 237 18.971 18.991 (0.982) 106432 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 113 Pronamide 173 19.312 19.333 (1.000) 958107 40.0000 114 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 52.5 115 Phenanthrene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Dissulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 471886 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 54.5 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Mitroquinoline-1-oxide 190 21.361 21.393 (1.106) 89054 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 57.7 126 Fluoranthene 202 22.832 22.873 (0.882) 310162 50.0000 53.9 126 Fluoranthene 184 22.821 22.831 (0.881) 367317 50.0000 58.1 5 129 Terphenyl-D14 244 23.432 23.442 (0.905) 82346 50.0000 50.3	105 1,3,5-Trinitrobenzene	213	18.319	18.370 (0.949)	155832	50.0000	56.7	
108 Dimethoate	107 Phenacetin	108	18.432	18.515 (0.954)	499500	50.0000	53.0	
109 Atrazine 200	106 Hexachlorobenzene	284	18.401	18.432 (0.953)	287226	50.0000	52.2	
112 4-Aminobiphenyl 169 18.981 19.022 (0.983) 727069 50.0000 54.2 111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.3 110 Pentachloronitrobenzene 237 18.971 18.991 (0.982) 106432 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 113 Pronamide 173 19.312 19.354 (1.000) 373045 50.0000 52.5 115 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 51.1 116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 471886 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 56.3 121 Di-n-butylphthalate 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 57.7 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.2324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.882 22.837 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 50.2	108 Dimethoate	87	18.660	18.722 (0.966)	373266	50.0000	55.7	
111 Pentachlorophenol 266 18.981 19.012 (0.983) 164797 50.0000 54.3 110 Pentachloronitrobenzene 237 18.971 18.991 (0.982) 106432 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 113 Pronamide 173 19.312 19.354 (1.000) 373045 50.0000 52.5 115 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 51.1 116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.13 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 126 Fyrene 202 22.324 22.335 (1.881) 367317 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 82346 50.0000 56.3	109 Atrazine	200	18.940	18.971 (0.981)	211612	50.0000	56.9	
110 Pentachloronitrobenzene 237 18.971 18.991 (0.982) 106432 50.0000 52.0 * 114 Phenanthrene-D10 188 19.312 19.333 (1.000) 958107 40.0000 * 113 Pronamide 173 19.312 19.354 (1.000) 373045 50.0000 52.5 * 115 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 51.1 * 116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 * 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 * 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 * 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 * 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 * 121 Din-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 * 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 55.4 * 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 * 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 * 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 * 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 50.2 * 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 50.2 * 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 50.3 * 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	112 4-Aminobiphenyl	169	18.981	19.022 (0.983)	727069	50.0000	54.2	
* 114 Phenanthrene-D10	111 Pentachlorophenol	266	18.981	19.012 (0.983)	164797	50.0000	54.3	
113 Pronamide 173 19.312 19.354 (1.000) 373045 50.0000 52.5 115 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 51.1 116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 131062 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14	110 Pentachloronitrobenzene	237	18.971	18.991 (0.982)	106432	50.0000	52.0	
115 Phenanthrene 178 19.374 19.405 (1.003) 1265326 50.0000 51.1 116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	* 114 Phenanthrene-D10	188	19.312	19.333 (1.000)	958107	40.0000		
116 Anthracene 178 19.498 19.530 (1.010) 1295441 50.0000 52.5 118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 <td>113 Pronamide</td> <td>173</td> <td>19.312</td> <td>19.354 (1.000)</td> <td>373045</td> <td>50.0000</td> <td>52.5</td> <td></td>	113 Pronamide	173	19.312	19.354 (1.000)	373045	50.0000	52.5	
118 Disulfoton 88 19.540 19.561 (1.012) 471886 50.0000 48.4 117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	115 Phenanthrene	178	19.374	19.405 (1.003)	1265326	50.0000	51.1	
117 Dinoseb 211 19.540 19.561 (1.012) 189173 50.0000 52.1 119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	116 Anthracene	178	19.498	19.530 (1.010)	1295441	50.0000	52.5	
119 Carbazole 167 19.995 20.026 (1.035) 1195777 50.0000 54.5 120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	118 Disulfoton	88	19.540	19.561 (1.012)	471886	50.0000	48.4	
120 Methyl Parathion 109 20.440 20.461 (1.058) 329298 50.0000 56.3 121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	117 Dinoseb	211	19.540	19.561 (1.012)	189173	50.0000	52.1	
121 Di-n-butylphthalate 149 21.113 21.134 (1.093) 1654304 50.0000 54.1 122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	119 Carbazole	167	19.995	20.026 (1.035)	1195777	50.0000	54.5	
122 4-Nitroquinoline-1-Oxide 190 21.361 21.393 (1.106) 89054 50.0000 50.7 123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	120 Methyl Parathion	109	20.440	20.461 (1.058)	329298	50.0000	56.3	
123 Ethyl Parathion 291 21.475 21.496 (1.112) 82102 50.0000 55.4 124 Methapyrilene 97 21.724 21.745 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	121 Di-n-butylphthalate	149	21.113	21.134 (1.093)	1654304	50.0000	54.1	
124 Methapyrilene 97 21.724 21.724 (1.125) 356883 50.0000 57.7 125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	122 4-Nitroquinoline-1-0xide	190	21.361	21.393 (1.106)	89054	50.0000	50.7	
125 Isodrin 193 21.931 21.941 (1.136) 173043 50.0000 53.9 126 Fluoranthene 202 22.324 22.345 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	123 Ethyl Parathion	291	21.475	21.496 (1.112)	82102	50.0000	55.4	
126 Fluoranthene 202 22.324 22.324 (1.156) 1258377 50.0000 53.9 128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	124 Methapyrilene	97	21.724	21.745 (1.125)	356883	50.0000	57.7	
128 Pyrene 202 22.852 22.873 (0.882) 1310162 50.0000 50.2 127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	125 Isodrin	193	21.931	21.941 (1.136)	173043	50.0000	53.9	
127 Benzidine 184 22.821 22.831 (0.881) 367317 50.0000 58.1 \$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	126 Fluoranthene	202	22.324	22.345 (1.156)	1258377	50.0000	53.9	
\$ 129 Terphenyl-D14 244 23.432 23.442 (0.905) 823346 50.0000 50.3	128 Pyrene	202	22.852	22.873 (0.882)	1310162	50.0000	50.2	
	127 Benzidine	184	22.821	22.831 (0.881)	367317	50.0000	58.1	
130 Aramite 185 23.752 23.752 (0.917) 91666 50.0000 52.6	\$ 129 Terphenyl-D14	244	23.432	23.442 (0.905)	823346		50.3	
	130 Aramite	185	23.752	23.752 (0.917)	91666	50.0000	52.6	

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9207.D

Report Date: 13-Jan-2015 10:03

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		=======	======	======	========
131 p-Dimethylaminoazobenzene	225	23.814	23.835 (0.920)	241054	50.0000	51.2	
132 Chlorobenzilate	251	24.001	24.011 (0.927)	347182	50.0000	51.6	
134 3,3'-Dimethylbenzidine	212	24.653	24.663 (0.952)	325854	50.0000	54.4	
135 Butylbenzylphthalate	149	24.798	24.819 (0.958)	669053	50.0000	51.6	
136 Bis(2-ethylhexyl)adipate	129	25.201	25.212 (0.973)	592912	50.0000	51.8	
137 2-Acetylaminofluorene	181	25.295	25.326 (0.977)	385922	50.0000	54.2	
138 Benzo(a)anthracene	228	25.874	25.885 (0.999)	913004	50.0000	50.4	
* 139 Chrysene-D12	240	25.895	25.916 (1.000)	749410	40.0000		
141 Chrysene	228	25.957	25.978 (1.002)	833691	50.0000	50.7	
140 3,3'-Dichlorobenzidine	252	25.957	25.957 (1.002)	280453	50.0000	51.0	
142 bis(2-Ethylhexyl)phthalate	149	26.381	26.392 (1.019)	936225	50.0000	52.8	
144 Di-n-octylphthalate	149	27.913	27.924 (0.957)	1418003	50.0000	48.3	
145 Benzo(b)fluoranthene	252	28.379	28.400 (0.973)	708795	50.0000	48.5	
146 7,12-Dimethylbenz(A)Anthracen	256	28.400	28.410 (0.974)	371065	50.0000	49.1	
147 Benzo(k)fluoranthene	252	28.441	28.462 (0.975)	776344	50.0000	50.9(H)	
148 Benzo(a)pyrene	252	29.041	29.052 (0.996)	671651	50.0000	51.7	
* 150 Perylene-D12	264	29.165	29.166 (1.000)	548711	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.023)	317460	50.0000	52.0	
152 Dibenz(a,j)acridine	279	30.987	30.977 (1.062)	350835	50.0000	53.2	
153 Indeno(1,2,3-cd)pyrene	276	31.298	31.308 (1.073)	382375	50.0000	52.4	
154 Dibenzo(a,h)anthracene	278	31.370	31.370 (1.076)	402334	50.0000	51.0	
155 Benzo(g,h,i)perylene	276	31.867	31.857 (1.093)	430933	50.0000	51.4	

QC Flag Legend

- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- H Operator selected an alternate compound hit.

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9208.D

Report Date: 13-Jan-2015 10:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9208.D

Lab Smp Id: WG156827-2

Inj Date : 12-JAN-2015 13:57 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-2 Inst ID: gcms-u.i

Misc Info : Comment

: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m Method

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 13:57 Cal File: U9208.D

Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description
DF	1.000	Dilution Factor
U£	1.000	Correction Factor
Vt	0.00100	Final Volume (L)
Vo	1.000	Sample Volume (L)
Vi	1.000	Volume injected (uL)
Cpnd Variable		Local Compound Variable

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======	====	====			======	======	========
1 1,4-Dioxane	58	2.649	2.649 (0.316)	43776	10.0000	10.7	
3 Pyridine	79	3.156	3.125 (0.376)	131364	10.0000	10.1(a)	
2 N-Nitrosodimethylamine	42	3.114	3.114 (0.372)	50023	10.0000	10.1	
4 Ethyl Methacrylate	69	3.911	3.911 (0.467)	96731	10.0000	10.4	
5 2-Picoline	93	4.481	4.429 (0.535)	126972	10.0000	9.77(a)	
6 N-Nitrosomethylethylamine	88	4.729	4.708 (0.564)	54381	10.0000	9.45(a)	
7 Methyl Methanesulfonate	80	5.340	5.350 (0.637)	69041	10.0000	10.0	
\$ 8 2-Fluorophenol	112	5.774	5.754 (0.689)	117288	10.0000	10.0	
9 N-Nitrosodiethylamine	102	6.116	6.137 (0.730)	58902	10.0000	10.1	
10 Ethyl Methanesulfonate	79	6.830	6.861 (0.815)	92901	10.0000	10.2	
11 Benzaldehyde	77	7.430	7.420 (0.886)	39545	10.0000	14.1	
13 Pentachloroethane	117	7.741	7.741 (0.923)	47448	10.0000	10.9	
12 Aniline	93	7.699	7.720 (0.919)	176942	10.0000	10.7(a)	
16 Bis(2-Chloroethyl)ether	93	7.896	7.917 (0.942)	111850	10.0000	11.4	
\$ 14 Phenol-D6	99	7.875	7.865 (0.940)	131201	10.0000	10.4	
15 Phenol	94	7.896	7.896 (0.942)	145658	10.0000	10.8	
17 2-Chlorophenol	128	7.989	7.989 (0.953)	120889	10.0000	10.8	
18 1,3-Dichlorobenzene	146	8.248	8.258 (0.984)	138211	10.0000	11.1	
* 19 1,4-Dichlorobenzene-D4	152	8.383	8.393 (1.000)	359514	40.0000		
20 1,4-Dichlorobenzene	146	8.414	8.434 (1.004)	141356	10.0000	11.4	
21 1,2-Dichlorobenzene	146	8.755	8.765 (1.044)	134666	10.0000	11.2	

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9208.D}}$ Report Date: 13-Jan-2015 10:04

						AMOUN	ITS	
		QUANT SIG				CAL-AMT	ON-COL	
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
==	=======	====		=======================================		======	======	========
	22 Benzyl alcohol	108	8.828	8.869 (1.053)	76895	10.0000	10.0(a)	
	23 Bis(2-Chloroisopropyl)ether	45	9.148	9.159 (1.091)	156810	10.0000	11.0	
	24 2,2'-Oxybis(1-chloropropane)	45	9.148	9.159 (1.091)	156810	10.0000	11.0	
	25 2-Methylphenol	108	9.221	9.304 (1.100)	113024	10.0000	10.4	
	27 Acetophenone	105	9.355	9.386 (0.826)	165429	10.0000	10.9	
	31 Hexachloroethane	117	9.511	9.521 (1.135)	54126	10.0000	11.5	
	26 N-Nitrosopyrrolidine	100	9.304	9.469 (1.110)	55554	10.0000	10.4	
	29 o-Toluidine	106	9.438	9.480 (1.126)	182104	10.0000	11.7(a)	
	28 N-Nitrosomorpholine	56	9.397	9.500 (1.121)	83930	10.0000	11.5	
	30 N-Nitroso-di-n-propylamine	70	9.428	9.521 (1.125)	79473	10.0000	11.7	
	32 3&4-Methylphenol	108	9.635	9.656 (1.149)	118514	10.0000	10.3	
\$	33 Nitrobenzene-D5	82	9.666	9.707 (0.853)	109393	10.0000	10.2	
	34 Nitrobenzene	77	9.718	9.759 (0.858)	121520	10.0000	11.4	
	35 N-Nitrosopiperidine	114	10.059	10.121 (0.888)	62267	10.0000	10.3	
	36 Isophorone	82	10.328	10.390 (0.911)	218750	10.0000	10.5	
	37 2-Nitrophenol	139	10.484		62694	10.0000	10.0	
	38 2,4-Dimethylphenol	107	10.815	10.835 (0.954)	115489	10.0000	10.7	
	40 Bis(2-Chloroethoxy)methane	93	10.949	10.991 (0.966)	136513	10.0000	9.56(a)	
	39 0,0,0-Triethylphosphorothioat	198	10.908	10.949 (0.963)	48827	10.0000	10.7	
	41 2,4-Dichlorophenol	162	11.218	11.167 (0.990)	92456	10.0000	9.97(a)	
	42 1,2,4-Trichlorobenzene	180	11.250	11.260 (0.993)	105217	10.0000	10.9	
*	44 Naphthalene-D8	136	11.332	11.353 (1.000)	1384723	40.0000		
	43 Benzoic acid	122	11.198	11.488 (0.988)	34392	10.0000	10.4(aQM)	М9
	45 Naphthalene	128		11.415 (1.005)	323169	10.0000	11.5	
	47 Hexachloropropene	213		11.653 (1.027)	62824	10.0000	11.3	
	48 2,6-Dichlorophenol	162		11.684 (1.029)	93969	10.0000	11.7	
	46 4-Chloroaniline	127	11.653	11.674 (1.028)	137217	10.0000	11.9	
	50 Hexachlorobutadiene	225	11.798	11.808 (1.041)	53422	10.0000	11.1	
	51 N-Nitroso-Di-N-Butylamine	84		12.605 (1.108)	84195	10.0000	10.6	
	53 Caprolactam	113	12.512		35115	10.0000	9.62(a)	
	52 p-Phenylenediamine	108	12.595	12.626 (1.111)	89809	10.0000	10.4(M)	М9
	54 Isosafrole	162	12.988	13.019 (1.146)	85256	10.0000	10.9	
	56 2-Methylnaphthalene	142	13.102	13.133 (1.156)	250893	10.0000	11.0(M)	М3
	55 4-Chloro-3-Methylphenol	107	13.071	13.092 (1.153)	94570	10.0000	10.2(Q)	
	57 1-Methylnaphthalene	142		13.361 (1.176)	215260	10.0000	11.4	
	59 1,2,4,5-Tetrachlorobenzene	216		13.568 (0.866)	97252	10.0000	9.14(a)	
	60 Hexachlorocyclopentadiene	237		13.578 (0.866)	48688	10.0000	10.4	
	62 2,4,6-Trichlorophenol	196	13.930	13.951 (0.890)	63979	10.0000	10.7	
\$	64 2-Fluorobiphenyl	172		14.116 (0.900)	210789	10.0000	12.0	
	63 2,4,5-Trichlorophenol	196	14.096		64139	10.0000	10.6(a)	
	61 Safrole	104		13.723 (0.877)	6703	10.0000	9.28(aQ)	
	65 2-Chloronaphthalene	162	14.282	14.313 (0.913)	306531	10.0000	11.1	
	66 1,1'-Biphenyl	154		14.334 (0.914)	255075	10.0000	8.46(a)	
	67 1-Chloronaphthalene	162	14.313	14.355 (0.915)	210427	10.0000	12.3	
	68 Diphenylether	170	14.582	14.613 (0.932)	135959	10.0000	11.5	
	69 2-Nitroaniline	65	14.655		55841	10.0000	9.91(a)	
	70 1,4-Naphthoquinone	158	14.769	14.779 (0.944)	68391	10.0000	13.5	
	71 1,4-Dinitrobenzene	75		15.038 (0.959)	33123	10.0000	9.28(a)	
	74 Acenaphthylene	152		15.307 (0.976)	323271	10.0000	11.8	
	73 Dimethyl Phthalate	163		15.276 (0.971)	216862	10.0000	11.2(M)	М6
	72 1,3-Dinitrobenzene	168		15.255 (0.972)	31792	10.0000	10.5	
	75 2,6-Dinitrotoluene	165		15.338 (0.976)	45268	10.0000	10.6	
	76 1,2-Dinitrobenzene	50		15.441 (0.983)	32559	10.0000	10.6	J /()
*	77 Acenaphthene-D10	164	15.648	15.659 (1.000)	698582	40.0000		2001

11:03 am, Jan 20, 2015

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9208.D}}$ Report Date: 13-Jan-2015 10:04

					AMOU	NTS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT RE	L RT RESPON	SE (ug/ml)	(ug/ml)	REVIEW CODE
	====	====	=======================================	=====	== ======	======	========
79 Acenaphthene	153	15.710	15.752 (1.0	004) 1976	95 10.0000	9.60(a)	
78 3-Nitroaniline	138	15.700	15.762 (1.0	003) 570	99 10.0000	10.6(a)	
80 2,4-Dinitrophenol	184	16.011	16.042 (1.0	23) 173	10.0000	8.98(a)	
82 Dibenzofuran	168	16.166	16.197 (1.0	33) 2770	30 10.0000	11.8	
81 Pentachlorobenzene	250	16.083	16.124 (1.0	28) 858	10.0000	11.3	
84 1-Naphthylamine	143	16.383	16.435 (1.0	2351	72 10.0000	11.3	
83 2,4-Dinitrotoluene	165	16.290	16.362 (1.0	(41) 608	10.0000	10.1	
85 2,3,5,6-Tetrachlorophenol	232	16.476	16.507 (1.0	504	36 10.0000	10.6	
88 2-Naphthylamine	143	16.590	16.663 (1.0	060) 2193	10.0000	11.9	
86 4-Nitrophenol	139	16.549	16.476 (1.0	304	91 10.0000	8.25(aQ)	
87 2,3,4,6-Tetrachlorophenol	232	16.590	16.632 (1.0	160) 533	31 10.0000	11.6	
90 Fluorene	166	17.004	17.046 (1.0	87) 2171	97 10.0000	8.99(a)	
89 Diethylphthalate	149	16.973	17.035 (1.0	85) 2395	59 10.0000	8.50(a)	
91 4-Chlorophenyl-phenylether	204	17.108	17.139 (1.0	93) 1012	36 10.0000	11.4	
92 O,O-diethyl-o-2-pyrazinylphos	107	17.149	17.222 (1.0	96) 471	10.0000	11.7(a)	
94 5-Nitro-O-Toluidine	152	17.170	17.242 (1.0	97) 673	10.0000	11.2	
95 4-Nitroaniline	138	17.253	17.315 (1.1	.03) 532	77 10.0000	10.2(a)	
96 4,6-Dinitro-2-Methylphenol	198	17.304	17.356 (0.8	397) 289	96 10.0000	7.74(a)	
97 N-Nitrosodiphenylamine	169	17.429	17.491 (0.9	003) 1817	10.0000	10.5	
98 N-Nitrosodiphenylamine/DPA	169		17.491 (0.9		10.0000	10.5	
99 1,2-Diphenylhydrazine	77	17.491	17.532 (0.9			10.0(a)	
100 Azobenzene	77		17.532 (0.9			9.82(a)	
\$ 101 2,4,6-Tribromophenol	330		17.667 (1.1			10.2	
93 Sulfotepp	97		17.222 (0.8			10.6	
103 Diallate	86		18.257 (0.9			11.3	
104 4-Bromophenyl-phenylether	248		18.339 (0.9			10.2	
102 Phorate	75		18.267 (0.9			11.1	
105 1,3,5-Trinitrobenzene	213		18.370 (0.9			8.49(a)	
107 Phenacetin	108		18.515 (0.9			10.1	
106 Hexachlorobenzene	284		18.432 (0.9			10.5	
108 Dimethoate	87		18.722 (0.9			8.17(a)	
109 Atrazine	200		18.971 (0.9			12.8	
112 4-Aminobiphenyl	169		19.022 (0.9			8.70(a)	
111 Pentachlorophenol	266		19.012 (0.9			10.0(a)	
110 Pentachloronitrobenzene	237	18.960	18.991 (0.9	82) 265	10.0000	10.6	
* 114 Phenanthrene-D10	188	19.302	19.333 (1.0	000) 11741	12 40.0000		
113 Pronamide	173		19.354 (0.9		59 10.0000	10.5	
115 Phenanthrene	178		19.405 (1.0			11.4	
116 Anthracene	178		19.530 (1.0			11.2	
118 Disulfoton	88		19.561 (1.0			10.9	
117 Dinoseb	211		19.561 (1.0			10.2	
119 Carbazole	167	19.995	20.026 (1.0			11.0	
120 Methyl Parathion	109		20.461 (1.0			11.0	
121 Di-n-butylphthalate	149	21.103	21.134 (1.0			11.3	
123 Ethyl Parathion	291		21.496 (1.1			10.1(a)	
124 Methapyrilene	97		21.745 (1.1			12.3	
125 Isodrin	193		21.941 (1.1	•		10.6	
126 Fluoranthene	202		22.345 (1.1			11.8	
128 Pyrene	202		22.873 (0.8			10.4	
\$ 129 Terphenyl-D14	244		23.442 (0.9			10.3	
130 Aramite	185		23.752 (0.9			9.69(a)	
131 p-Dimethylaminoazobenzene	225		23.835 (0.9			9.56(a)	
132 Chlorobenzilate	251		24.011 (0.9			9.80(a)	
135 Butylbenzylphthalate	149		24.819 (0.9			10.7	
<u> </u>	-		- ,			•	

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9208.D

Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====	====		======	======	======	========
136 Bis(2-ethylhexyl)adipate	129	25.181	25.212 (0.972)	154533	10.0000	10.0	
137 2-Acetylaminofluorene	181	25.315	25.326 (0.978)	85484	10.0000	8.93(a)	
138 Benzo(a)anthracene	228	25.864	25.885 (0.999)	262756	10.0000	10.8	
* 139 Chrysene-D12	240	25.895	25.916 (1.000)	1006789	40.0000		
141 Chrysene	228	25.947	25.978 (1.002)	265426	10.0000	12.0	
140 3,3'-Dichlorobenzidine	252	25.957	25.957 (1.002)	77178	10.0000	10.4	
142 bis(2-Ethylhexyl)phthalate	149	26.371	26.392 (1.018)	260354	10.0000	10.9	
144 Di-n-octylphthalate	149	27.903	27.924 (0.956)	403276	10.0000	9.88(a)	
145 Benzo(b)fluoranthene	252	28.379	28.400 (0.973)	223073	10.0000	11.0	
146 7,12-Dimethylbenz(A)Anthracen	256	28.379	28.410 (0.973)	112864	10.0000	10.7	
147 Benzo(k)fluoranthene	252	28.431	28.462 (0.974)	224041	10.0000	10.6(H)	
148 Benzo(a)pyrene	252	29.041	29.052 (0.995)	183642	10.0000	10.2	
* 150 Perylene-D12	264	29.176	29.166 (1.000)	762137	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.022)	87083	10.0000	10.3	
152 Dibenz(a,j)acridine	279	31.008	30.977 (1.063)	83415	10.0000	9.10(a)	
153 Indeno(1,2,3-cd)pyrene	276	31.318	31.308 (1.073)	142336	10.0000	13.1	
154 Dibenzo(a,h)anthracene	278	31.391	31.370 (1.076)	110488	10.0000	10.1	
155 Benzo(g,h,i)perylene	276	31.898	31.857 (1.093)	124328	10.0000	10.7	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- Q Qualifier signal failed the ratio test.
 M Compound response manually integrated.
 H Operator selected an alternate compound hit.

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9209.D

Report Date: 13-Jan-2015 10:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9209.D

Lab Smp Id: WG156827-3

Inj Date : 12-JAN-2015 14:41 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-3 Inst ID: gcms-u.i

Misc Info : Comment

: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m Method

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 14:41 Cal File: U9209.D

Als bottle: 4 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description				
DF	1.000	Dilution Factor				
U£	1.000	Correction Factor				
Vt	0.00100	Final Volume (L)				
Vo	1.000	Sample Volume (L)				
Vi	1.000	Volume injected (uL)				
Cpnd Variable		Local Compound Variable				

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====	====		=======	======	======	========
1 1,4-Dioxane	58	2.649	2.649 (0.316)	91624	25.0000	25.6	
3 Pyridine	79	3.135	3.125 (0.374)	304158	25.0000	26.9(a)	
2 N-Nitrosodimethylamine	42	3.104	3.114 (0.370)	106656	25.0000	24.7	
4 Ethyl Methacrylate	69	3.912	3.911 (0.467)	213679	25.0000	26.5	
5 2-Picoline	93	4.460	4.429 (0.532)	291973	25.0000	25.8	
6 N-Nitrosomethylethylamine	88	4.719	4.708 (0.563)	126297	25.0000	25.2	
7 Methyl Methanesulfonate	80	5.330	5.350 (0.636)	147978	25.0000	24.6	
\$ 8 2-Fluorophenol	112	5.764	5.754 (0.688)	262548	25.0000	25.8	
9 N-Nitrosodiethylamine	102	6.116	6.137 (0.730)	133914	25.0000	26.3	
10 Ethyl Methanesulfonate	79	6.820	6.861 (0.814)	200841	25.0000	25.4	
11 Benzaldehyde	77	7.420	7.420 (0.885)	76267	25.0000	31.3	
13 Pentachloroethane	117	7.741	7.741 (0.923)	103235	25.0000	27.2	
12 Aniline	93	7.700	7.720 (0.919)	378927	25.0000	26.3	
16 Bis(2-Chloroethyl)ether	93	7.897	7.917 (0.942)	233889	25.0000	27.4	
\$ 14 Phenol-D6	99	7.855	7.865 (0.937)	290092	25.0000	26.4	
15 Phenol	94	7.886	7.896 (0.941)	314868	25.0000	26.9	
17 2-Chlorophenol	128	7.979	7.989 (0.952)	261837	25.0000	26.8	
18 1,3-Dichlorobenzene	146	8.248	8.258 (0.984)	299314	25.0000	27.5	
* 19 1,4-Dichlorobenzene-D4	152	8.383	8.393 (1.000)	312954	40.0000		
20 1,4-Dichlorobenzene	146	8.424	8.434 (1.005)	298790	25.0000	27.8	
21 1,2-Dichlorobenzene	146	8.756	8.765 (1.044)	286954	25.0000	27.5	

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9209.D}}$ Report Date: 13-Jan-2015 10:04

						AMOUN	ITS	
		QUANT SIG				CAL-AMT	ON-COL	
Co	mpounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
==		====	====	=======================================	= ======	======	======	========
	22 Benzyl alcohol	108	8.818	8.869 (1.052)	168738	25.0000	25.2	
	23 Bis(2-Chloroisopropyl)ether	45	9.139	9.159 (1.090)	336951	25.0000	27.2	
	24 2,2'-Oxybis(1-chloropropane)	45	9.139	9.159 (1.090)	336951	25.0000	27.2	
	25 2-Methylphenol	108	9.221	9.304 (1.100)	244304	25.0000	25.8	
	27 Acetophenone	105	9.356	9.386 (0.826)	348356	25.0000	26.9	
	31 Hexachloroethane	117	9.511	9.521 (1.135)	117356	25.0000	28.6	
	26 N-Nitrosopyrrolidine	100	9.304	9.469 (1.110)	128223	25.0000	27.7	
	29 o-Toluidine	106	9.439	9.480 (1.126)	374472	25.0000	27.6	
	28 N-Nitrosomorpholine	56	9.408	9.500 (1.122)	177220	25.0000	27.9	
	30 N-Nitroso-di-n-propylamine	70	9.439	9.521 (1.126)	164980	25.0000	27.9	
	32 3&4-Methylphenol	108	9.615	9.656 (1.147)	261266	25.0000	26.1	
\$	33 Nitrobenzene-D5	82	9.666	9.707 (0.853)	241141	25.0000	26.5	
	34 Nitrobenzene	77	9.708	9.759 (0.857)	245559	25.0000	27.0	
	35 N-Nitrosopiperidine	114	10.060	10.121 (0.888)	135762	25.0000	26.2	
	36 Isophorone	82	10.329	10.390 (0.911)	471869	25.0000	26.5	
	37 2-Nitrophenol	139	10.484	10.504 (0.925)	141526	25.0000	26.5	
	38 2,4-Dimethylphenol	107	10.795	10.835 (0.953)	253110	25.0000	27.6	
	40 Bis(2-Chloroethoxy)methane	93	10.939	10.991 (0.965)	316242	25.0000	26.0	
	39 0,0,0-Triethylphosphorothioat	198	10.919	10.949 (0.963)	103029	25.0000	26.4	
	41 2,4-Dichlorophenol	162	11.167	11.167 (0.985)	208886	25.0000	26.4	
	42 1,2,4-Trichlorobenzene	180	11.250	11.260 (0.993)	229247	25.0000	27.9	
*	44 Naphthalene-D8	136	11.333	11.353 (1.000)	1181157	40.0000		
	43 Benzoic acid	122	11.229	11.488 (0.991)	79806	25.0000	23.1(aM)	м9
	45 Naphthalene	128	11.385	11.415 (1.005)	691115	25.0000	28.9	
	49 A,A-Dimethylphenethylamine	58	11.529	12.140 (1.017)	705433	25.0000	32.6(M)	м9
	47 Hexachloropropene	213	11.633	11.653 (1.026)	130057	25.0000	27.5	
	48 2,6-Dichlorophenol	162	11.654		194221	25.0000	28.4	
	46 4-Chloroaniline	127	11.643		291744	25.0000	29.7	
	50 Hexachlorobutadiene	225	11.799	11.808 (1.041)	116381	25.0000	28.4	
	51 N-Nitroso-Di-N-Butylamine	84		12.605 (1.108)	212231	25.0000	31.4	
	53 Caprolactam	113		12.802 (1.108)	78148	25.0000	25.1(Q)	
	52 p-Phenylenediamine	108	12.575		233285	25.0000	31.6	
	54 Isosafrole	162	12.989	13.019 (1.146)	181254	25.0000	27.3	
	56 2-Methylnaphthalene	142		13.133 (1.156)	558385	25.0000	28.7	
	55 4-Chloro-3-Methylphenol	107		13.092 (1.153)	209928	25.0000	26.6(Q)	
	57 1-Methylnaphthalene	142		13.361 (1.176)	446866	25.0000	27.9	
	59 1,2,4,5-Tetrachlorobenzene	216		13.568 (0.866)	203976	25.0000	23.9	
	60 Hexachlorocyclopentadiene	237	13.548		111484	25.0000	27.7	
	62 2,4,6-Trichlorophenol	196		13.951 (0.890)	142944	25.0000	27.7	
\$	64 2-Fluorobiphenyl			14.116 (0.901)	429325	25.0000	28.3	
Þ	-	172						
	63 2,4,5-Trichlorophenol	196		14.075 (0.899)	137403	25.0000	26.2	
	61 Safrole	104		13.723 (0.877)	15997	25.0000	25.7(Q)	
	65 2-Chloronaphthalene	162		14.313 (0.913)	560847	25.0000	26.0	
	66 1,1'-Biphenyl	154		14.334 (0.914)	516456	25.0000	23.4	
	67 1-Chloronaphthalene	162		14.355 (0.915)	461290	25.0000	31.4	
	68 Diphenylether	170		14.613 (0.932)	279409	25.0000	27.5	
	69 2-Nitroaniline	65	14.645		127704	25.0000	26.3	
	70 1,4-Naphthoquinone	158			147869	25.0000	33.8(M)	м9
	71 1,4-Dinitrobenzene	75		15.038 (0.959)	79460	25.0000	25.8	
	74 Acenaphthylene	152	15.266		675239	25.0000	28.6	
	73 Dimethyl Phthalate	163		15.276 (0.972)	462847	25.0000	27.7	
	72 1,3-Dinitrobenzene	168		15.255 (0.972)	69846	25.0000	26.6	, ,
	75 2,6-Dinitrotoluene	165		15.338 (0.977)	99085	25.0000	26.8	4/6
	76 1,2-Dinitrobenzene	50	15.380	15.441 (0.983)	70724	25.0000	26.6	4001

11:03 am, Jan 20, 2015

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9209.D}}$ Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====	====		=======	======	======	========
* 77 Acenaphthene-D10	164	15.638	15.659 (1.000)	602505	40.0000		
79 Acenaphthene	153	15.721	15.752 (1.005)	409561	25.0000	25.3	
78 3-Nitroaniline	138	15.690	15.762 (1.003)	131278	25.0000	28.3	
80 2,4-Dinitrophenol	184	15.990	16.042 (1.023)	51198	25.0000	22.6(a)	
82 Dibenzofuran	168	16.166	16.197 (1.034)	571400	25.0000	28.2	
81 Pentachlorobenzene	250	16.083	16.124 (1.028)	182432	25.0000	28.0	
84 1-Naphthylamine	143	16.384	16.435 (1.048)	501836	25.0000	28.1	
83 2,4-Dinitrotoluene	165	16.280	16.362 (1.041)	140045	25.0000	27.0	
85 2,3,5,6-Tetrachlorophenol	232	16.477	16.507 (1.054)	111624	25.0000	27.2	
88 2-Naphthylamine	143	16.591	16.663 (1.061)	465830	25.0000	29.3	
86 4-Nitrophenol	139	16.508	16.476 (1.056)	84426	25.0000	26.5	
87 2,3,4,6-Tetrachlorophenol	232	16.580	16.632 (1.060)	113153	25.0000	28.6	
90 Fluorene	166	17.005	17.046 (1.087)	460874	25.0000	24.2	
89 Diethylphthalate	149	16.974	17.035 (1.085)	499955	25.0000	22.9	
91 4-Chlorophenyl-phenylether	204	17.108	17.139 (1.094)	210823	25.0000	27.6	
92 O,O-diethyl-o-2-pyrazinylphos	107	17.150	17.222 (1.097)	97670	25.0000	28.1	
94 5-Nitro-O-Toluidine	152	17.160	17.242 (1.097)	144902	25.0000	28.1	
95 4-Nitroaniline	138	17.232	17.315 (1.102)	118305	25.0000	26.2	
96 4,6-Dinitro-2-Methylphenol	198	17.294	17.356 (0.896)	76442	25.0000	24.6(a)	
97 N-Nitrosodiphenylamine	169	17.429	17.491 (0.903)	382961	25.0000	26.8	
98 N-Nitrosodiphenylamine/DPA	169	17.429	17.491 (0.903)	382961	25.0000	26.8	
99 1,2-Diphenylhydrazine	77	17.491	17.532 (0.906)	482166	25.0000	25.4	
100 Azobenzene	77	17.491	17.532 (0.906)	482375	25.0000	25.5	
\$ 101 2,4,6-Tribromophenol	330	17.636	17.667 (1.128)	71049	25.0000	27.8	
93 Sulfotepp	97	17.150	17.222 (0.888)	113009	25.0000	26.9	
103 Diallate	86	18.226	18.257 (0.944)	193131	25.0000	28.2	
104 4-Bromophenyl-phenylether	248	18.298	18.339 (0.948)	125760	25.0000	26.6	
102 Phorate	75	18.216	18.267 (0.944)	303597	25.0000	28.4	
105 1,3,5-Trinitrobenzene	213	18.288	18.370 (0.947)	74606	25.0000	26.8	
107 Phenacetin	108	18.392	18.515 (0.953)	250996	25.0000	26.2	
106 Hexachlorobenzene	284	18.392	18.432 (0.953)	147072	25.0000	26.4	
108 Dimethoate	87	18.630	18.722 (0.965)	190537	25.0000	21.6	
109 Atrazine	200	18.919	18.971 (0.980)	119351	25.0000	31.6	
112 4-Aminobiphenyl	169	18.971	19.022 (0.983)	411623	25.0000	24.7	
111 Pentachlorophenol	266	18.971	19.012 (0.983)	78757	25.0000	25.6	
110 Pentachloronitrobenzene	237	18.961	18.991 (0.982)	56078	25.0000	27.0	
* 114 Phenanthrene-D10	188	19.302	19.333 (1.000)	971568	40.0000		
113 Pronamide	173	19.292	19.354 (0.999)	194163	25.0000	27.0	
115 Phenanthrene	178	19.354	19.405 (1.003)	684494	25.0000	27.3	
116 Anthracene	178	19.489	19.530 (1.010)	683156	25.0000	27.3	
118 Disulfoton	88	19.530	19.561 (1.012)	255738	25.0000	25.9	
117 Dinoseb	211	19.530	19.561 (1.012)	99380	25.0000	27.0	
119 Carbazole	167	19.985	20.026 (1.035)	607008	25.0000	27.3	
120 Methyl Parathion	109	20.431	20.461 (1.058)	171357	25.0000	28.9	
121 Di-n-butylphthalate	149	21.103	21.134 (1.093)	868886	25.0000	28.0	
122 4-Nitroquinoline-1-Oxide	190		21.393 (1.107)	28843	25.0000	19.4(a)	
123 Ethyl Parathion	291	21.455	21.496 (1.112)	41081	25.0000	27.4	
124 Methapyrilene	97		21.745 (1.125)	183320	25.0000	29.2	
125 Isodrin	193	21.921	21.941 (1.136)	89655	25.0000	27.5	
126 Fluoranthene	202		22.345 (1.156)	671469	25.0000	28.3	
128 Pyrene	202		22.873 (0.882)	693711	25.0000	26.7	
127 Benzidine	184		22.831 (0.882)	154587	25.0000	24.5(a)	
\$ 129 Terphenyl-D14	244	23.422	23.442 (0.905)	428199	25.0000	26.2	
130 Aramite	185		23.752 (0.917)	47364	25.0000	27.2	

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9209.D

Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		======	======	======	========
131 p-Dimethylaminoazobenzene	225	23.805	23.835 (0.920)	120198	25.0000	25.6	
132 Chlorobenzilate	251	23.991	24.011 (0.927)	174923	25.0000	26.1	
134 3,3'-Dimethylbenzidine	212	24.653	24.663 (0.952)	159371	25.0000	26.7	
135 Butylbenzylphthalate	149	24.788	24.819 (0.958)	333397	25.0000	25.8	
136 Bis(2-ethylhexyl)adipate	129	25.181	25.212 (0.973)	291698	25.0000	25.6	
137 2-Acetylaminofluorene	181	25.295	25.326 (0.977)	171565	25.0000	24.2	
138 Benzo(a)anthracene	228	25.864	25.885 (0.999)	465822	25.0000	25.8	
* 139 Chrysene-D12	240	25.885	25.916 (1.000)	746719	40.0000		
141 Chrysene	228	25.947	25.978 (1.002)	451810	25.0000	27.6	
140 3,3'-Dichlorobenzidine	252	25.947	25.957 (1.002)	143439	25.0000	26.2	
142 bis(2-Ethylhexyl)phthalate	149	26.372	26.392 (1.019)	445711	25.0000	25.2	
144 Di-n-octylphthalate	149	27.903	27.924 (0.957)	679392	25.0000	23.9	
145 Benzo(b)fluoranthene	252	28.369	28.400 (0.973)	357892	25.0000	25.3	
146 7,12-Dimethylbenz(A)Anthracen	256	28.379	28.410 (0.973)	191356	25.0000	26.1	
147 Benzo(k)fluoranthene	252	28.431	28.462 (0.975)	399068	25.0000	27.0(H)	
148 Benzo(a)pyrene	252	29.042	29.052 (0.996)	312222	25.0000	24.8	
* 150 Perylene-D12	264	29.166	29.166 (1.000)	531349	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.023)	151254	25.0000	25.6	
152 Dibenz(a,j)acridine	279	30.998	30.977 (1.063)	162073	25.0000	25.4	
153 Indeno(1,2,3-cd)pyrene	276	31.309	31.308 (1.073)	172799	25.0000	23.9	
154 Dibenzo(a,h)anthracene	278	31.381	31.370 (1.076)	200301	25.0000	26.2	
155 Benzo(g,h,i)perylene	276	31.878	31.857 (1.093)	221013	25.0000	27.2	

QC Flag Legend

- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- H Operator selected an alternate compound hit.

File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9209.D

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9210.D

Report Date: 13-Jan-2015 10:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9210.D

Lab Smp Id: WG156827-5

Inj Date : 12-JAN-2015 15:25 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-5 Inst ID: gcms-u.i

Misc Info : Comment

Method : \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 15:25 Cal File: U9210.D

Als bottle: 5 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description				
DF	1.000	Dilution Factor				
Uf	1.000	Correction Factor				
Vt	0.00100	Final Volume (L)				
Vo	1.000					
Vi	1.000	Volume injected (uL)				
Cpnd Variable		Local Compound Variable				

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		=======	======	======	========
1 1,4-Dioxane	58	2.639	2.649 (0.315)	297276	75.0000	73.7	
3 Pyridine	79	3.125	3.125 (0.373)	916954	75.0000	71.9	
2 N-Nitrosodimethylamine	42	3.104	3.114 (0.370)	369770	75.0000	75.8	
4 Ethyl Methacrylate	69	3.912	3.911 (0.467)	668287	75.0000	73.3	
5 2-Picoline	93	4.429	4.429 (0.528)	980930	75.0000	76.8	
6 N-Nitrosomethylethylamine	88	4.709	4.708 (0.562)	427598	75.0000	75.6	
7 Methyl Methanesulfonate	80	5.340	5.350 (0.637)	507706	75.0000	74.8	
\$ 8 2-Fluorophenol	112	5.764	5.754 (0.688)	863604	75.0000	75.1	
9 N-Nitrosodiethylamine	102	6.127	6.137 (0.731)	420705	75.0000	73.2	
10 Ethyl Methanesulfonate	79	6.841	6.861 (0.816)	662287	75.0000	74.1	
11 Benzaldehyde	77	7.420	7.420 (0.885)	181560	75.0000	66.1	
13 Pentachloroethane	117	7.741	7.741 (0.923)	313811	75.0000	73.2	
12 Aniline	93	7.710	7.720 (0.920)	1206180	75.0000	74.2	
16 Bis(2-Chloroethyl)ether	93	7.896	7.917 (0.942)	689703	75.0000	71.7	
\$ 14 Phenol-D6	99	7.865	7.865 (0.938)	910883	75.0000	73.5	
15 Phenol	94	7.886	7.896 (0.941)	963148	75.0000	72.8	
17 2-Chlorophenol	128	7.979	7.989 (0.952)	808622	75.0000	73.3	
18 1,3-Dichlorobenzene	146	8.248	8.258 (0.984)	893789	75.0000	72.8	
* 19 1,4-Dichlorobenzene-D4	152	8.383	8.393 (1.000)	353376	40.0000		
20 1,4-Dichlorobenzene	146	8.424	8.434 (1.005)	872649	75.0000	71.9	
21 1,2-Dichlorobenzene	146	8.756	8.765 (1.044)	843533	75.0000	71.6	

Data File: $\t server \g \end{math} \c i\U011215.b\U9210.D$ Report Date: 13-Jan-2015 10:04

						AMOUN		
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT		RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
00 Personal allegated	100				=======	75 0000	======	========
22 Benzyl alcohol	108	8.849		(1.056)	554350	75.0000	73.4	
23 Bis(2-Chloroisopropyl)ether	45	9.149		(1.091)	1018990	75.0000	72.8	
24 2,2'-Oxybis(1-chloropropane)	45	9.149		(1.091)	1018990	75.0000	72.8	
25 2-Methylphenol	108	9.263		(1.105)	786330	75.0000	73.6	
27 Acetophenone	105	9.377		(0.827)	1060323	75.0000	71.7	
31 Hexachloroethane	117	9.511		(1.135)	350015	75.0000	75.5	***
26 N-Nitrosopyrrolidine	100	9.418		(1.123)	426454	75.0000	81.6(QM)	М9
29 o-Toluidine	106	9.459		(1.128)	1083091	75.0000	70.8	
28 N-Nitrosomorpholine	56	9.459		(1.128)	509311	75.0000	71.0	
30 N-Nitroso-di-n-propylamine	70	9.480		(1.131)	500566	75.0000	75.0	
32 3&4-Methylphenol	108	9.635		(1.149)	840400	75.0000	74.4	
\$ 33 Nitrobenzene-D5	82	9.697		(0.855)	777473	75.0000	74.7	
34 Nitrobenzene	77	9.739		(0.859)	745569	75.0000	71.6	
35 N-Nitrosopiperidine	114	10.101	10.121		436359	75.0000	73.8	
36 Isophorone	82	10.360		(0.913)	1481852	75.0000	72.9	
37 2-Nitrophenol	139	10.494			454494	75.0000	74.4	
38 2,4-Dimethylphenol	107	10.815	10.835	(0.953)	750254	75.0000	71.5	
40 Bis(2-Chloroethoxy)methane	93	10.970	10.991	(0.967)	1080032	75.0000	77.5	
39 0,0,0-Triethylphosphorothioat	198	10.939	10.949	(0.964)	334043	75.0000	75.0	
41 2,4-Dichlorophenol	162	11.146	11.167	(0.983)	687238	75.0000	76.0	
42 1,2,4-Trichlorobenzene	180	11.250	11.260	(0.992)	686659	75.0000	73.0	
* 44 Naphthalene-D8	136	11.343	11.353	(1.000)	1350175	40.0000		
43 Benzoic acid	122	11.374	11.488	(1.003)	388714	75.0000	79.2(QM)	м9
45 Naphthalene	128	11.395	11.415	(1.005)	1954688	75.0000	71.4	
49 A,A-Dimethylphenethylamine	58	11.995	12.140	(1.057)	2120944	75.0000	85.7(M)	м9
47 Hexachloropropene	213	11.643	11.653	(1.026)	384480	75.0000	71.1	
48 2,6-Dichlorophenol	162	11.664	11.684	(1.028)	560131	75.0000	71.6	
46 4-Chloroaniline	127	11.654	11.674	(1.027)	797191	75.0000	70.9	
50 Hexachlorobutadiene	225	11.809	11.808	(1.041)	339375	75.0000	72.5	
51 N-Nitroso-Di-N-Butylamine	84	12.585	12.605	(1.109)	533258	75.0000	69.1	
53 Caprolactam	113	12.709	12.802	(1.120)	278114	75.0000	78.2(Q)	
52 p-Phenylenediamine	108	12.595	12.626	(1.110)	603859	75.0000	71.6	
54 Isosafrole	162	13.009	13.019	(1.147)	550189	75.0000	72.4	
56 2-Methylnaphthalene	142	13.113	13.133		1471990	75.0000	66.1	
55 4-Chloro-3-Methylphenol	107		13.092		678386	75.0000	75.3	
57 1-Methylnaphthalene	142	13.341	13.361	(1.176)	1324201	75.0000	72.2	
59 1,2,4,5-Tetrachlorobenzene	216		13.568		573826	75.0000	76.1	
60 Hexachlorocyclopentadiene	237		13.578		348381	75.0000	74.0	
62 2,4,6-Trichlorophenol	196		13.951		442635	75.0000	73.2	
\$ 64 2-Fluorobiphenyl	172		14.116		1250705	75.0000	70.5	
63 2,4,5-Trichlorophenol	196		14.075		455155	75.0000	74.2	
61 Safrole	104		13.723		55889	75.0000	76.6	
65 2-Chloronaphthalene	162		14.313		1601998	75.0000	72.7	
66 1,1'-Biphenyl	154		14.334		1325740	75.0000	75.7	
67 1-Chloronaphthalene	162		14.355		1229105	75.0000		
							71.4(H)	
68 Diphenylether	170		14.613 14.686		861589	75.0000	72.4	
69 2-Nitroaniline	65				427157	75.0000	75.0	MO
70 1,4-Naphthoquinone	158		14.779		361161	75.0000	70.4(M)	М9
71 1,4-Dinitrobenzene	75		15.038		274223	75.0000	76.1	
74 Acenaphthylene	152		15.307		1974941	75.0000	71.4	
73 Dimethyl Phthalate	163		15.276		1420666	75.0000	72.5	
72 1,3-Dinitrobenzene	168		15.255		227603	75.0000	74.2	1 -1
75 2,6-Dinitrotoluene	165		15.338		327352	75.0000	75.5	4/4
76 1,2-Dinitrobenzene	50	15.411	15.441	(0.985)	235985	75.0000	75.9	701

11:04 am, Jan 20, 2015

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9210.D}}$ Report Date: 13-Jan-2015 10:04

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		= ======	======	======	========
* 77 Acenaphthene-D10	164	15.649	15.659 (1.000)	705532	40.0000		
79 Acenaphthene	153	15.742	15.752 (1.006)	1140519	75.0000	74.5	
78 3-Nitroaniline	138	15.721	15.762 (1.005)	403861	75.0000	74.3	
80 2,4-Dinitrophenol	184	16.011	16.042 (1.023)	227739	75.0000	76.7	
82 Dibenzofuran	168	16.187	16.197 (1.034)	1675134	75.0000	70.6	
81 Pentachlorobenzene	250	16.104	16.124 (1.029)	546556	75.0000	71.5	
84 1-Naphthylamine	143	16.415	16.435 (1.049)	1500901	75.0000	71.7	
83 2,4-Dinitrotoluene	165	16.321	16.362 (1.043)	458909	75.0000	75.6	
85 2,3,5,6-Tetrachlorophenol	232	16.487	16.507 (1.054)	364171	75.0000	75.8	
88 2-Naphthylamine	143	16.632	16.663 (1.063)	1309548	75.0000	70.4	
86 4-Nitrophenol	139	16.466	16.476 (1.052)	289776	75.0000	77.7(QM)	м9
87 2,3,4,6-Tetrachlorophenol	232	16.611	16.632 (1.062)	323312	75.0000	69.7	
90 Fluorene	166	17.036	17.046 (1.089)	1261841	75.0000	75.5	
89 Diethylphthalate	149	17.015	17.035 (1.087)	1360869	75.0000	77.3	
91 4-Chlorophenyl-phenylether	204	17.129	17.139 (1.095)	645052	75.0000	72.1	
92 0,0-diethyl-o-2-pyrazinylphos	s 107	17.191	17.222 (1.099)	287437	75.0000	70.6	
94 5-Nitro-O-Toluidine	152	17.212	17.242 (1.100)	447663	75.0000	74.1	
95 4-Nitroaniline	138	17.274	17.315 (1.104)	408375	75.0000	77.1	
96 4,6-Dinitro-2-Methylphenol	198	17.325	17.356 (0.897)	272864	75.0000	81.2	
97 N-Nitrosodiphenylamine	169	17.460	17.491 (0.904)	1120376	75.0000	72.5	
98 N-Nitrosodiphenylamine/DPA	169	17.460	17.491 (0.904)	1120376	75.0000	72.5	
99 1,2-Diphenylhydrazine	77		17.532 (0.906)	1480817	75.0000	71.9	
100 Azobenzene	77		17.532 (0.906)	1480817	75.0000	72.2	
\$ 101 2,4,6-Tribromophenol	330		17.667 (1.128)	223591	75.0000	74.8	
93 Sulfotepp	97		17.222 (0.890)	318353	75.0000	69.8	
103 Diallate	86		18.257 (0.944)	518899	75.0000	69.8	
104 4-Bromophenyl-phenylether	248	18.329	18.339 (0.949)	370394	75.0000	72.3	
102 Phorate	75	18.247	18.267 (0.944)	825424	75.0000	71.3	
105 1,3,5-Trinitrobenzene	213	18.360	18.370 (0.950)	232970	75.0000	77.1	
107 Phenacetin	108	18.474	18.515 (0.956)	769573	75.0000	74.2	
106 Hexachlorobenzene	284		18.432 (0.953)	439525	75.0000	72.7	
108 Dimethoate	87		18.722 (0.967)	499868	75.0000	75.5	
109 Atrazine	200		18.971 (0.981)	285299	75.0000	69.8	
112 4-Aminobiphenyl	169		19.022 (0.983)	983301	75.0000	73.3	
111 Pentachlorophenol	266		19.012 (0.983)	244895	75.0000	73.5	
110 Pentachloronitrobenzene	237		18.991 (0.982)	162020	75.0000	72.0	
* 114 Phenanthrene-D10	188		19.333 (1.000)	1053071	40.0000	72.0	
113 Pronamide	173		19.354 (1.001)	573030	75.0000	73.4	
115 Phenanthrene	178		19.405 (1.003)	1946661	75.0000	71.5	
116 Anthracene	178		19.530 (1.010)	1958299	75.0000	72.3	
118 Disulfoton	88				75.0000	76.4	
			19.561 (1.012)	818465			
117 Dinoseb	211		19.561 (1.012)	277709	75.0000	69.6	
119 Carbazole	167	20.006		1719397	75.0000	71.2	
120 Methyl Parathion	109	20.451		459185	75.0000	71.4	
121 Di-n-butylphthalate	149		21.134 (1.093)	2355845	75.0000	70.1	
122 4-Nitroquinoline-1-Oxide	190		21.393 (1.106)	152471	75.0000	77.5	
123 Ethyl Parathion	291		21.496 (1.111)	117298	75.0000	72.0	
124 Methapyrilene	97		21.745 (1.124)	471214	75.0000	69.3	
125 Isodrin	193		21.941 (1.135)	259582	75.0000	73.6	
126 Fluoranthene	202	22.325		1794653	75.0000	69.9	
128 Pyrene	202		22.873 (0.882)	1846667	75.0000	73.1	
127 Benzidine	184	22.821		481046	75.0000	78.5	0 11
\$ 129 Terphenyl-D14	244		23.442 (0.905)	1161096	75.0000	73.2	3 (U
130 Aramite	185	23.753	23.752 (0.917)	124585	75.0000	73.8	610

11:04 am, Jan 20, 2015

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9210.D

Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		======	======	======	========
131 p-Dimethylaminoazobenzene	225	23.815	23.835 (0.919)	340423	75.0000	74.7	
132 Chlorobenzilate	251	24.001	24.011 (0.926)	485270	75.0000	74.5	
134 3,3'-Dimethylbenzidine	212	24.653	24.663 (0.952)	446187	75.0000	76.9	
135 Butylbenzylphthalate	149	24.809	24.819 (0.958)	920916	75.0000	73.4	
136 Bis(2-ethylhexyl)adipate	129	25.202	25.212 (0.973)	816942	75.0000	73.6	
137 2-Acetylaminofluorene	181	25.305	25.326 (0.977)	544066	75.0000	78.8	
138 Benzo(a)anthracene	228	25.875	25.885 (0.999)	1293140	75.0000	73.6	
* 139 Chrysene-D12	240	25.906	25.916 (1.000)	725694	40.0000		
141 Chrysene	228	25.968	25.978 (1.002)	1149785	75.0000	72.2	
140 3,3'-Dichlorobenzidine	252	25.957	25.957 (1.002)	392768	75.0000	73.8	
142 bis(2-Ethylhexyl)phthalate	149	26.382	26.392 (1.018)	1230774	75.0000	71.8	
144 Di-n-octylphthalate	149	27.914	27.924 (0.957)	1933470	75.0000	78.4	
145 Benzo(b)fluoranthene	252	28.390	28.400 (0.973)	906177	75.0000	73.8	
146 7,12-Dimethylbenz(A)Anthracen	256	28.400	28.410 (0.974)	470162	75.0000	74.1	
147 Benzo(k)fluoranthene	252	28.442	28.462 (0.975)	934587	75.0000	73.0(H)	
148 Benzo(a)pyrene	252	29.042	29.052 (0.996)	820440	75.0000	75.3	
* 150 Perylene-D12	264	29.166	29.166 (1.000)	460445	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.023)	376100	75.0000	73.4	
152 Dibenz(a,j)acridine	279	30.977	30.977 (1.062)	393713	75.0000	71.1	
153 Indeno(1,2,3-cd)pyrene	276	31.298	31.308 (1.073)	426291	75.0000	69.5	
154 Dibenzo(a,h)anthracene	278	31.371	31.370 (1.076)	446040	75.0000	67.4	
155 Benzo(g,h,i)perylene	276	31.857	31.857 (1.092)	476774	75.0000	67.8	

QC Flag Legend

- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- H Operator selected an alternate compound hit.

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9211.D

Report Date: 13-Jan-2015 10:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9211.D

Lab Smp Id: WG156827-6

Inj Date : 12-JAN-2015 16:09 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-6 Inst ID: gcms-u.i

Misc Info : Comment

: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m Method

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal File: U9211.D Cal Date : 12-JAN-2015 16:09

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description				
DF	1.000	Dilution Factor				
U£	1.000	Correction Factor				
Vt	0.00100	Final Volume (L)				
Vo	1.000	Sample Volume (L)				
Vi	1.000	Volume injected (uL)				
Cpnd Variable		Local Compound Variable				

					AMOUN	ITS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		=======	======	======	========
1 1,4-Dioxane	58	2.638	2.649 (0.314)	378963	100.000	95.4	
3 Pyridine	79	3.125	3.125 (0.372)	1189011	100.000	94.7	
2 N-Nitrosodimethylamine	42	3.115	3.114 (0.371)	470064	100.000	97.8	
4 Ethyl Methacrylate	69	3.912	3.911 (0.466)	872045	100.000	97.1	
5 2-Picoline	93	4.429	4.429 (0.528)	1259482	100.000	100	
6 N-Nitrosomethylethylamine	88	4.708	4.708 (0.561)	574766	100.000	103	
7 Methyl Methanesulfonate	80	5.350	5.350 (0.637)	669479	100.000	100	
\$ 8 2-Fluorophenol	112	5.764	5.754 (0.687)	1128578	100.000	99.7	
9 N-Nitrosodiethylamine	102	6.126	6.137 (0.730)	566989	100.000	100	
10 Ethyl Methanesulfonate	79	6.851	6.861 (0.816)	863450	100.000	98.0	
11 Benzaldehyde	77	7.420	7.420 (0.884)	178352	100.000	65.9	
13 Pentachloroethane	117	7.741	7.741 (0.922)	393400	100.000	93.1	
12 Aniline	93	7.710	7.720 (0.919)	1525995	100.000	95.2	
16 Bis(2-Chloroethyl)ether	93	7.907	7.917 (0.942)	857622	100.000	90.5	
\$ 14 Phenol-D6	99	7.865	7.865 (0.937)	1169677	100.000	95.8	
15 Phenol	94	7.896	7.896 (0.941)	1216817	100.000	93.3	
17 2-Chlorophenol	128	7.989	7.989 (0.952)	1019905	100.000	93.8	
18 1,3-Dichlorobenzene	146	8.259	8.258 (0.984)	1117208	100.000	92.3	
* 19 1,4-Dichlorobenzene-D4	152	8.393	8.393 (1.000)	348136	40.0000		
20 1,4-Dichlorobenzene	146	8.424	8.434 (1.004)	1081238	100.000	90.4	
21 1,2-Dichlorobenzene	146	8.755	8.765 (1.043)	1067519	100.000	92.0	

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\t U011215.b\t U9211.D}$ Report Date: 13-Jan-2015 10:04

							AMOUN	TTS	
			QUANT SIG				CAL-AMT	ON-COL	
Co	oqmo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
==		=======	====	====	=======================================	= ======	======	======	========
	22	Benzyl alcohol	108	8.859	8.869 (1.055)	736473	100.000	99.0	
	23	Bis(2-Chloroisopropyl)ether	45	9.149	9.159 (1.090)	1267118	100.000	91.9	
	24	2,2'-Oxybis(1-chloropropane)	45	9.149	9.159 (1.090)	1267118	100.000	91.9	
	25	2-Methylphenol	108	9.283	9.304 (1.106)	1035108	100.000	98.4	
	27	Acetophenone	105	9.387	9.386 (0.827)	1389902	100.000	94.0	
	31	Hexachloroethane	117	9.521	9.521 (1.134)	392635	100.000	86.0	
	26	N-Nitrosopyrrolidine	100	9.449	9.469 (1.126)	441157	100.000	85.7(QH)	
	29	o-Toluidine	106	9.470	9.480 (1.128)	1342750	100.000	89.1	
	28	N-Nitrosomorpholine	56	9.490	9.500 (1.131)	624643	100.000	88.4	
	30	N-Nitroso-di-n-propylamine	70	9.511	9.521 (1.133)	568743	100.000	86.5	
	32	3&4-Methylphenol	108	9.645	9.656 (1.149)	1085035	100.000	97.5	
\$	33	Nitrobenzene-D5	82	9.708	9.707 (0.855)	1002856	100.000	96.3	
	34	Nitrobenzene	77	9.749	9.759 (0.859)	957893	100.000	92.0	
	35	N-Nitrosopiperidine	114	10.111	10.121 (0.891)	562845	100.000	95.2	
	36	Isophorone	82	10.380	10.390 (0.914)	1950638	100.000	95.9	
	37	2-Nitrophenol	139	10.494	10.504 (0.924)	605630	100.000	99.1	
	38	2,4-Dimethylphenol	107	10.825	10.835 (0.954)	965698	100.000	92.0	
	40	Bis(2-Chloroethoxy)methane	93	10.981	10.991 (0.967)	1337352	100.000	96.0	
	39	0,0,0-Triethylphosphorothioat	198	10.950	10.949 (0.964)	422774	100.000	94.8	
	41	2,4-Dichlorophenol	162	11.157	11.167 (0.983)	875712	100.000	96.8	
	42	1,2,4-Trichlorobenzene	180	11.260	11.260 (0.992)	859485	100.000	91.4	
*	44	Naphthalene-D8	136	11.353	11.353 (1.000)	1350804	40.0000		
	43	Benzoic acid	122	11.446	11.488 (1.008)	531116	100.000	100(M)	М9
	45	Naphthalene	128	11.405	11.415 (1.005)	2422207	100.000	88.5	
	49	A,A-Dimethylphenethylamine	58	12.098	12.140 (1.066)	2321655	100.000	93.7(M)	М9
	47	Hexachloropropene	213	11.643	11.653 (1.026)	501023	100.000	92.7	
	48	2,6-Dichlorophenol	162	11.674	11.684 (1.028)	681307	100.000	87.1	
	46	4-Chloroaniline	127	11.664	11.674 (1.027)	879174	100.000	78.2	
	50	Hexachlorobutadiene	225	11.809	11.808 (1.040)	423879	100.000	90.6	
	51	N-Nitroso-Di-N-Butylamine	84	12.595	12.605 (1.109)	672144	100.000	87.0	
	53	Caprolactam	113	12.761	12.802 (1.124)	350040	100.000	98.3	
	52	p-Phenylenediamine	108	12.616	12.626 (1.111)	680446	100.000	80.7	
	54	Isosafrole	162	13.020	13.019 (1.147)	702968	100.000	92.4	
	56	2-Methylnaphthalene	142	13.123	13.133 (1.156)	1793426	100.000	80.5	
	55	4-Chloro-3-Methylphenol	107	13.071	13.092 (1.151)	865197	100.000	96.0	
	57	1-Methylnaphthalene	142	13.351	13.361 (1.176)	1637501	100.000	89.3	
	59	1,2,4,5-Tetrachlorobenzene	216	13.558	13.568 (0.866)	691599	100.000	105	
	60	Hexachlorocyclopentadiene	237	13.568	13.578 (0.866)	429319	100.000	94.2	
	62	2,4,6-Trichlorophenol	196	13.941	13.951 (0.890)	541228	100.000	92.4	
\$	64	2-Fluorobiphenyl	172	14.106	14.116 (0.901)	1538124	100.000	89.5	
	63	2,4,5-Trichlorophenol	196	14.075	14.075 (0.899)	573212	100.000	96.5	
	61	Safrole	104	13.723	13.723 (0.876)	73224	100.000	104	
	65	2-Chloronaphthalene	162	14.303	14.313 (0.913)	2063095	100.000	103	
	66	1,1'-Biphenyl	154	14.324	14.334 (0.915)	1586046	100.000	107	
	67	1-Chloronaphthalene	162	14.355	14.355 (0.917)	1411544	100.000	84.7(H)	
	68	Diphenylether	170	14.603	14.613 (0.933)	1067445	100.000	92.6	
	69	2-Nitroaniline	65	14.676	14.686 (0.937)	546979	100.000	99.3	
	70	1,4-Naphthoquinone	158	14.769	14.779 (0.943)	409053	100.000	82.4(M)	М9
	71	1,4-Dinitrobenzene	75	15.028	15.038 (0.960)	348945	100.000	100	
	74	Acenaphthylene	152	15.297	15.307 (0.977)	2406215	100.000	89.8	
	73	Dimethyl Phthalate	163	15.255	15.276 (0.974)	1767545	100.000	93.2	
	72	1,3-Dinitrobenzene	168	15.235	15.255 (0.973)	286860	100.000	96.5	
	75	2,6-Dinitrotoluene	165	15.328	15.338 (0.979)	396854	100.000	94.6	1 11
	76	1,2-Dinitrobenzene	50	15.431	15.441 (0.985)	289638	100.000	96.2	ZU

11:04 am, Jan 20, 2015

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9211.D}}$ Report Date: 13-Jan-2015 10:04

						AMOUN	ITS	
		QUANT SIG				CAL-AMT	ON-COL	
Compo	unds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=====		====	====		=======	======	======	========
* 77	Acenaphthene-D10	164	15.659	15.659 (1.000)	683031	40.0000		
79	Acenaphthene	153	15.752	15.752 (1.006)	1382507	100.000	101	
78	3-Nitroaniline	138	15.742	15.762 (1.005)	465541	100.000	88.5	
80	2,4-Dinitrophenol	184	16.021	16.042 (1.023)	295143	100.000	102	
82	Dibenzofuran	168	16.187	16.197 (1.034)	2073237	100.000	90.3	
81	Pentachlorobenzene	250	16.114	16.124 (1.029)	683892	100.000	92.4	
84	1-Naphthylamine	143	16.425	16.435 (1.049)	1827857	100.000	90.2	
83	2,4-Dinitrotoluene	165	16.342	16.362 (1.044)	559484	100.000	95.2	
85	2,3,5,6-Tetrachlorophenol	232	16.497	16.507 (1.054)	425488	100.000	91.4	
88	2-Naphthylamine	143	16.642	16.663 (1.063)	1591504	100.000	88.3	
86	4-Nitrophenol	139	16.466	16.476 (1.052)	353294	100.000	97.8(M)	M9
87	2,3,4,6-Tetrachlorophenol	232	16.621	16.632 (1.061)	407544	100.000	90.8	
90	Fluorene	166	17.035	17.046 (1.088)	1512992	100.000	104	
89	Diethylphthalate	149	17.015	17.035 (1.087)	1572233	100.000	103	
91	4-Chlorophenyl-phenylether	204	17.129	17.139 (1.094)	797650	100.000	92.2	
92	0,0-diethyl-o-2-pyrazinylphos	107	17.201	17.222 (1.098)	349802	100.000	88.8	
94	5-Nitro-O-Toluidine	152	17.222	17.242 (1.100)	511677	100.000	87.4	
95	4-Nitroaniline	138	17.294	17.315 (1.104)	474936	100.000	92.6	
96	4,6-Dinitro-2-Methylphenol	198	17.336	17.356 (0.897)	328507	100.000	106	
97	N-Nitrosodiphenylamine	169	17.470	17.491 (0.904)	1365288	100.000	95.9	
98	N-Nitrosodiphenylamine/DPA	169	17.470	17.491 (0.904)	1365288	100.000	95.9	
99	1,2-Diphenylhydrazine	77	17.522	17.532 (0.907)	1953130	100.000	103	
100	Azobenzene	77	17.522	17.532 (0.907)	1953130	100.000	103	
\$ 101	2,4,6-Tribromophenol	330	17.656	17.667 (1.128)	270921	100.000	93.7	
93	Sulfotepp	97	17.201	17.222 (0.890)	394760	100.000	94.0	
103	Diallate	86	18.257	18.257 (0.945)	612806	100.000	89.6	
104	4-Bromophenyl-phenylether	248	18.329	18.339 (0.949)	456610	100.000	96.8	
102	Phorate	75	18.257	18.267 (0.945)	946415	100.000	88.8	
105	1,3,5-Trinitrobenzene	213	18.381	18.370 (0.951)	265152	100.000	95.3(Q)	
107	Phenacetin	108	18.495	18.515 (0.957)	903697	100.000	94.7	
106	Hexachlorobenzene	284	18.422	18.432 (0.953)	533214	100.000	95.8	
108	Dimethoate	87	18.702	18.722 (0.968)	534256	100.000	95.7	
109	Atrazine	200	18.961	18.971 (0.981)	283642	100.000	75.3	
112	4-Aminobiphenyl	169	19.012	19.022 (0.984)	1087785	100.000	96.6	
111	Pentachlorophenol	266	19.002	19.012 (0.983)	296279	100.000	96.5	
110	Pentachloronitrobenzene	237	18.981	18.991 (0.982)	193396	100.000	93.3	
* 114	Phenanthrene-D10	188	19.323	19.333 (1.000)	969803	40.0000		
113	Pronamide	173	19.344	19.354 (1.001)	686167	100.000	95.4	
115	Phenanthrene	178	19.395	19.405 (1.004)	2287351	100.000	91.3	
116	Anthracene	178	19.520	19.530 (1.010)	2281077	100.000	91.4	
118	Disulfoton	88	19.561	19.561 (1.012)	947708	100.000	96.0	
117	Dinoseb	211	19.561	19.561 (1.012)	340824	100.000	92.8	
119	Carbazole	167	20.016	20.026 (1.036)	1968088	100.000	88.6	
120	Methyl Parathion	109	20.451	20.461 (1.058)	501001	100.000	84.6	
121	Di-n-butylphthalate	149	21.124	21.134 (1.093)	2714820	100.000	87.7	
122	4-Nitroquinoline-1-0xide	190	21.383	21.393 (1.107)	180032	100.000	99.4	
123	Ethyl Parathion	291	21.486	21.496 (1.112)	135308	100.000	90.2	
124	Methapyrilene	97	21.734	21.745 (1.125)	467955	100.000	74.7	
125	Isodrin	193	21.931	21.941 (1.135)	293862	100.000	90.4	
126	Fluoranthene	202	22.335	22.345 (1.156)	1990016	100.000	84.2	
128	Pyrene	202	22.863	22.873 (0.883)	2015349	100.000	99.5	
127	Benzidine	184	22.821	22.831 (0.881)	462466	100.000	94.2	1 11
\$ 129	Terphenyl-D14	244	23.432	23.442 (0.905)	1273304	100.000	100	4 (H
130	Aramite	185	23.753	23.752 (0.917)	131933	100.000	97.4	200

11:04 am, Jan 20, 2015

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9211.D Report Date: 13-Jan-2015 10:04

		AMOUNTS					
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		=======	======	======	========
131 p-Dimethylaminoazobenzene	225	23.815	23.835 (0.920)	371861	100.000	102	
132 Chlorobenzilate	251	24.001	24.011 (0.927)	516367	100.000	98.9	
134 3,3'-Dimethylbenzidine	212	24.653	24.663 (0.952)	450346	100.000	96.8	
135 Butylbenzylphthalate	149	24.808	24.819 (0.958)	963690	100.000	95.8	
136 Bis(2-ethylhexyl)adipate	129	25.202	25.212 (0.973)	894580	100.000	100	
137 2-Acetylaminofluorene	181	25.305	25.326 (0.977)	570549	100.000	103	
138 Benzo(a)anthracene	228	25.875	25.885 (0.999)	1366639	100.000	97.1	
* 139 Chrysene-D12	240	25.895	25.916 (1.000)	581765	40.0000		
141 Chrysene	228	25.968	25.978 (1.003)	1133844	100.000	88.8	
140 3,3'-Dichlorobenzidine	252	25.957	25.957 (1.002)	414591	100.000	97.2	
142 bis(2-Ethylhexyl)phthalate	149	26.382	26.392 (1.019)	1312349	100.000	95.4	
144 Di-n-octylphthalate	149	27.913	27.924 (0.957)	1997828	100.000	102	
145 Benzo(b)fluoranthene	252	28.390	28.400 (0.973)	961825	100.000	99.2	
146 7,12-Dimethylbenz(A)Anthracen	256	28.400	28.410 (0.974)	483630	100.000	96.4	
147 Benzo(k)fluoranthene	252	28.441	28.462 (0.975)	967086	100.000	95.5(MH)	М6
148 Benzo(a)pyrene	252	29.042	29.052 (0.996)	882243	100.000	102	
* 150 Perylene-D12	264	29.166	29.166 (1.000)	364035	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.023)	403653	100.000	99.7	
152 Dibenz(a,j)acridine	279	30.977	30.977 (1.062)	459342	100.000	105	
153 Indeno(1,2,3-cd)pyrene	276	31.298	31.308 (1.073)	513380	100.000	105	
154 Dibenzo(a,h)anthracene	278	31.370	31.370 (1.076)	536401	100.000	102	
155 Benzo(g,h,i)perylene	276	31.847	31.857 (1.092)	544166	100.000	97.8	

QC Flag Legend

- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- H Operator selected an alternate compound hit.

Zag

File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9211.D

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9212.D

Report Date: 13-Jan-2015 10:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9212.D

Lab Smp Id: WG156827-7

Inj Date : 12-JAN-2015 16:53 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-7 Inst ID: gcms-u.i

Misc Info : Comment

: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m Method

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal File: U9212.D Cal Date : 12-JAN-2015 16:53

Als bottle: 7 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12

Name	Value	Description
DF	1.000	Dilution Factor
U£	1.000	Correction Factor
Vt	0.00100	Final Volume (L)
Vo	1.000	Sample Volume (L)
Vi	1.000	Volume injected (uL)
Cpnd Variable		Local Compound Variable

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======	====	====		= ======	======	======	========
1 1,4-Dioxane	58	2.649	2.649 (0.316)	444727	125.000	119	
3 Pyridine	79	3.125	3.125 (0.372)	1415665	125.000	119	
2 N-Nitrosodimethylamine	42	3.114	3.114 (0.371)	536605	125.000	118	
4 Ethyl Methacrylate	69	3.911	3.911 (0.466)	999278	125.000	118	
5 2-Picoline	93	4.429	4.429 (0.528)	1456502	125.000	123	
6 N-Nitrosomethylethylamine	88	4.708	4.708 (0.561)	668535	125.000	127(A)	
7 Methyl Methanesulfonate	80	5.350	5.350 (0.637)	792316	125.000	126(A)	
\$ 8 2-Fluorophenol	112	5.754	5.754 (0.686)	1290431	125.000	121	
9 N-Nitrosodiethylamine	102	6.137	6.137 (0.731)	651600	125.000	122	
10 Ethyl Methanesulfonate	79	6.861	6.861 (0.817)	1037533	125.000	125	
11 Benzaldehyde	77	7.420	7.420 (0.884)	235251	125.000	92.1	
13 Pentachloroethane	117	7.741	7.741 (0.922)	445218	125.000	112	
12 Aniline	93	7.720	7.720 (0.920)	1728654	125.000	114	
16 Bis(2-Chloroethyl)ether	93	7.917	7.917 (0.943)	975071	125.000	109	
\$ 14 Phenol-D6	99	7.865	7.865 (0.937)	1374555	125.000	119	
15 Phenol	94	7.896	7.896 (0.941)	1398542	125.000	114	
17 2-Chlorophenol	128	7.989	7.989 (0.952)	1146564	125.000	112	
18 1,3-Dichlorobenzene	146	8.258	8.258 (0.984)	1248971	125.000	109	
* 19 1,4-Dichlorobenzene-D4	152	8.393	8.393 (1.000)	328580	40.0000		
20 1,4-Dichlorobenzene	146	8.434	8.434 (1.005)	1194555	125.000	106	
21 1,2-Dichlorobenzene	146	8.765	8.765 (1.044)	1197092	125.000	109	

Data File: $\t server \g \em \g u.i\U011215.b\U9212.D$ Report Date: 13-Jan-2015 10:04

						AMOUN	TS	
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		======	======	======	======	========
22 Benzyl alcohol	108	8.869	8.869	(1.057)	882225	125.000	126(A)	
23 Bis(2-Chloroisopropyl)ether	45	9.159	9.159	(1.091)	1436646	125.000	110	
24 2,2'-Oxybis(1-chloropropane)	45	9.159	9.159	(1.091)	1436646	125.000	110	
25 2-Methylphenol	108	9.304	9.304	(1.109)	1210548	125.000	122	
27 Acetophenone	105	9.386		(0.827)	1626297	125.000	114	
31 Hexachloroethane	117	9.521		(1.134)	417186	125.000	96.8	
26 N-Nitrosopyrrolidine	100	9.469		(1.128)	501627	125.000	103(H)	
29 o-Toluidine	106	9.480		(1.129)	1561403	125.000	110	
28 N-Nitrosomorpholine	56	9.500		(1.132)	698237	125.000	105	
30 N-Nitroso-di-n-propylamine	70	9.521		(1.134)	655200	125.000	106	
32 3&4-Methylphenol	108	9.656		(1.150)	1244758	125.000	118	
\$ 33 Nitrobenzene-D5	82	9.707		(0.855)	1164782	125.000	116	
34 Nitrobenzene	77	9.759		(0.860)	1106209	125.000	110	
35 N-Nitrosopiperidine	114	10.121	10.121		691336	125.000	121	
36 Isophorone	82	10.390	10.390		2327731	125.000	119	
37 2-Nitrophenol	139	10.504	10.504		693958	125.000	118	
	107					125.000	110	
38 2,4-Dimethylphenol			10.835		1114039			
40 Bis(2-Chloroethoxy)methane	93	10.991	10.991		1550221	125.000	115	
39 0,0,0-Triethylphosphorothio		10.949	10.949		487851	125.000	114	
41 2,4-Dichlorophenol	162	11.167	11.167		1001736	125.000	115	
42 1,2,4-Trichlorobenzene	180	11.260	11.260		985193	125.000	109	
* 44 Naphthalene-D8	136	11.353	11.353	(1.000)	1302096	40.0000		
43 Benzoic acid	122	11.488	11.488	(1.012)	698957	125.000	124(M)	м9
45 Naphthalene	128	11.415	11.415	(1.005)	2735234	125.000	104	
49 A,A-Dimethylphenethylamine	58	12.140	12.140	(1.069)	2568277	125.000	108(M)	м9
47 Hexachloropropene	213	11.653	11.653	(1.026)	562575	125.000	108	
48 2,6-Dichlorophenol	162	11.684	11.684	(1.029)	787054	125.000	104	
46 4-Chloroaniline	127	11.674	11.674	(1.028)	1128276	125.000	104	
50 Hexachlorobutadiene	225	11.808	11.808	(1.040)	474322	125.000	105	
51 N-Nitroso-Di-N-Butylamine	84	12.605	12.605	(1.110)	808001	125.000	108	
53 Caprolactam	113	12.802	12.802	(1.128)	440300	125.000	128(A)	
52 p-Phenylenediamine	108	12.626	12.626	(1.112)	873006	125.000	107	
54 Isosafrole	162	13.019	13.019	(1.147)	824923	125.000	112	
56 2-Methylnaphthalene	142	13.133	13.133	(1.157)	2833208	125.000	132(A)	
55 4-Chloro-3-Methylphenol	107	13.092	13.092	(1.153)	952538	125.000	110(Q)	
57 1-Methylnaphthalene	142		13.361		1869024	125.000	106	
59 1,2,4,5-Tetrachlorobenzene	216		13.568		777382	125.000	121	
60 Hexachlorocyclopentadiene	237		13.578		494278	125.000	106	
62 2,4,6-Trichlorophenol	196		13.951		647185	125.000	108	
\$ 64 2-Fluorobiphenyl	172		14.116		1768239	125.000	100	
63 2,4,5-Trichlorophenol	196		14.075		689346	125.000	113	
61 Safrole	104		13.723		88814	125.000	122	
65 2-Chloronaphthalene			14.313					
-	162				2451717	125.000	124	
66 1,1'-Biphenyl	154		14.334		1724631	125.000	118	
67 1-Chloronaphthalene	162		14.355		1474960	125.000	86.3(H)	
68 Diphenylether	170		14.613		1243613	125.000	105	
69 2-Nitroaniline	65		14.686		662207	125.000	117	
70 1,4-Naphthoquinone	158		14.779		472590	125.000	92.8(M)	М9
71 1,4-Dinitrobenzene	75		15.038		438481	125.000	122	
74 Acenaphthylene	152		15.307		2760972	125.000	100	
73 Dimethyl Phthalate	163		15.276		2083637	125.000	107(M)	М9
72 1,3-Dinitrobenzene	168		15.255		342099	125.000	112	
75 2,6-Dinitrotoluene	165		15.338		477494	125.000	111	1/1
76 1,2-Dinitrobenzene	50	15.441	15.441	(0.986)	345192	125.000	112	200

11:04 am, Jan 20, 2015

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9212.D}}$ Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====	====	=======================================	======	======	======	========
* 77 Acenaphthene-D10	164	15.659	15.659 (1.000)	700923	40.0000		
79 Acenaphthene	153	15.752	15.752 (1.006)	1645807	125.000	124	
78 3-Nitroaniline	138	15.762	15.762 (1.007)	562422	125.000	104	
80 2,4-Dinitrophenol	184	16.042	16.042 (1.024)	371833	125.000	124	
82 Dibenzofuran	168	16.197	16.197 (1.034)	2454477	125.000	104	
81 Pentachlorobenzene	250	16.124	16.124 (1.030)	819544	125.000	108	
84 1-Naphthylamine	143	16.435	16.435 (1.050)	2218957	125.000	107	
83 2,4-Dinitrotoluene	165	16.362	16.362 (1.045)	695995	125.000	115	
85 2,3,5,6-Tetrachlorophenol	232	16.507	16.507 (1.054)	532683	125.000	112	
88 2-Naphthylamine	143	16.663	16.663 (1.064)	1899771	125.000	103	
86 4-Nitrophenol	139	16.476	16.476 (1.052)	429798	125.000	116(M)	М9
87 2,3,4,6-Tetrachlorophenol	232	16.632	16.632 (1.062)	485972	125.000	106	
90 Fluorene	166	17.046	17.046 (1.089)	1726003	125.000	122	
89 Diethylphthalate	149	17.035	17.035 (1.088)	1789501	125.000	122	
91 4-Chlorophenyl-phenylether	204	17.139	17.139 (1.095)	939556	125.000	106	
92 O,O-diethyl-o-2-pyrazinylphos	107	17.222	17.222 (1.100)	442506	125.000	109	
94 5-Nitro-O-Toluidine	152	17.242	17.242 (1.101)	653741	125.000	109	
95 4-Nitroaniline	138	17.315	17.315 (1.106)	610633	125.000	116	
96 4,6-Dinitro-2-Methylphenol	198	17.356	17.356 (0.898)	401764	125.000	130(A)	
97 N-Nitrosodiphenylamine	169	17.491	17.491 (0.905)	1641103	125.000	116	
98 N-Nitrosodiphenylamine/DPA	169	17.491	17.491 (0.905)	1641103	125.000	116	
99 1,2-Diphenylhydrazine	77	17.532	17.532 (0.907)	2328827	125.000	124	
100 Azobenzene	77	17.532	17.532 (0.907)	2328827	125.000	124	
\$ 101 2,4,6-Tribromophenol	330	17.667		336196	125.000	113	
93 Sulfotepp	97	17.222		502657	125.000	120	
103 Diallate	86	18.257		740203	125.000	109	
104 4-Bromophenyl-phenylether	248	18.339		570195	125.000	122	
102 Phorate	75	18.267		1125389	125.000	106	
105 1,3,5-Trinitrobenzene	213	18.370		333314	125.000	120(QM)	м9
107 Phenacetin	108	18.515		1120805	125.000	118	
106 Hexachlorobenzene	284		18.432 (0.953)	633818	125.000	115	
108 Dimethoate	87	18.722		628550	125.000	126(A)	
109 Atrazine	200	18.971		298214	125.000	79.7	
112 4-Aminobiphenyl	169	19.022		1288549	125.000	127(A)	
111 Pentachlorophenol	266		19.012 (0.983)	358177		127(A) 117	
-				239135	125.000		
110 Pentachloronitrobenzene	237		18.991 (0.982)		125.000	116	
* 114 Phenanthrene-D10	188		19.333 (1.000)	963940	40.0000	111	
113 Pronamide	173		19.354 (1.001)	795301	125.000	111	
115 Phenanthrene	178		19.405 (1.004)	2752617	125.000	110	
116 Anthracene	178	19.530		2673783	125.000	108	
118 Disulfoton	88		19.561 (1.012)	1143855	125.000	116	
119 Carbazole	167	20.026		2438278	125.000	110	
120 Methyl Parathion	109	20.461		600433	125.000	102	
121 Di-n-butylphthalate	149		21.134 (1.093)	3297183	125.000	107	
122 4-Nitroquinoline-1-Oxide	190	21.393		222660	125.000	124	
123 Ethyl Parathion	291	21.496		171517	125.000	115	
124 Methapyrilene	97	21.745		602367	125.000	96.8	
125 Isodrin	193	21.941		352791	125.000	109	
126 Fluoranthene	202	22.345		2448822	125.000	104	
128 Pyrene	202	22.873		2488396	125.000	115	
127 Benzidine	184		22.831 (0.881)	648943	125.000	124	
\$ 129 Terphenyl-D14	244	23.442		1589423	125.000	117	1 11
130 Aramite	185	23.752	23.752 (0.917)	167760	125.000	116	ZICH
131 p-Dimethylaminoazobenzene	225	23.835	23.835 (0.920)	476719	125.000	122	61-

11:04 am, Jan 20, 2015

Data File: $\t server \g \em \g u.i\U011215.b\U9212.D$ Report Date: 13-Jan-2015 10:04

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		=======	======	======	========
132 Chlorobenzilate	251	24.011	24.011 (0.926)	668402	125.000	120	
134 3,3'-Dimethylbenzidine	212	24.663	24.663 (0.952)	561053	125.000	113	
135 Butylbenzylphthalate	149	24.819	24.819 (0.958)	1244175	125.000	116	
136 Bis(2-ethylhexyl)adipate	129	25.212	25.212 (0.973)	1125514	125.000	119	
137 2-Acetylaminofluorene	181	25.326	25.326 (0.977)	717823	125.000	122	
138 Benzo(a)anthracene	228	25.885	25.885 (0.999)	1741994	125.000	116	
* 139 Chrysene-D12	240	25.916	25.916 (1.000)	619517	40.0000		
141 Chrysene	228	25.978	25.978 (1.002)	1414989	125.000	104	
140 3,3'-Dichlorobenzidine	252	25.957	25.957 (1.002)	527785	125.000	116	
142 bis(2-Ethylhexyl)phthalate	149	26.392	26.392 (1.018)	1697069	125.000	116	
144 Di-n-octylphthalate	149	27.924	27.924 (0.957)	2506518	125.000	127(A)	
145 Benzo(b)fluoranthene	252	28.400	28.400 (0.974)	1156100	125.000	118	
146 7,12-Dimethylbenz(A)Anthracen	256	28.410	28.410 (0.974)	598907	125.000	118	
147 Benzo(k)fluoranthene	252	28.462	28.462 (0.976)	1172106	125.000	115(MH)	М6
148 Benzo(a)pyrene	252	29.052	29.052 (0.996)	1007151	125.000	116	
* 150 Perylene-D12	264	29.166	29.166 (1.000)	367444	40.0000		
151 3-Methylcholanthrene	268	29.828	29.828 (1.023)	476967	125.000	117	
152 Dibenz(a,j)acridine	279	30.977	30.977 (1.062)	559856	125.000	127(A)	
153 Indeno(1,2,3-cd)pyrene	276	31.308	31.308 (1.073)	610433	125.000	123	
154 Dibenzo(a,h)anthracene	278	31.370	31.370 (1.076)	660402	125.000	125	
155 Benzo(g,h,i)perylene	276	31.857	31.857 (1.092)	654065	125.000	116	

QC Flag Legend

- A Target compound detected but, quantitated amount exceeded maximum amount.
- Q Qualifier signal failed the ratio test.
- M Compound response manually integrated.
- H Operator selected an alternate compound hit.

7 ag

Data File: \\target_server\gg\chem\gcms-u.i\U011215.b\U9213.D

Report Date: 13-Jan-2015 13:01

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-u.i\\U011215.b\\U9213.D

Lab Smp Id: WG156827-8

Inj Date : 12-JAN-2015 17:38 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156827-8,SI0027 Inst ID: gcms-u.i

Misc Info: WG156827, WG156827, WG156827-4, SI0027-6

Comment

: \\target_server\gg\chem\gcms-u.i\U011215.b\U8270C70.m Method

Meth Date: 13-Jan-2015 08:35 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 16:53 Cal File: U9212.D Als bottle: 8 QC Sample: INDCHECK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: all_DOD.sub

Target Version: 4.12 Processing Host: V200T4

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction Factor
Vt	0.00100	Final Volume (L)
Vo	1.000	Sample Volume (L)
Vi	1.000	Volume injected (uL)
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/L)	REVIEW CODE
	====	====		======	======	======	========
1 1,4-Dioxane	58	2.648	2.649 (0.316)	174296	52.8074	52.8	
3 Pyridine	79	3.135	3.125 (0.374)	601198	57.6115	57.6	
2 N-Nitrosodimethylamine	42	3.104	3.114 (0.370)	189796	47.5216	47.5	
5 2-Picoline	93	4.439	4.429 (0.530)	613805	58.7022	58.7	
6 N-Nitrosomethylethylamine	88	4.708	4.708 (0.562)	240671	51.9803	52.0	
7 Methyl Methanesulfonate	80	5.329	5.350 (0.636)	238138	42.8665	42.9	
9 N-Nitrosodiethylamine	102	6.116	6.137 (0.730)	245527	52.2174	52.2	
10 Ethyl Methanesulfonate	79	6.830	6.861 (0.815)	372306	50.8701	50.9	
11 Benzaldehyde	77	7.430	7.420 (0.886)	29486	13.1139	13.1(R)	
12 Aniline	93	7.699	7.720 (0.919)	703442	52.8432	52.8	
16 Bis(2-Chloroethyl)ether	93	7.896	7.917 (0.942)	451820	57.3873	57.4	
15 Phenol	94	7.906	7.896 (0.943)	590914	54.5445	54.5	
17 2-Chlorophenol	128	7.989	7.989 (0.953)	485309	53.7283	53.7	
18 1,3-Dichlorobenzene	146	8.248	8.258 (0.984)	555874	55.2940	55.3	
* 19 1,4-Dichlorobenzene-D4	152	8.382	8.393 (1.000)	289242	40.0000		
20 1,4-Dichlorobenzene	146	8.424	8.434 (1.005)	553392	55.7087	55.7	
21 1,2-Dichlorobenzene	146	8.755	8.765 (1.044)	534071	55.3833	55.4	
22 Benzyl alcohol	108	8.838	8.869 (1.054)	300100	48.5512	48.6	
23 Bis(2-Chloroisopropyl)ether	45	9.128	9.159 (1.089)	456999	39.8820	39.9(H)	
24 2,2'-Oxybis(1-chloropropane)	45	9.128	9.159 (1.089)	456999	39.9091	39.9(RH)	

Data File: $\t server \g \ensuremath{\mbox{gcms-u.i}\mbox{U011215.b}\mbox{U9213.D}}$ Report Date: 13-Jan-2015 13:01

						CONCENTR	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/L)	REVIEW CODE
	====	====	======	======	======	======	======	========
25 2-Methylphenol	108	9.241	9.304 ((1.102)	440052	50.3598	50.4	
27 Acetophenone	105	9.376	9.386 ((0.827)	1194332	100.323	100	
31 Hexachloroethane	117	9.511	9.521 ((1.135)	220120	58.0418	58.0	
26 N-Nitrosopyrrolidine	100	9.335	9.469 ((1.114)	207874	48.6037	48.6	
29 o-Toluidine	106	9.448	9.480 ((1.127)	652329	52.0804	52.1	
28 N-Nitrosomorpholine	56	9.428	9.500 ((1.125)	325689	55.4910	55.5	
30 N-Nitroso-di-n-propylamine	70	9.448	9.521 ((1.127)	277098	50.7291	50.7	
32 3&4-Methylphenol	108	9.604	9.656 ((1.146)	485894	52.5418	52.5	
34 Nitrobenzene	77	9.718	9.759 ((0.857)	474552	56.6163	56.6	
35 N-Nitrosopiperidine	114	10.080	10.121 ((0.889)	251210	52.7747	52.8	
36 Isophorone	82	10.339	10.390 ((0.911)	894699	54.6511	54.6	
37 2-Nitrophenol	139	10.483	10.504 ((0.924)	273164	55.5255	55.5	
38 2,4-Dimethylphenol	107	10.804	10.835 ((0.953)	467397	55.3464	55.3	
40 Bis(2-Chloroethoxy)methane	93	10.949	10.991 ((0.965)	665434	59.3269	59.3	
39 O,O,O-Triethylphosphorothioat	198	10.928	10.949 ((0.964)	198839	55.4033	55.4	
41 2,4-Dichlorophenol	162	11.156	11.167 ((0.984)	399089	54.8064	54.8	
42 1,2,4-Trichlorobenzene	180	11.249	11.260 ((0.992)	410771	54.2697	54.3	
* 44 Naphthalene-D8	136	11.342	11.353 ((1.000)	1087280	40.0000		
43 Benzoic acid	122	11.322	11.488 ((0.998)	218544	58.9390	58.9(Q)	
45 Naphthalene	128	11.384	11.415 ((1.004)	1267172	57.5130	57.5	
47 Hexachloropropene	213	11.643	11.653 ((1.026)	245605	56.4389	56.4	
48 2,6-Dichlorophenol	162	11.653	11.684 ((1.027)	333738	52.9850	53.0	
46 4-Chloroaniline	127	11.643	11.674 ((1.026)	478118	52.8282	52.8	
50 Hexachlorobutadiene	225	11.798	11.808 ((1.040)	212173	56.3127	56.3	
51 N-Nitroso-Di-N-Butylamine	84	12.564	12.605 ((1.108)	367888	59.1732	59.2	
53 Caprolactam	113	12.595	12.802 ((1.110)	143503	50.0846	50.1(Q)	
54 Isosafrole	162	12.999	13.019 ((1.146)	312421	51.0443	51.0	
56 2-Methylnaphthalene	142	13.102	13.133 ((1.155)	1038903	57.9383	57.9	
55 4-Chloro-3-Methylphenol	107	13.061	13.092 ((1.151)	396427	54.6754	54.7(Q)	
57 1-Methylnaphthalene	142	13.330	13.361 ((1.175)	792419	53.6814	53.7	
59 1,2,4,5-Tetrachlorobenzene	216	13.547	13.568 ((0.866)	634342	121.373	121(R)	
60 Hexachlorocyclopentadiene	237	13.557	13.578 ((0.866)	169323	44.5628	44.6	
62 2,4,6-Trichlorophenol	196	13.920	13.951 ((0.890)	266780	54.6226	54.6	
63 2,4,5-Trichlorophenol	196	14.075	14.075 ((0.899)	287512	58.0528	58.0	
61 Safrole	104	13.723	13.723 ((0.877)	27395	46.5049	46.5	
65 2-Chloronaphthalene	162		14.313 (1043371	56.3636	56.4(H)	
66 1,1'-Biphenyl	154		14.334 (828747	50.4484	50.4	
67 1-Chloronaphthalene	162		14.355 (672915	48.4197	48.4	
69 2-Nitroaniline	65		14.686 (255895	55.6822	55.7	
70 1,4-Naphthoquinone	158		14.779 (277388	66.9938	67.0(R)	
74 Acenaphthylene	152		15.307 (1119154	50.1025	50.1	
73 Dimethyl Phthalate	163		15.276 (849763	53.7395	53.7	
72 1,3-Dinitrobenzene	168		15.255 (128318	51.7758	51.8	
75 2,6-Dinitrotoluene	165		15.338 (186011	53.1596	53.2	
* 77 Acenaphthene-D10	164		15.659 (569690	40.0000		
79 Acenaphthene	153		15.752 (732224	55.1783	55.2	
78 3-Nitroaniline	138		15.762 (241077	54.9635	55.0	
80 2,4-Dinitrophenol	184		16.042 (116946	49.9899	50.0	
82 Dibenzofuran	168		16.197 (1009349	52.7169	52.7	
81 Pentachlorobenzene	250		16.124 (331777	53.7689	53.8	
84 1-Naphthylamine	143		16.435 (811661	48.0122	48.0	
83 2,4-Dinitrotoluene	165		16.362 (263308	53.6958	53.7	
88 2-Naphthylamine	143 139		16.663 (774393	51.5225	51.5	
86 4-Nitrophenol	139	10.518	16.476 ((1.000)	160468	53.2720	53.3(Q)	

Data File: $\t server \g \em \g - u.i \U011215.b \U9213.D$ Report Date: 13-Jan-2015 13:01

				CONCENTRATIONS			
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/L)	REVIEW CODE
	====	====	=======================================	= ======	======	======	========
87 2,3,4,6-Tetrachlorophenol	232	16.590	16.632 (1.060)	180811	48.2966	48.3	
90 Fluorene	166	17.014	17.046 (1.087)	787637	52.3751	52.4	
89 Diethylphthalate	149	16.994	17.035 (1.086)	864858	53.4072	53.4	
91 4-Chlorophenyl-phenylether	204	17.118	17.139 (1.094)	380353	52.6848	52.7	
92 0,0-diethyl-o-2-pyrazinylphos	107	17.170	17.222 (1.097)	174963	53.2604	53.3	
94 5-Nitro-O-Toluidine	152	17.180	17.242 (1.098)	244768	50.1552	50.2	
95 4-Nitroaniline	138		17.315 (1.102)	219739	51.3784	51.4	
96 4,6-Dinitro-2-Methylphenol	198		17.356 (0.895)	152613	57.0675	57.1	
97 N-Nitrosodiphenylamine	169	17.449	17.491 (0.904)	1133053	92.1451	92.1	
98 N-Nitrosodiphenylamine/DPA	169		17.491 (0.904)	1133053	92.1451	92.1	
99 1,2-Diphenylhydrazine	77		17.532 (0.906)	885304	54.0692	54.1	
100 Azobenzene	77		17.532 (0.906)	885304	54.2597	54.2	
93 Sulfotepp	97		17.222 (0.889)	194993	53.7545	53.8(Q)	
103 Diallate	86		18.257 (0.944)	333213	56.3680	56.4	
104 4-Bromophenyl-phenylether	248		18.339 (0.948)	225922	55.4555	55.4	
102 Phorate	75		18.267 (0.944)	291732	31.6708	31.7(RH)	
105 1,3,5-Trinitrobenzene	213		18.370 (0.949)	60931	25.3554	25.4(QR)	
107 Phenacetin	108		18.515 (0.954)	424954	51.5422	51.5	
107 Phenacetin 106 Hexachlorobenzene	284		18.432 (0.953)	262135	54.5367	54.5	
108 Dimethoate	87		18.722 (0.966)				
				310742	51.7849	51.8	
109 Atrazine	200		18.971 (0.980)	82814	25.4570	25.4(QRH)	
112 4-Aminobiphenyl	169		19.022 (0.983)	495107	38.2545	38.2(R)	
111 Pentachlorophenol	266		19.012 (0.982)	157932	59.5504	59.6	
110 Pentachloronitrobenzene	237		18.991 (0.982)	98583	55.0616	55.1	
* 114 Phenanthrene-D10	188		19.333 (1.000)	837762	40.0000		
113 Pronamide	173		19.354 (1.000)	333507	53.6940	53.7	
115 Phenanthrene	178		19.405 (1.003)	1176370	54.3421	54.3	
116 Anthracene	178		19.530 (1.009)	1178963	54.6911	54.7	
118 Disulfoton	88		19.561 (1.012)	396284	46.4723	46.5	
117 Dinoseb	211		19.561 (1.012)	176585	55.6586	55.6	
119 Carbazole	167		20.026 (1.035)	1000651	52.1287	52.1	
120 Methyl Parathion	109		20.461 (1.058)	299320	58.5083	58.5	
121 Di-n-butylphthalate	149		21.134 (1.093)	1478138	55.2867	55.3	
122 4-Nitroquinoline-1-Oxide	190	21.372	21.393 (1.107)	61639	40.9774	41.0	
123 Ethyl Parathion	291	21.465	21.496 (1.111)	68830	53.1502	53.2	
124 Methapyrilene	97	21.724	21.745 (1.125)	239674	44.3089	44.3	
125 Isodrin	193	21.920	21.941 (1.135)	150925	53.7626	53.8	
126 Fluoranthene	202	22.314	22.345 (1.155)	1060808	51.9293	51.9	
128 Pyrene	202	22.841	22.873 (0.882)	1092583	53.6925	53.7	
127 Benzidine	184	22.841	22.831 (0.882)	84594	17.1446	17.1(aR)	
131 p-Dimethylaminoazobenzene	225	23.804	23.835 (0.919)	186226	50.7352	50.7	
132 Chlorobenzilate	251	23.990	24.011 (0.926)	281986	53.7502	53.8	
134 3,3'-Dimethylbenzidine	212	24.653	24.663 (0.952)	159294	34.0778	34.1(R)	
135 Butylbenzylphthalate	149	24.798	24.819 (0.958)	534889	52.9124	52.9	
136 Bis(2-ethylhexyl)adipate	129	25.191	25.212 (0.973)	454406	50.8539	50.8	
137 2-Acetylaminofluorene	181	25.294	25.326 (0.977)	288959	51.9870	52.0	
138 Benzo(a)anthracene	228	25.864	25.885 (0.999)	728217	51.4927	51.5	
* 139 Chrysene-D12	240	25.895	25.916 (1.000)	584536	40.0000		
141 Chrysene	228	25.947	25.978 (1.002)	700440	54.5905	54.6	
140 3,3'-Dichlorobenzidine	252	25.947	25.957 (1.002)	201380	46.9871	47.0(R)	
142 bis(2-Ethylhexyl)phthalate	149	26.371	26.392 (1.018)	734711	53.1812	53.2	
144 Di-n-octylphthalate	149	27.913	27.924 (0.957)	1133335	50.3210	50.3	
145 Benzo(b)fluoranthene	252		28.400 (0.973)	596747	53.2284	53.2	
146 7,12-Dimethylbenz(A)Anthracen	256		28.410 (0.973)	294127	50.7326	50.7	
- · · · · · · · · · · · · · · · · · · ·							

Report Date: 13-Jan-2015 13:01

				CONCENTRA	ATIONS	
QUANT SIG				ON-COLUMN	FINAL	
MASS	RT	EXP RT REL RI	RESPONSE	(ug/ml)	(ug/L)	REVIEW CODE
====	====		= ======	======	======	========
252	28.431	28.462 (0.975)	615357	52.5846	52.6(H)	
252	29.041	29.052 (0.996)	511835	51.4022	51.4	
264	29.165	29.166 (1.000)	420733	40.0000		
268	29.828	29.828 (1.023)	255268	54.5389	54.5	
279	30.987	30.977 (1.062)	289549	57.2376	57.2	
276	31.298	31.308 (1.073)	336786	60.1743	60.2(R)	
278	31.370	31.370 (1.076)	347636	57.4659	57.5	
276	31.856	31.857 (1.092)	363264	56.5225	56.5	
100			14446515	978.905	979	
	MASS ==== 252 252 264 268 279 276 278	MASS RT ==== 252 28.431 252 29.041 264 29.165 268 29.828 279 30.987 276 31.298 278 31.370 276 31.856	MASS RT EXP RT REL RT === ===============================	MASS RT EXP RT REL RT RESPONSE === === ====================================	QUANT SIG MASS RT EXP RT REL RT RESPONSE (ug/ml) ==== 252 28.431 28.462 (0.975) 615357 52.5846 252 29.041 29.052 (0.996) 511835 51.4022 264 29.165 29.166 (1.000) 420733 40.0000 268 29.828 29.828 (1.023) 255268 54.5389 279 30.987 30.977 (1.062) 289549 57.2376 276 31.298 31.370 31.370 (1.076) 347636 57.4659 276 31.856 31.857 (1.092) 363264 56.5225	MASS RT EXP RT REL RT RESPONSE (ug/ml) (ug/L) === =================================

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

 Q - Qualifier signal failed the ratio test.

 R - Spike/Surrogate failed recovery limits.

- H Operator selected an alternate compound hit.

BEFORE MANUAL INTEGRATION

Compound: 2-Methylnaphthalene CAS Number: 91-57-6

AFTER MANUAL INTEGRATION

Data File: $\t = 12-3AN-2015$ 13:57 Instrument: gcms-u.i Client Sample ID:

Compound: 2-Methylnaphthalene CAS Number: 91-57-6

Data File: $\t = 12-JAN-2015$ 13:57 Instrument: gcms-u.i Client Sample ID:

BEFORE MANUAL INTEGRATION

Compound: Dimethyl Phthalate CAS Number: 131-11-3

AFTER MANUAL INTEGRATION

Compound: Dimethyl Phthalate CAS Number: 131-11-3

AFTER MANUAL INTEGRATION

Data File: $\t = 12-JAN-2015$ Injection Date: 12-JAN-2015 15:25 Instrument: gcms-u.i Client Sample ID:

BEFORE MANUAL INTEGRATION

Data File: $\t = 12-JAN-2015$ 16:09 Instrument: gcms-u.i Client Sample ID:

BEFORE MANUAL INTEGRATION

Compound: Benzo(k)fluoranthene CAS Number: 207-08-9

AFTER MANUAL **INTEGRATION**

Compound: Benzo(k)fluoranthene CAS Number: 207-08-9

BEFORE MANUAL INTEGRATION

Compound: Dimethyl Phthalate CAS Number: 131-11-3

AFTER MANUAL INTEGRATION

Data File: $\t = 12-JAN-2015$ 16:53 Instrument: gcms-u.i Client Sample ID:

Compound: Dimethyl Phthalate CAS Number: 131-11-3

Data File: $\t = 12-JAN-2015$ 16:53 Instrument: gcms-u.i Client Sample ID:

Compound: Benzo(k)fluoranthene CAS Number: 207-08-9

AFTER MANUAL **INTEGRATION**

Data File: $\t = 12-JAN-2015$ 16:53 Instrument: gcms-u.i Client Sample ID:

Compound: Benzo(k)fluoranthene CAS Number: 207-08-9

Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

Project :Navy Clean WE15-03-06 NWIRP Bethpage, 1
Lab ID :WG157161-2
Analytical Date: 01/19/15 11:31
Lab File ID :U9269.D
Instrument ID: GCMS-U

Initial Calibration Date(s): 01/12/15 13:06 01/12/15 16:53 **Column ID:**

Initial Calibration Date	(S): 01/12/13 13:00	01/12/13 10	0:33	Column	ш.		
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
15 Phenol	1.49821	1.42966	1.42966	0.010	-4.57505	20.01000	Averaged
16 Bis(2-Chloroethyl)ether	1.08880	1.04981	1.04981	0.010	-3.58148	20.00000	Averaged
7 2-Chlorophenol	1.24915	1.24419	1.24419	0.010	-0.39671	20.00000	Averaged
8 1,3-Dichlorobenzene	1.39026	1.38580	1.38580	0.010	-0.32088	20.00000	Averaged
20 1,4-Dichlorobenzene	1.37375	1.35323	1.35323	0.010	-1.49388	20.01000	Averaged
1 1,2-Dichlorobenzene	1.33358	1.29408	1.29408	0.010	-2.96156	20.00000	Averaged
4 2,2'-Oxybis(1-chloropropane	1.58359	1.67231	1.67231	0.010	5.60291	20.00000	Averaged
5 2-Methylphenol	1.20842	1.06522	1.06522	0.010	-11.85079	20.00000	Averaged
0 N-Nitroso-di-n-propylamine	0.75540	0.69356	0.69356	0.050	-8.18624	20.00000	Averaged
1 Hexachloroethane	0.52447	0.58537	0.58537	0.010	11.61228	20.00000	Averaged
2 3&4-Methylphenol	1.27890	1.13734	1.13734	0.010	-11.06895	20.00000	Averaged
4 Nitrobenzene	0.30836	0.26703	0.26703	0.010	-13.40452	20.00000	Averaged
6 Isophorone	0.60228	0.50237	0.50237	0.010	-16.58745	20.00000	Averaged
7 2-Nitrophenol	0.18099	0.17911	0.17911	0.010	-1.03593	20.01000	Averaged
8 2,4-Dimethylphenol	0.31068	0.27785	0.27785	0.010	-10.56597	20.00000	Averaged
10 Bis(2-Chloroethoxy)methane	0.41264	0.40502	0.40502	0.010	-1.84580	20.00000	Averaged
1 2,4-Dichlorophenol	0.26789	0.27143	0.27143	0.010	1.32289	20.01000	Averaged
2 1,2,4-Trichlorobenzene	0.27846	0.27422	0.27422	0.010	-1.52175	20.00000	Averaged
5 Naphthalene	0.81057	0.79091	0.79091	0.010	-2.42464	20.00000	Averaged
16 4-Chloroaniline	0.33296	0.33467	0.33467	0.010	0.51444	20.00000	Averaged
60 Hexachlorobutadiene	0.13861	0.15249	0.15249	0.010	10.01250	20.01000	Averaged
55 4-Chloro-3-Methylphenol	0.26674	0.23705	0.23705	0.010	-11.12918	20.01000	Averaged
6 2-Methylnaphthalene	0.65967	0.56097	0.56097	0.010	-14.96163	20.00000	Averaged
60 Hexachlorocyclopentadiene	0.26679	0.33251	0.33251	0.050	24.63442	20.00000	Averaged
52 2,4,6-Trichlorophenol	0.34293	0.35029	0.35029	0.010	2.14623	20.01000	Averaged
3 2,4,5-Trichlorophenol	0.34774	0.38397	0.38397	0.010	10.41897	20.00000	Averaged
55 2-Chloronaphthalene	50.00000	50.80970	1.34071	0.010	1.61940	20.00000	Ouadratic
59 2-Nitroaniline	0.32268	0.26626	0.26626	0.010	-17.48275	20.00000	Averaged
73 Dimethyl Phthalate	1.11026	1.05012	1.05012	0.010	-5.41675	20.00000	Averaged
4 Acenaphthylene	1.56838	1.40550	1.40550	0.010	-10.38539	20.00000	Averaged
75 2,6-Dinitrotoluene	0.24568	0.23792	0.23792	0.010	-3.15937	20.00000	Averaged
78 3-Nitroaniline	0.30797	0.28839	0.28839	0.010	-6.35755	20.00000	Averaged
79 Acenaphthene	50.00000	43.82427	0.85688	0.010	-12.35146	20.01000	Quadratic
30 2,4-Dinitrophenol	50.00000	42.10784	0.13648	0.050	-15.78432	20.00000	Linear
32 Dibenzofuran	1.34435	1.32157	1.32157	0.010	-1.69486	20.00000	Averaged
33 2,4-Dinitrotoluene	0.34431	0.33139	0.33139	0.010	-3.75115	20.00000	Averaged
36 4-Nitrophenol	0.21150	0.19425	0.19425	0.050	-8.15383	20.00000	Averaged
39 Diethylphthalate	50.00000	38.25178	0.96774	0.010	-23.49644	20.00000	Quadratic
90 Fluorene	50.00000	44.43660	0.98075	0.010	-11.12679	20.00000	Quadratic
91 4-Chlorophenyl-phenylether	0.50690	0.49803	0.49803	0.010	-1.74971	20.00000	Averaged
95 4-Nitroaniline	0.30030	0.23084	0.23084	0.010	-23.13051	20.00000	Averaged

Form 7 **Calibration Verification Summary**

Lab Name: Katahdin Analytical Services

Project: Navy Clean WE15-03-06 NWIRP Bethpage, 1 **SDG:** SI0230 **Lab ID**:WG157161-2 **Analytical Date:** 01/19/15 11:31 Lab File ID: U9269.D **Instrument ID:** GCMS-U **Column ID:**

Initial Calibration Date(s): 01/12/15 13:06 01/12/15 16:53

Initial Calibration Date	(s): 01/12/15 13:06	01/12/15 16	:53	Column	ш.		
Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
96 4,6-Dinitro-2-Methylphenol	0.12769	0.13730	0.13730	0.010	7.53213	20.00000	Averaged
97 N-Nitrosodiphenylamine	0.58711	0.64793	0.64793	0.010	10.35938	20.01000	Averaged
104 4-Bromophenyl-phenylether	0.19451	0.21888	0.21888	0.010	12.52834	20.00000	Averaged
106 Hexachlorobenzene	0.22950	0.23803	0.23803	0.010	3.71954	20.00000	Averaged
111 Pentachlorophenol	0.12663	0.15056	0.15056	0.010	18.89975	20.01000	Averaged
115 Phenanthrene	1.03359	0.98936	0.98936	0.010	-4.27896	20.00000	Averaged
116 Anthracene	1.02925	1.02122	1.02122	0.010	-0.78086	20.00000	Averaged
119 Carbazole	0.91653	0.90595	0.90595	0.010	-1.15410	20.00000	Averaged
121 Di-n-butylphthalate	1.27654	1.20239	1.20239	0.010	-5.80856	20.00000	Averaged
126 Fluoranthene	0.97536	0.94585	0.94585	0.010	-3.02550	20.01000	Averaged
128 Pyrene	1.39248	1.41657	1.41657	0.010	1.73004	20.00000	Averaged
135 Butylbenzylphthalate	0.69176	0.61248	0.61248	0.010	-11.46039	20.00000	Averaged
138 Benzo(a)anthracene	0.96775	0.92381	0.92381	0.010	-4.54029	20.00000	Averaged
140 3,3'-Dichlorobenzidine	0.29328	0.28739	0.28739	0.010	-2.00926	20.00000	Averaged
141 Chrysene	0.87802	0.87899	0.87899	0.010	0.11049	20.00000	Averaged
142 bis(2-Ethylhexyl)phthalate	0.94538	0.84595	0.84595	0.010	-10.51807	20.00000	Averaged
144 Di-n-octylphthalate	2.14123	1.92428	1.92428	0.010	-10.13186	20.01000	Averaged
145 Benzo(b)fluoranthene	1.06586	1.09718	1.09718	0.010	2.93882	20.00000	Averaged
147 Benzo(k)fluoranthene	1.11256	1.13123	1.13123	0.010	1.67803	20.00000	Averaged
148 Benzo(a)pyrene	0.94668	0.92186	0.92186	0.010	-2.62148	20.01000	Averaged
153 Indeno(1,2,3-cd)pyrene	50.00000	42.68540	0.45540	0.010	-14.62919	20.00000	Quadratic
154 Dibenzo(a,h)anthracene	0.57513	0.49573	0.49573	0.010	-13.80560	20.00000	Averaged
155 Benzo(g,h,i)perylene	0.61102	0.52229	0.52229	0.010	-14.52130	20.00000	Averaged
8 2-Fluorophenol	1.30099	1.18412	1.18412	0.010	-8.98313	20.00000	Averaged
14 Phenol-D6	1.40288	1.28399	1.28399	0.010	-8.47411	20.00000	Averaged
33 Nitrobenzene-D5	0.30845	0.26678	0.26678	0.010	-13.51048	20.00000	Averaged
64 2-Fluorobiphenyl	1.00607	1.04848	1.04848	0.010	4.21575	20.00000	Averaged
101 2,4,6-Tribromophenol	0.16934	0.16421	0.16421	0.010	-3.02667	20.00000	Averaged
129 Terphenyl-D14	0.87419	0.90233	0.90233	0.010	3.21948	20.00000	Averaged

Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

Project :Navy Clean WE15-03-06 NWIRP Bethpage, 1
Lab ID :WG157161-2
Analytical Date: 01/19/15 11:31
Lab File ID :U9269.D
Instrument ID: GCMS-U

Initial Calibration Date(s): 01/12/15 13:06 01/12/15 16:53 **Column ID:**

* = Compound out of QC criteria

Report Date: 20-Jan-2015 10:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011915.b\\U9269.D

Lab Smp Id: WG157161-2

Inj Date : 19-JAN-2015 11:31 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG157161-2,SI0230 Inst ID: gcms-u.i

Misc Info: WG157161, WG157161, WG156827-4, SI0230-1

Comment

: \\target_server\gg\chem\gcms-u.i\U011915.b\U8270C70.m Method

Meth Date: 19-Jan-2015 14:50 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 16:53 Cal File: U9212.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8270bnaDoD.sub

Target Version: 4.12

Processing Host: KATHADIN-50E985

Concentration Formula: Amt * DF * (Vt/Ws*Vi)*(100/(100-M))*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Ws	0.03000	Weight of Sample (Kg)
Vi	1.000	Volume injected (uL)
M	0.00000	% Moisture
Cpnd Variable		Local Compound Variable

					AMOUN	TS	
	QUANT SIG				CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	====		======	======	======	========
\$ 8 2-Fluorophenol	112	5.590	5.590 (0.678)	660555	50.0000	45.5	
\$ 14 Phenol-D6	99	7.701	7.701 (0.935)	716270	50.0000	45.8	
15 Phenol	94	7.722	7.722 (0.937)	797531	50.0000	47.7	
16 Bis(2-Chloroethyl)ether	93	7.753	7.753 (0.941)	585629	50.0000	48.2	
17 2-Chlorophenol	128	7.826	7.826 (0.950)	694066	50.0000	49.8	
18 1,3-Dichlorobenzene	146	8.105	8.105 (0.984)	773063	50.0000	49.8(H)	
* 19 1,4-Dichlorobenzene-D4	152	8.240	8.240 (1.000)	446276	40.0000		
20 1,4-Dichlorobenzene	146	8.281	8.281 (1.005)	754893	50.0000	49.2	
21 1,2-Dichlorobenzene	146	8.612	8.612 (1.045)	721898	50.0000	48.5	
25 2-Methylphenol	108	9.099	9.099 (1.104)	594225	50.0000	44.1(H)	
24 2,2'-Oxybis(1-chloropropane)	45	9.016	9.016 (1.094)	932891	50.0000	52.8	
32 3&4-Methylphenol	108	9.471	9.471 (1.149)	634457	50.0000	44.5	
30 N-Nitroso-di-n-propylamine	70	9.326	9.326 (1.132)	386898	50.0000	45.9	
31 Hexachloroethane	117	9.378	9.378 (1.138)	326545	50.0000	55.8	
\$ 33 Nitrobenzene-D5	82	9.544	9.544 (0.851)	569193	50.0000	43.2	
34 Nitrobenzene	77	9.585	9.585 (0.855)	569723	50.0000	43.3	
36 Isophorone	82	10.206	10.206 (0.910)	1071854	50.0000	41.7	
37 2-Nitrophenol	139	10.341	10.341 (0.922)	382151	50.0000	49.5	
38 2,4-Dimethylphenol	107	10.662	10.662 (0.951)	592824	50.0000	44.7	
40 Bis(2-Chloroethoxy)methane	93	10.827	10.827 (0.966)	864148	50.0000	49.1	

Data File: $\t server \g cms-u.i\U011915.b\U9269.D$ Report Date: 20-Jan-2015 10:02

						AMOUN	TS	
	QUANT SIG					CAL-AMT	ON-COL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	=======================================	====	======	=======	======	======	======	========
41 2,4-Dichlorophenol	l 162	11.003	11.003	(0.982)	579125	50.0000	50.7	
42 1,2,4-Trichlorober	nzene 180	11.117	11.117	(0.992)	585071	50.0000	49.2	
* 44 Naphthalene-D8	136	11.210	11.210	(1.000)	1706859	40.0000		
45 Naphthalene	128	11.251	11.251	(1.004)	1687471	50.0000	48.8	
46 4-Chloroaniline	127	11.500	11.500	(1.026)	714043	50.0000	50.2	
50 Hexachlorobutadier	ne 225	11.676	11.676	(1.042)	325351	50.0000	55.0	
55 4-Chloro-3-Methylr	phenol 107	12.897	12.897	(1.150)	505774	50.0000	44.4	
56 2-Methylnaphthaler	ne 142	12.970	12.970	(1.157)	1196879	50.0000	42.5(H)	
60 Hexachlorocycloper	ntadiene 237	13.425	13.425	(0.866)	370209	50.0000	62.3	
62 2,4,6-Trichlorophe	enol 196	13.777	13.777	(0.889)	390004	50.0000	51.1(H)	
63 2,4,5-Trichlorophe	enol 196	13.901	13.901	(0.897)	427506	50.0000	55.2	
\$ 64 2-Fluorobiphenyl	172	13.953	13.953	(0.900)	1167363	50.0000	52.1	
65 2-Chloronaphthaler	ne 162	14.139	14.139	(0.912)	1492728	50.0000	50.8(H)	
69 2-Nitroaniline	65	14.501	14.501	(0.935)	296453	50.0000	41.2	
73 Dimethyl Phthalate	163	15.081	15.081	(0.973)	1169187	50.0000	47.3	
74 Acenaphthylene	152	15.133	15.133	(0.976)	1564859	50.0000	44.8	
75 2,6-Dinitrotoluene	165	15.143	15.143	(0.977)	264899	50.0000	48.4	
* 77 Acenaphthene-D10	164	15.505	15.505	(1.000)	890706	40.0000		
78 3-Nitroaniline	138	15.536	15.536	(1.002)	321085	50.0000	46.8	
79 Acenaphthene	153	15.588	15.588	(1.005)	954035	50.0000	43.8	
80 2,4-Dinitrophenol	184	15.816	15.816	(1.020)	151957	50.0000	42.1	
86 4-Nitrophenol	139	16.261	16.261	(1.049)	216280	50.0000	45.9	
82 Dibenzofuran	168	16.023	16.023	(1.033)	1471408	50.0000	49.2	
83 2,4-Dinitrotoluene	165	16.147	16.147	(1.041)	368965	50.0000	48.1	
89 Diethylphthalate	149	16.851	16.851	(1.087)	1077464	50.0000	38.2	
91 4-Chlorophenyl-phe	enylether 204	16.975	16.975	(1.095)	554500	50.0000	49.1	
90 Fluorene	166	16.872	16.872	(1.088)	1091947	50.0000	44.4	
95 4-Nitroaniline	138	17.068	17.068	(1.101)	257008	50.0000	38.4	
96 4,6-Dinitro-2-Meth	nylphenol 198	17.141	17.141	(0.895)	201124	50.0000	53.8	
97 N-Nitrosodiphenyla			17.306		949097	50.0000	55.2	
\$ 101 2,4,6-Tribromopher			17.493		182830	50.0000	48.5	
104 4-Bromophenyl-pher	-		18.165		320626	50.0000	56.3	
106 Hexachlorobenzene	284		18.248		348674	50.0000	51.8	
111 Pentachlorophenol	266		18.817		220541	50.0000	59.4	
* 114 Phenanthrene-D10	188		19.159		1171855	40.0000		
115 Phenanthrene	178		19.221		1449233	50.0000	47.9(H)	
116 Anthracene	178		19.345		1495899	50.0000	49.6	
119 Carbazole	167		19.832		1327051	50.0000	49.4	
121 Di-n-butylphthalat			20.970		1761281	50.0000	47.1	
126 Fluoranthene	202		22.161		1385495	50.0000	48.5	
128 Pyrene	202		22.678		1430449	50.0000	50.9	
\$ 129 Terphenyl-D14	244		23.268		911169	50.0000	51.6	
135 Butylbenzylphthala			24.645		618481	50.0000	44.3	
* 139 Chrysene-D12	240		25.721		807837	40.0000	40.0	
140 3,3'-Dichlorobenzi			25.773 25.700		290205	50.0000	49.0	
138 Benzo(a)anthracene		25.700 25.783			932862	50.0000	47.7(H)	
141 Chrysene	228			(1.002)	887597	50.0000	50.0	
142 bis(2-Ethylhexyl)r 144 Di-n-octylphthalat			26.238 27.760		854233 1282807	50.0000 50.0000	44.7 44.9	
145 Benzo(b)fluoranthe			28.205			50.0000	44.9 51.5	
147 Benzo(k)fluoranthe			28.257		731429 754123	50.0000	51.5 50.8(H)	
148 Benzo(k)Truoranthe	ene 252 252		28.257		614551	50.0000	48.7	
* 150 Perylene-D12	264		28.981		533314	40.0000	10.7	
150 Perylene-D12 153 Indeno(1,2,3-cd)py			31.082		303586	50.0000	42.7	
155 Indeno(1,2,5-cd)py	270	J1.UUZ	J1.00Z	(1.0/4)	303300	55.0000	14.1	

Data File: $\t server \g \end{math} \c 10011915.b\U9269.D$ Report Date: 20-Jan-2015 10:02

						AMOUNT	'S		
	QUANT SIG					CAL-AMT	ON-COL		
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE	
	====	====	======	======	======	======	======	========	
154 Dibenzo(a,h)anthracene	278	31.165	31.165	(1.075)	330476	50.0000	43.1		
155 Benzo(g,h,i)perylene	276	31.610	31.610	(1.091)	348181	50.0000	42.7		

QC Flag Legend

H - Operator selected an alternate compound hit.

Date : 12-JAN-2015 12:47

Client ID: DFTPP02 Instrument: gcms-u,i

Sample Info: WG156827-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Date : 12-JAN-2015 12:47

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG156827-1,SI0230

Operator: JCG

Column phase: RTX-58ILMS Column diameter: 0.25

1 dftpp

Date : 12-JAN-2015 12:47

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG156827-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Data File: UD310.D

Spectrum: Avg. Scans 168-170 (7.33), Background Scan 164

Location of Maximum: 198.00 Number of points: 162

Y	m/z	Υ.	m/z	Y	m/z	Υ	m/z
 327	242,00	1734 l	168,00	1337	101.00	198	38,00
463	243,00	173 I	169,00	273	103.00	2133	39,00
8300	244.00	184 I	173.00	677	104.00	836	41.00
1198	245,00	770 I	174.00	728	105.00	916	43,00
1478	246,00	1493 I	175,00	11716	107,00	178	44.00
42640	255,00	446 I	176.00	1885	108.00	409	49.00
6266	256,00	512 I	177,00	23632	110,00	8255	50,00
279	257,00	2927 I	179,00	3452	111.00	34328	51,00
2165	258,00	2216 I	180,00	252	112,00	1645	52,00
214	259,00	1014 I	181,00	444	116.00	1001	55,00
960	265,00	1441 I	185,00	7319	117.00	1597	56,00
1341	273.00	11343 I	186.00	486	118.00	3348	57,00
3301	274.00	3279 I	187,00	735	122,00	204	60,00
19040	275.00	483 I	189,00	1205	123,00	509	61,00
2528	276,00	674 I	192,00	479	124.00	512	62,00
1623	277.00	796 I	193,00	451	125.00	1323	63.00
5059	296,00	2331 I	196,00	43016	127,00	646	65,00
460	297,00	178 I	197,00	3447	128,00	576	68,00
524	303.00	90336 I	198,00	16036	129,00	32880	69,00
296	315,00	5924 I	199,00	1329	130.00	481	73,00
174	316,00	428 I	200,00	229	134.00	2909	74.00
1905	323.00	222	201.00	1224	135.00	4426	75,00
216	324,00	231 I	203,00	491	136,00	1417	76,00
1212	334,00	2819 I	204,00	547	137,00	38016	77,00
280	346,00	4593 I	205,00	1864	141.00	2562	78,00
426	352,00	19984 I	206,00	580	142.00	2182	79,00
183	353,00	2750 I	207,00	432	143,00	1573	80,00
250	354,00	254 I	208,00	850	147.00	2559	81,00
2092	365.00	206 I	210,00	1893	148.00	673	82,00
1001	372,00	713 I	211,00	219	149,00	805	83,00
440	403,00	4746 I	217,00	203	151.00	57	84.00
512	421,00	503 I	218,00	522	153,00	545	85,00
392	422,00	4546 I	221,00	242	154,00	759	86,00
2910	423,00	1009 I	223,00	842	155.00	380	87,00
		10848 I	224.00		156.00		91.00

Date : 12-JAN-2015 12:47

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG156827-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Data File: UD310.D

Spectrum: Avg. Scans 168-170 (7.33), Background Scan 164

Location of Maximum: 198.00 Number of points: 162

	m/z	Y		m/z	Y		m/z	Y		m/z	Y	
+- I	92,00		·	157.00		•	225,00	2507	•	441.00	 10822	•
I	93,00	3561	I	160,00	462	١	227,00	3989	I	442,00	67288	I
I	96.00	176	I	161.00	812	١	228.00	463	I	443,00	13205	I
1	97.00	193	ı	165,00	763	١	229,00	637	I	444.00	1299	١
1	98,00			166.00			231,00	231	•			1
 -	99,00		•	167,00		•	235.00	169	•			-+

Quantitation Report

Data File : C:\HPCHEM\1\DATA\U011215\UD310.D

Acq On : 12 Jan 2015 12:47 pm Operator: JCG

Sample: WG156827-1 Inst: GC/MS Ins

Misc: WG156827, WG156827, WG156827-4 Multiplr: 1.00

MSamntEignetionnParams: OSEPOP5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Wed Jan 07 10:41:02 2015 Response via : Multiple Level Calibration

Vial: 1

Quantitation Report

Data File : C:\HPCHEM\1\DATA\U011215\UD310.D Vial: 1
Acq On : 12 Jan 2015 12:47 pm Operator: JCG

Sample : WG156827-1 Inst : GC/MS Ins

Misc : WG156827, WG156827, WG156827-4 Multiplr: 1.00

図Sa面ht電gmetiのanPalaths: OSEPOP5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Wed Jan 07 10:41:02 2015 Response via : Multiple Level Calibration

Quantitation Report

Sample : WG156827-1 Inst : GC/MS Ins

Misc : WG156827, WG156827, WG156827-4 Multiplr: 1.00

MG8aMnt#gmetionnParams: OSEPOP5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Wed Jan 07 10:41:02 2015 Response via : Multiple Level Calibration

UD310.D TUNETAIL.M Mon Jan 12 13:02:44 2015

Date : 19-JAN-2015 11:12

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG157161-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Date : 19-JAN-2015 11:12

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG157161-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

1 dftpp

Date : 19-JAN-2015 11:12

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG157161-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Data File: UD313.D

Spectrum: Avg. Scans 157-159 (7.22), Background Scan 154

Location of Maximum: 198.00 Number of points: 184

	m/z	Y	m/z	Υ.	m/z	Y	m/z	
+- I	38,00	390	116.00	 856 I	181.00	1495	 257.00	71
ı	39,00	3562	117,00	11163 I	185,00	2020	258,00	373
I	40.00	359	118.00	693 I	186,00	16552	259.00	45
ı	44.00	223	122,00	839	187,00	4823	265.00	150
1	49,00	41	123,00	1573 I	189,00	585	273,00	213
1	50,00	12058	124.00	 554 I	191,00	209	274.00	540
I	51,00	47928	125,00	815 I	192,00	1508	275,00	2854
I	52,00	2227	127,00	65032 I	193,00	1442	276,00	352
I	55,00	219	128,00	4586 I	196,00	3936	277,00	234
ا 	56,00	1641	129.00	24632	198.00	139904	1 278,00	21
ı	57,00	3621	130,00	1842	199,00	9196	285.00	24
I	61.00	541	131.00	230	200,00	669	293,00	47
I	62,00	494	134.00	789 I	201,00	286	296.00	806
I	63.00	1627	135,00	1953 I	203,00	545	297.00	124
ا +-	65,00	782	136.00	680	204,00	4254	303.00 	80
i	68,00	624	137.00	940 I	205,00	7040	314.00	28
I	69,00	45224	140,00	179 I	206,00	32104	315,00	70
I	73.00	200	141.00	2667	207,00	3966	316.00	58
I	74.00	3860	142,00	939	208,00	1076	323,00	268
ا +-	75,00	6614	143.00	561 I	210,00	288	324.00 	23
i	76,00	2100	147.00	1303	211.00	1186	327,00	47
I	77.00	52600	148,00	2799	216,00	300	334,00	158
I	78.00	3443	149.00	469 I	217,00	7674	335.00	41
I	79,00	2987	151.00	234	218,00	976	341.00	19
 +-	80,00	2344	153.00 	919	221.00	7058 	346.00 	57.
ı	81,00		154,00	509 I	223,00	1733	352.00	57:
I	82,00		155.00		224.00	17728	353.00	51
I	83.00		156.00		225,00		354.00	82
I	85.00		157,00		226.00		365.00	363
 +-	86,00	1120	158,00	249 I	227,00	5978 	366.00 +	50
ı	87,00	399	159,00	259	228,00	1021	372.00	136
I	91.00	782	160,00	618	229,00	1547	373.00	23
I	92,00	697	161,00	1593 I	231,00	465	383,00	25
I	93.00	5493	162,00	199	234.00	206	402,00	68
I	98.00	3165	165,00	1119	235.00	265	403.00	71

Date : 19-JAN-2015 11:12

Client ID: DFTPP02 Instrument: gcms-u.i

Sample Info: WG157161-1,SI0230

Operator: JCG

Column phase: RTX-5SILMS Column diameter: 0.25

Data File: UD313.D

Spectrum: Avg. Scans 157-159 (7.22), Background Scan 154

Location of Maximum: 198.00 Number of points: 184

	m/z				Y					m/z		
	99,00		Ċ		603	•		177	Ċ	421,00		
ı	101,00	2095	ı	167,00	5837	ı	237,00	221	ı	422,00	635	ı
1	103,00	571	ı	168.00	3321	ı	241.00	375	ı	423,00	5540	ı
- 1	104.00	1164	1	169.00	309	I	242.00	1014	ı	424,00	1163	1
- 1	105.00	1057	ı	172.00	285	١	243.00	881	I	441,00	16792	1
+			+			-+-			+			-+
- 1	106.00	238	I	173.00	613	I	244.00	13410	I	442,00	99752	١
- 1	107,00	17312	I	174.00	1173	I	245.00	1900	I	443,00	19224	1
- 1	108,00	2605	I	175.00	2351	١	246,00	2466	I	444.00	2082	1
ı	109,00	486	I	176.00	605	١	247,00	335	I			ı
١	110,00	33184	I	177,00	649	I	249,00	248	I			1
+			+			-+-			+			-+
١	111,00	4841	I	179,00	3813	١	255,00	72400	I			-1
١	112,00	268	I	180,00	3022	I	256,00	10117	I			I
+			-+			-+-			-+			-+

Quantitation Report

Sample : WG157161-1 Inst : GC/MS Ins

Misc: WG157161, WG157161, WG156827-4 Multiplr: 1.00

WSamht@metioanPagams:29EPOP5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Mon Jan 19 10:49:35 2015 Response via : Multiple Level Calibration

UD313.D TUNETAIL.M

Quantitation Report

Data File : C:\HPCHEM\1\DATA\U011915\UD313.D Vial: 1
Acq On : 19 Jan 2015 11:12 am Operator: JCG

Sample : WG157161-1 Inst : GC/MS Ins

Misc : WG157161, WG157161, WG156827-4 Multiplr: 1.00

Q8amht@gmetionPagams:29E20P5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Mon Jan 19 10:49:35 2015 Response via : Multiple Level Calibration

Quantitation Report

Sample : WG157161-1 Inst : GC/MS Ins

Misc : WG157161, WG157161, WG156827-4 Multiplr: 1.00

MSamntægmetiðanPågam\$:29EP0P5 Quant Results File: temp.res

Method : C:\HPCHEM\1\METHODS\TUNETAIL.M (RTE Integrator)

Title : Katahdin 8270C Water Calibration

Last Update : Mon Jan 19 10:49:35 2015 Response via : Multiple Level Calibration

UD313.D TUNETAIL.M Mon Jan 19 11:30:17 2015

Raw QC Data Section

Report of Analytical Results

Client:

Lab ID: WG156989-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: U9270.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By:HG **Extraction Method:** SW846 3550

Lab Prep Batch: WG156989

Analysis Date: 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Phenol	U	250	ug/Kgdryw	t 1	330	330	160	250
Bis(2-Chloroethyl)Ether	U	250	ug/Kgdryw	t 1	330	330	81.	250
2-Chlorophenol	U	250	ug/Kgdryw	t 1	330	330	160	250
1,3-Dichlorobenzene	U	250	ug/Kgdryw	t 1	330	330	78.	250
1,4-Dichlorobenzene	U	250	ug/Kgdryw	t 1	330	330	86.	250
1,2-Dichlorobenzene	U	250	ug/Kgdryw	t 1	330	330	88.	250
2-Methylphenol	U	250	ug/Kgdryw	t 1	330	330	200	250
2,2'-Oxybis(1-Chloropropane)	U	250	ug/Kgdryw	t 1	330	330	89.	250
3&4-Methylphenol	U	250	ug/Kgdryw	t 1	330	330	190	250
N-Nitroso-Di-N-Propylamine	U	250	ug/Kgdryw	t 1	330	330	83.	250
Hexachloroethane	U	250	ug/Kgdryw	t 1	330	330	96.	250
Nitrobenzene	U	250	ug/Kgdryw	t 1	330	330	91.	250
Isophorone	U	250	ug/Kgdryw	t 1	330	330	75.	250
2-Nitrophenol	U	250	ug/Kgdryw	t 1	330	330	170	250
2,4-Dimethylphenol	U	250	ug/Kgdryw	t 1	330	330	160	250
Bis(2-Chloroethoxy)Methane	U	250	ug/Kgdryw	t 1	330	330	96.	250
2,4-Dichlorophenol	U	250	ug/Kgdryw	t 1	330	330	150	250
1,2,4-Trichlorobenzene	U	250	ug/Kgdryw	t 1	330	330	81.	250
Naphthalene	U	250	ug/Kgdryw	t 1	330	330	87.	250
4-Chloroaniline	U	250	ug/Kgdryw		330	330	120	250
Hexachlorobutadiene	U	250	ug/Kgdryw	t 1	330	330	83.	250
4-Chloro-3-Methylphenol	U	250	ug/Kgdryw	t 1	330	330	170	250
2-Methylnaphthalene	U	250	ug/Kgdryw	t 1	330	330	92.	250
Hexachlorocyclopentadiene	U	250	ug/Kgdryw	t 1	330	330	82.	250
2,4,6-Trichlorophenol	U	250	ug/Kgdryw	t 1	330	330	160	250
2,4,5-Trichlorophenol	U	620	ug/Kgdryw	t 1	820	820	160	620
2-Chloronaphthalene	U	250	ug/Kgdryw	t 1	330	330	87.	250
2-Nitroaniline	U	620	ug/Kgdryw	t 1	820	820	75.	620
Dimethyl Phthalate	U	250	ug/Kgdryw	t 1	330	330	78.	250
Acenaphthylene	U	250	ug/Kgdryw	t 1	330	330	70.	250
2,6-Dinitrotoluene	U	250	ug/Kgdryw	t 1	330	330	79.	250
3-Nitroaniline	U	620	ug/Kgdryw	t 1	820	820	94.	620
Acenaphthene	U	250	ug/Kgdryw	t 1	330	330	65.	250
2,4-Dinitrophenol	U	620	ug/Kgdryw	t 1	820	820	380	620

Page 1 of 3

Report of Analytical Results

Client:

Lab ID: WG156989-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: U9270.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By:HG **Extraction Method:** SW846 3550

Lab Prep Batch: WG156989

Analysis Date: 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
4-Nitrophenol	U	620	ug/Kgdryw	t 1	820	820	310	620
Dibenzofuran	U	250	ug/Kgdryw	t 1	330	330	79.	250
2,4-Dinitrotoluene	U	250	ug/Kgdryw	t 1	330	330	85.	250
Diethylphthalate	U	250	ug/Kgdryw	t 1	330	330	80.	250
4-Chlorophenyl-Phenylether	U	250	ug/Kgdryw	t 1	330	330	78.	250
Fluorene	U	250	ug/Kgdryw	t 1	330	330	81.	250
4-Nitroaniline	U	620	ug/Kgdryw	t 1	820	820	130	620
4,6-Dinitro-2-Methylphenol	U	620	ug/Kgdryw	t 1	820	820	340	620
N-Nitrosodiphenylamine	U	250	ug/Kgdryw	t 1	330	330	220	250
4-Bromophenyl-Phenylether	U	250	ug/Kgdryw	t 1	330	330	85.	250
Hexachlorobenzene	U	250	ug/Kgdryw	t 1	330	330	82.	250
Pentachlorophenol	U	620	ug/Kgdryw	t 1	820	820	240	620
Phenanthrene	U	250	ug/Kgdryw	t 1	330	330	83.	250
Anthracene	U	250	ug/Kgdryw	t 1	330	330	84.	250
Carbazole	U	250	ug/Kgdryw	t 1	330	330	110	250
Di-N-Butylphthalate	U	250	ug/Kgdryw	t 1	330	330	100	250
Fluoranthene	U	250	ug/Kgdryw	t 1	330	330	110	250
Pyrene	U	250	ug/Kgdryw	t 1	330	330	100	250
Butylbenzylphthalate	U	250	ug/Kgdryw	t 1	330	330	93.	250
3,3'-Dichlorobenzidine	U	250	ug/Kgdryw	t 1	330	330	110	250
Benzo(a)anthracene	U	250	ug/Kgdryw	t 1	330	330	86.	250
Chrysene	U	250	ug/Kgdryw	t 1	330	330	95.	250
Bis(2-Ethylhexyl)Phthalate	U	250	ug/Kgdryw	t 1	330	330	98.	250
Di-N-Octylphthalate	U	250	ug/Kgdryw	t 1	330	330	210	250
Benzo(b)fluoranthene	U	250	ug/Kgdryw	t 1	330	330	130	250
Benzo(k)fluoranthene	U	250	ug/Kgdryw	t 1	330	330	83.	250
Benzo(a)pyrene	U	250	ug/Kgdryw	t 1	330	330	93.	250
Indeno(1,2,3-cd)pyrene	U	250	ug/Kgdryw	t 1	330	330	120	250
Dibenzo(a,h)anthracene	U	250	ug/Kgdryw	t 1	330	330	130	250
Benzo(g,h,i)perylene	U	250	ug/Kgdryw	t 1	330	330	100	250
2-Fluorophenol		64.1						
Phenol-d6		69.8						
Nitrobenzene-d5		63.9						
2-Fluorobiphenyl		82.7						

Page 2 of 3

Report of Analytical Results

Client:

Lab ID: WG156989-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: U9270.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

Extracted By:HG

Extraction Method: SW846 3550

Lab Prep Batch: WG156989

Analysis Date: 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

Report Date: 20-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ ADJ MDL ADJ LOD
2,4,6-Tribromophenol		75.5				
Terphenyl-d14		99.0				

Data File: \\target_server\gg\chem\gcms-u.i\U011915.b\U9270.D

Report Date: 20-Jan-2015 10:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gcms-u.i\\U011915.b\\U9270.D

Lab Smp Id: WG156989-1 Client Smp ID: WG156989-Blank

Inj Date : 19-JAN-2015 12:15 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Smp Info : WG156989-1,SI0230 Inst ID: gcms-u.i

Misc Info: WG157161, WG156989, WG156827-4, SI0230-1

Comment

: \\target_server\gg\chem\gcms-u.i\U011915.b\U8270C70.m Method

Meth Date: 19-Jan-2015 14:50 cgomez Quant Type: ISTD Cal Date : 12-JAN-2015 16:53 Cal File: U9212.D Als bottle: 3 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8270bnaDoD.sub

Target Version: 4.12 Processing Host: V200T4

Concentration Formula: Amt * DF * (Vt/Ws*Vi)*(100/(100-M))*1000 * CpndVariable

Name	Value	Description
DF Vt Ws Vi M	0.03000	Dilution Factor Final Volume (L) Weight of Sample (Kg) Volume injected (uL) % Moisture
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
	====	====		======	======	======	========
\$ 8 2-Fluorophenol	112	5.608	5.590 (0.680)	857030	64.0612	2140	
\$ 14 Phenol-D6	99	7.699	7.701 (0.933)	1007096	69.8111	2330	
* 19 1,4-Dichlorobenzene-D4	152	8.247	8.240 (1.000)	411327	40.0000		
\$ 33 Nitrobenzene-D5	82	9.531	9.544 (0.851)	409580	31.9567	1060	
* 44 Naphthalene-D8	136	11.197	11.210 (1.000)	1662069	40.0000		
\$ 64 2-Fluorobiphenyl	172	13.950	13.953 (0.900)	892005	41.3320	1380	
* 77 Acenaphthene-D10	164	15.503	15.505 (1.000)	858050	40.0000		
\$ 101 2,4,6-Tribromophenol	330	17.480	17.493 (1.127)	274255	75.5007	2520	
* 114 Phenanthrene-D10	188	19.146	19.159 (1.000)	1285848	40.0000		
\$ 129 Terphenyl-D14	244	23.265	23.268 (0.905)	898276	49.4838	1650	
* 139 Chrysene-D12	240	25.708	25.721 (1.000)	830622	40.0000		
* 150 Perylene-D12	264	28.979	28.981 (1.000)	535582	40.0000		

LCS/LCSD Recovery Report

LCS ID: WG156989-2 **LCSD ID:** WG156989-3

Project: SDG: SI0230

Report Date: 20-JAN-15 **LCS File ID:** U9282.D

Received Date: Extract Date: 15-JAN-15

Extracted By:HG

Extraction Method: SW846 3550 Lab Prep Batch: WG156989 LCSD File ID: U9283.D **Analysis Date:** 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
Phenol	3330	1850	55.6	1840	55.2	ug/Kgdrywt	0	50	40-100
Bis(2-Chloroethyl)Ether	1670	1050	62.9	1060	63.5	ug/Kgdrywt	1	50	40-105
2-Chlorophenol	3330	1920	57.6	1980	59.4	ug/Kgdrywt	3	50	45-105
1,3-Dichlorobenzene	1670	931.	55.7	981.	58.7	ug/Kgdrywt	5	50	40-100
1,4-Dichlorobenzene	1670	970.	58.1	1000	59.9	ug/Kgdrywt	3	50	35-105
1,2-Dichlorobenzene	1670	960.	57.5	992.	59.4	ug/Kgdrywt	3	50	45-100
2-Methylphenol	3330	1710	51.4	1680	50.4	ug/Kgdrywt	2	50	40-105
2,2'-Oxybis(1-Chloropropane)	1670	765.	45.8	798.	47.8	ug/Kgdrywt	4	50	20-115
3&4-Methylphenol	3330	1710	51.4	1710	51.4	ug/Kgdrywt	0	50	40-105
N-Nitroso-Di-N-Propylamine	1670	998.	59.8	962.	57.6	ug/Kgdrywt	4	50	40-115
Hexachloroethane	1670	1040	62.3	1080	64.7	ug/Kgdrywt	4	50	35-110
Nitrobenzene	1670	949.	56.8	982.	58.8	ug/Kgdrywt	3	50	40-115
Isophorone	1670	946.	56.6	923.	55.3	ug/Kgdrywt	2	50	45-110
2-Nitrophenol	3330	1940	58.2	1960	58.8	ug/Kgdrywt	1	50	40-110
2,4-Dimethylphenol	3330	1590	47.7	1550	46.5	ug/Kgdrywt	2	50	30-105
Bis(2-Chloroethoxy)Methane	1670	817.	48.9	852.	51.0	ug/Kgdrywt	4	50	45-110
2,4-Dichlorophenol	3330	2040	61.3	2110	63.4	ug/Kgdrywt	3	50	45-110
1,2,4-Trichlorobenzene	1670	1010	60.5	1040	62.3	ug/Kgdrywt	3	50	45-110
Naphthalene	1670	1060	63.5	1070	64.1	ug/Kgdrywt	1	50	40-105
4-Chloroaniline	1670	714.	42.8	658.	39.4	ug/Kgdrywt	8	50	10-100
Hexachlorobutadiene	1670	1170	70.0	1230	73.6	ug/Kgdrywt	5	50	40-115
4-Chloro-3-Methylphenol	3330	2080	62.5	2010	60.4	ug/Kgdrywt	3	50	45-115
2-Methylnaphthalene	1670	898.	53.8	864.	51.7	ug/Kgdrywt	4	50	45-105
Hexachlorocyclopentadiene	1670	837.	50.1	915.	54.8	ug/Kgdrywt	9	50	10-70
2,4,6-Trichlorophenol	3330	2310	69.4	2380	71.5	ug/Kgdrywt	3	50	45-110
2,4,5-Trichlorophenol	3330	2600	78.1	2510	75.4	ug/Kgdrywt	4	50	50-110
2-Chloronaphthalene	1670	775.	46.4	797.	47.7	ug/Kgdrywt	3	50	45-105
2-Nitroaniline	1670	1080	64.7	1050	62.9	ug/Kgdrywt	3	50	45-120
Dimethyl Phthalate	1670	1390	83.2	1330	79.6	ug/Kgdrywt	4	50	50-110
Acenaphthylene	1670	998.	59.8	1010	60.5	ug/Kgdrywt	1	50	45-105
2,6-Dinitrotoluene	1670	1340	80.2	1280	76.6	ug/Kgdrywt	4	50	50-110
3-Nitroaniline	1670	776.	46.5	716.	42.9	ug/Kgdrywt	8	50	25-110
Acenaphthene	1670	1040	62.3	1010	60.5	ug/Kgdrywt	3	50	45-110
2,4-Dinitrophenol	3330	1100	33.0	817.	24.5	ug/Kgdrywt	30	50	15-130

Page 1 of 3

LCS/LCSD Recovery Report

LCS ID: WG156989-2 **LCSD ID:** WG156989-3

Project: SDG: SI0230

Report Date: 20-JAN-15 **LCS File ID:** U9282.D

Received Date: Extract Date: 15-JAN-15

Extracted By: HG

Extraction Method: SW846 3550 Lab Prep Batch: WG156989 LCSD File ID: U9283.D **Analysis Date:** 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

Compound	Spike Amt	LCS Conc	LCS Rec (%)	LCSD Conc	LCSD Rec (%)	Conc Units	RPD (%)	RPD Limit	Limits
4-Nitrophenol	3330	2390	71.8	2060	61.9	ug/Kgdrywt	15	50	15-140
Dibenzofuran	1670	1190	71.2	1150	68.9	ug/Kgdrywt	3	50	50-105
2,4-Dinitrotoluene	1670	1340	80.2	1190	71.2	ug/Kgdrywt	12	50	50-115
Diethylphthalate	1670	1060	63.5	962.	57.6	ug/Kgdrywt	10	50	50-115
4-Chlorophenyl-Phenylether	1670	1290	77.2	1250	74.8	ug/Kgdrywt	3	50	45-110
Fluorene	1670	1140	68.3	1080	64.7	ug/Kgdrywt	5	50	50-110
4-Nitroaniline	1670	995.	59.6	877.	52.5	ug/Kgdrywt	13	50	35-115
4,6-Dinitro-2-Methylphenol	3330	2280	68.5	2130	64.0	ug/Kgdrywt	7	50	30-135
N-Nitrosodiphenylamine	1670	1250	74.8	1280	76.6	ug/Kgdrywt	2	50	50-115
4-Bromophenyl-Phenylether	1670	1500	89.8	1560	93.4	ug/Kgdrywt	4	50	45-115
Hexachlorobenzene	1670	1430	85.6	1430	85.6	ug/Kgdrywt	0	50	45-120
Pentachlorophenol	3330	2800	84.1	2570	77.2	ug/Kgdrywt	8	50	25-120
Phenanthrene	1670	1320	79.0	1260	75.4	ug/Kgdrywt	5	50	50-110
Anthracene	1670	1290	77.2	1280	76.6	ug/Kgdrywt	1	50	55-105
Carbazole	1670	1270	76.0	1200	71.8	ug/Kgdrywt	6	50	45-115
Di-N-Butylphthalate	1670	1340	80.2	1260	75.4	ug/Kgdrywt	6	50	55-110
Fluoranthene	1670	1310	78.4	1220	73.0	ug/Kgdrywt	7	50	55-115
Pyrene	1670	1510	90.4	1510	90.4	ug/Kgdrywt	0	50	45-125
Butylbenzylphthalate	1670	1300	77.8	1280	76.6	ug/Kgdrywt	2	50	50-125
3,3'-Dichlorobenzidine	3330	1800	54.0	1780	53.4	ug/Kgdrywt	1	50	10-130
Benzo(a)anthracene	1670	1390	83.2	1350	80.8	ug/Kgdrywt	3	50	50-110
Chrysene	1670	1540	92.2	1490	89.2	ug/Kgdrywt	3	50	55-110
Bis(2-Ethylhexyl)Phthalate	1670	1320	79.0	1250	74.8	ug/Kgdrywt	5	50	45-125
Di-N-Octylphthalate	1670	1240	74.2	1170	70.0	ug/Kgdrywt	6	50	40-130
Benzo(b)fluoranthene	1670	1370	82.0	1370	82.0	ug/Kgdrywt	0	50	45-115
Benzo(k)fluoranthene	1670	1620	97.0	1440	86.2	ug/Kgdrywt	12	50	45-125
Benzo(a)pyrene	1670	1330	79.6	1310	78.4	ug/Kgdrywt	2	50	50-110
Indeno(1,2,3-cd)pyrene	1670	1220	73.0	1250	74.8	ug/Kgdrywt	2	50	40-120
Dibenzo(a,h)anthracene	1670	1180	70.6	1160	69.5	ug/Kgdrywt	2	50	40-125
Benzo(g,h,i)perylene	1670	1290	77.2	1260	75.4	ug/Kgdrywt	2	50	40-125
2-Fluorophenol			55.1		55.2				35-105
Phenol-d6			58.0		56.9				40-100
Nitrobenzene-d5			56.4		56.0				35-100
2-Fluorobiphenyl			74.9		74.6				45-105

Page 2 of 3

LCS/LCSD Recovery Report

LCS ID: WG156989-2 **LCSD ID:** WG156989-3

Project: SDG: SI0230

Report Date: 20-JAN-15 **LCS File ID:** U9282.D

Extract Date: 15-JAN-15 Extracted By: HG

Received Date:

Extraction Method: SW846 3550 Lab Prep Batch: WG156989 LCSD File ID: U9283.D **Analysis Date:** 19-JAN-15

Analyst: JCG

Analysis Method: SW846 8270D

Matrix: SL % Solids: NA

 2,4,6-Tribromophenol
 77.6
 70.1
 35-125

 Terphenyl-d14
 88.4
 86.0
 30-125

Data File: \\target_server\gg\chem\gcms-u.i\U011915.b\U9282.D

Report Date: 20-Jan-2015 10:02

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-u.i\\U011915.b\\U9282.D

Lab Smp Id: WG156989-2 Client Smp ID: WG156989-LCS

Inj Date : 19-JAN-2015 21:00 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Inst ID: gcms-u.i

Smp Info : WG156989-2,SI0230

Misc Info: WG157161, WG156989, WG156827-4, SI0230-1

Comment

Method : \\target_server\gg\chem\gcms-u.i\U011915.b\U8270C70.m

Meth Date: 19-Jan-2015 14:50 cgomez Quant Type: ISTD Cal Date: 12-JAN-2015 16:53 Cal File: U9212.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8270bnaDoD.sub

Target Version: 4.12 Processing Host: V200T4

Concentration Formula: Amt * DF * (Vt/Ws*Vi)*(100/(100-M))*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Ws	0.03000	Weight of Sample (Kg)
Vi	1.000	Volume injected (uL)
M	0.00000	% Moisture
Cpnd Variable		Local Compound Variable

						CONCENTRA	ATIONS	
		QUANT SIG				ON-COLUMN	FINAL	
Compo	ounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COL
====		====	====		=======	======	======	========
\$ 8	3 2-Fluorophenol	112	5.601	5.590 (0.679)	767547	55.0968	1840	
\$ 14	1 Phenol-D6	99	7.702	7.701 (0.934)	870939	57.9780	1930	
15	5 Phenol	94	7.733	7.722 (0.937)	891205	55.5521	1850	
16	Bis(2-Chloroethyl)ether	93	7.764	7.753 (0.941)	368368	31.5957	1050	
17	7 2-Chlorophenol	128	7.826	7.826 (0.949)	771152	57.6529	1920	
18	3 1,3-Dichlorobenzene	146	8.116	8.105 (0.984)	415806	27.9311	931	
* 19	9 1,4-Dichlorobenzene-D4	152	8.250	8.240 (1.000)	428317	40.0000		
20) 1,4-Dichlorobenzene	146	8.281	8.281 (1.004)	428137	29.1051	970	
21	l 1,2-Dichlorobenzene	146	8.623	8.612 (1.045)	411183	28.7946	960	
25	5 2-Methylphenol	108	9.058	9.099 (1.098)	663455	51.2728	1710	
24	1 2,2'-Oxybis(1-chloropropane)	45	8.996	9.016 (1.090)	389280	22.9570	765	
32	2 3&4-Methylphenol	108	9.441	9.471 (1.144)	704553	51.4485	1710	
30	N-Nitroso-di-n-propylamine	70	9.316	9.326 (1.129)	242186	29.9412	998	
31	l Hexachloroethane	117	9.379	9.378 (1.137)	175370	31.2272	1040	
\$ 33	Nitrobenzene-D5	82	9.534	9.544 (0.851)	357106	28.2224	941	
34	1 Nitrobenzene	77	9.575	9.585 (0.855)	360058	28.4640	949	
36	5 Isophorone	82	10.217	10.206 (0.912)	701245	28.3830	946	
3.	7 2-Nitrophenol	139	10.341	10.341 (0.923)	432509	58.2545	1940	
38	3 2,4-Dimethylphenol	107	10.652	10.662 (0.951)	609214	47.8012	1590	
40	Bis(2-Chloroethoxy)methane	93	10.817	10.827 (0.966)	415054	24.5198	817	

Data File: $\t server \g cms-u.i\U011915.b\U9282.D$ Report Date: 20-Jan-2015 10:02

						CONCENTR	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT RE	L RT RES	PONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
	====	====		===== ====	=====	======	======	=======
41 2,4-Dichlorophenol	162	10.993	11.003 (0.9	82) 6	73907	61.3236	2040	
42 1,2,4-Trichlorobenzene	180	11.117	11.117 (0.9	93) 3	47500	30.4214	1010	
* 44 Naphthalene-D8	136	11.200	11.210 (1.0	00) 16	40875	40.0000		
45 Naphthalene	128	11.252	11.251 (1.0		54133	31.7023	1060	
46 4-Chloroaniline	127	11.500	11.500 (1.0		92719	21.4312	714	
50 Hexachlorobutadiene	225	11.666	11.676 (1.0		99068	35.0093	1170	
55 4-Chloro-3-Methylphenol	107	12.887	12.897 (1.1		83429	62.4580	2080	
56 2-Methylnaphthalene	142	12.960	12.970 (1.1		29160	26.9451	898	
60 Hexachlorocyclopentadiene	237	13.415	13.425 (0.8		40160	25.1052	837	
62 2,4,6-Trichlorophenol	196		13.777 (0.8		97091	69.2689	2310	
63 2,4,5-Trichlorophenol	196	13.881	13.901 (0.8		67982	78.0521	2600	
\$ 64 2-Fluorobiphenyl	172	13.953	13.953 (0.9		88335	37.4444	1250	
65 2-Chloronaphthalene	162	14.140	14.139 (0.9		06176	23.2460	775	
69 2-Nitroaniline	65		14.139 (0.9			32.5447		
		14.492	•	•	19757		1080	
73 Dimethyl Phthalate	163	15.061	15.081 (0.9		67945	41.6610	1390	
74 Acenaphthylene	152	15.123	15.133 (0.9		82855	29.9462	998	
75 2,6-Dinitrotoluene	165		15.143 (0.9		07035	40.2689	1340	
* 77 Acenaphthene-D10	164	15.506	15.505 (1.0	•	37058	40.0000		
78 3-Nitroaniline	138	15.527	15.536 (1.0		49979	23.2719	776(a)	
79 Acenaphthene	153	15.578	15.588 (1.0		78359	31.1892	1040	
80 2,4-Dinitrophenol	184	15.796	15.816 (1.0		.09053	32.9428	1100	
86 4-Nitrophenol	139	16.220	16.261 (1.0		16968	71.6158	2390	
82 Dibenzofuran	168	16.023	16.023 (1.0		05770	35.7512	1190	
83 2,4-Dinitrotoluene	165	16.127	16.147 (1.0		89228	40.1421	1340	
89 Diethylphthalate	149	16.851	16.851 (1.0	87) 8	86545	31.7249	1060	
91 4-Chlorophenyl-phenylether	204	16.976	16.975 (1.0		09962	38.6478	1290	
90 Fluorene	166	16.862	16.872 (1.0	87) 8	41623	34.1891	1140	
95 4-Nitroaniline	138	17.048	17.068 (1.0	99) 1	87544	29.8442	995(Q)	
96 4,6-Dinitro-2-Methylphenol	198	17.131	17.141 (0.8	95) 2	51259	68.3376	2280	
97 N-Nitrosodiphenylamine	169	17.296	17.306 (0.9	03) 6	35346	37.5814	1250	
\$ 101 2,4,6-Tribromophenol	330	17.483	17.493 (1.1	27) 2	75019	77.6098	2590	
104 4-Bromophenyl-phenylether	248	18.166	18.165 (0.9	49) 2	52364	45.0562	1500	
106 Hexachlorobenzene	284	18.238	18.248 (0.9	52) 2	83520	42.9031	1430	
111 Pentachlorophenol	266	18.797	18.817 (0.9	82) 3	06211	83.9801	2800	
* 114 Phenanthrene-D10	188	19.149	19.159 (1.0	00) 11	51808	40.0000		
115 Phenanthrene	178	19.211	19.221 (1.0	03) 11	74866	39.4749	1320	
116 Anthracene	178	19.335	19.345 (1.0	10) 11	48934	38.7661	1290	
119 Carbazole	167	19.822	19.832 (1.0	35) 10	02985	38.0040	1270	
121 Di-n-butylphthalate	149	20.960	20.970 (1.0	95) 14	82014	40.3180	1340	
126 Fluoranthene	202	22.151	22.161 (1.1	57) 11	01778	39.2293	1310	
128 Pyrene	202	22.668	22.678 (0.8	81) 11	20451	45.3280	1510	
\$ 129 Terphenyl-D14	244	23.268			86228	44.2209	1470	
135 Butylbenzylphthalate	149	24.645	24.645 (0.9	58) 4	80022	39.0903	1300	
* 139 Chrysene-D12	240		25.721 (1.0		10063	40.0000		
140 3,3'-Dichlorobenzidine	252	25.773	25.773 (1.0		80530	53.8836	1800	
138 Benzo(a)anthracene	228	25.690	25.700 (0.9		15488	41.6487	1390	
141 Chrysene	228	25.773			17783	46.0526	1540	
142 bis(2-Ethylhexyl)phthalate	149	26.229	26.238 (1.0		64064	39.5700	1320	
144 Di-n-octylphthalate	149	27.760			17231	37.3223	1240	
145 Benzo(b)fluoranthene	252	28.195			03942	41.1939	1370	
147 Benzo(k)fluoranthene	252	28.247			21704	48.6871	1620(H)	
147 Benzo(k): Huoranthene 148 Benzo(a): pyrene	252		28.257 (0.9		34497	39.9887	1820(H) 1330	
							T330	
* 150 Perylene-D12	264	28.982			59100	40.0000	1000	
153 Indeno(1,2,3-cd)pyrene	276	31.083	31.082 (1.0	12) 2.	24526	36.5531	1220	

Data File: $\t server \g cms-u.i\U011915.b\U9282.D$ Report Date: 20-Jan-2015 10:02

						CONCENTRA	ATTONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
=======================================	====	====	======		======	======	======	========
154 Dibenzo(a,h)anthracene	278	31.166	31.165 ((1.075)	232818	35.2697	1180	
155 Benzo(g,h,i)perylene	276	31.611	31.610 ((1.091)	271457	38.7079	1290	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 H Operator selected an alternate compound hit.

Data File: \\target_server\gg\chem\gcms-u.i\U011915.b\U9283.D

Report Date: 20-Jan-2015 10:02

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gcms-u.i\\U011915.b\\U9283.D

Lab Smp Id: WG156989-3 Client Smp ID: WG156989-LCSD

Inj Date : 19-JAN-2015 21:43 MS Autotune Date: 02-JAN-2015 09:23

Operator : JCG Inst ID: gcms-u.i

Smp Info : WG156989-3, SI0230

Misc Info: WG157161, WG156989, WG156827-4, SI0230-1

Comment :

Method : \\target_server\gg\chem\gcms-u.i\\U011915.b\\U8270C70.m

Meth Date: 19-Jan-2015 14:50 cgomez Quant Type: ISTD Cal Date: 12-JAN-2015 16:53 Cal File: U9212.D QC Sample: LCSD

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: SW8270bnaDoD.sub

Target Version: 4.12 Processing Host: V200T4

Concentration Formula: Amt * DF * (Vt/Ws*Vi)*(100/(100-M))*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.00100	Final Volume (L)
Ws	0.03000	Weight of Sample (Kg)
Vi	1.000	Volume injected (uL)
M	0.00000	% Moisture
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
	QUANT SIG				ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COI
=======================================	====	====		= ======	======	======	========
\$ 8 2-Fluorophenol	112	5.608	5.590 (0.680)	807812	55.1593	1840	
\$ 14 Phenol-D6	99	7.699	7.701 (0.933)	898015	56.8652	1900	
15 Phenol	94	7.730	7.722 (0.937)	930619	55.1800	1840	
16 Bis(2-Chloroethyl)ether	93	7.761	7.753 (0.941)	390654	31.8732	1060	
17 2-Chlorophenol	128	7.833	7.826 (0.950)	835528	59.4196	1980	
18 1,3-Dichlorobenzene	146	8.113	8.105 (0.984)	460531	29.4269	981	
* 19 1,4-Dichlorobenzene-D4	152	8.247	8.240 (1.000)	450275	40.0000		
20 1,4-Dichlorobenzene	146	8.288	8.281 (1.005)	466574	30.1713	1000	
21 1,2-Dichlorobenzene	146	8.620	8.612 (1.045)	446766	29.7607	992	
25 2-Methylphenol	108	9.054	9.099 (1.098)	684838	50.3444	1680	
24 2,2'-Oxybis(1-chloropropane)	45	9.013	9.016 (1.093)	426791	23.9418	798	
32 3&4-Methylphenol	108	9.437	9.471 (1.144)	740437	51.4322	1710	
30 N-Nitroso-di-n-propylamine	70	9.313	9.326 (1.129)	245406	28.8597	962	
31 Hexachloroethane	117	9.375	9.378 (1.137)	191374	32.4151	1080	
\$ 33 Nitrobenzene-D5	82	9.541	9.544 (0.851)	364880	28.0249	934	
34 Nitrobenzene	77	9.582	9.585 (0.855)	383605	29.4717	982	
36 Isophorone	82	10.214	10.206 (0.911)	704132	27.6974	923	
37 2-Nitrophenol	139	10.348	10.341 (0.923)	448662	58.7288	1960	
38 2,4-Dimethylphenol	107	10.659	10.662 (0.951)	611586	46.6363	1550	
40 Bis(2-Chloroethoxy)methane	93	10.814	10.827 (0.965)	445036	25.5509	852	

Data File: $\t server \g cms-u.i\U011915.b\U9283.D$ Report Date: 20-Jan-2015 10:02

						CONCENTR	ATIONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
	====	====		======	=======	======	======	=======
41 2,4-Dichlorophenol	162	10.990	11.003	(0.981)	714955	63.2271	2110	
42 1,2,4-Trichlorobenzene	180	11.114	11.117	(0.992)	368175	31.3239	1040	
* 44 Naphthalene-D8	136	11.207	11.210	(1.000)	1688411	40.0000		
45 Naphthalene	128	11.249	11.251	(1.004)	1098791	32.1150	1070	
46 4-Chloroaniline	127	11.497	11.500	(1.026)	277401	19.7379	658	
50 Hexachlorobutadiene	225	11.673	11.676	(1.042)	216325	36.9731	1230	
55 4-Chloro-3-Methylphenol	107	12.894	12.897	(1.151)	680437	60.4338	2010	
56 2-Methylnaphthalene	142	12.967	12.970	(1.157)	721947	25.9274	864	
60 Hexachlorocyclopentadiene	237	13.422	13.425	(0.866)	153251	27.4486	915	
62 2,4,6-Trichlorophenol	196	13.764	13.777	(0.888)	513144	71.5020	2380	
63 2,4,5-Trichlorophenol	196	13.878	13.901	(0.895)	548786	75.4102	2510	
\$ 64 2-Fluorobiphenyl	172	13.950	13.953	(0.900)	785932	37.3283	1240	
65 2-Chloronaphthalene	162	14.136	14.139	(0.912)	724531	23.9244	797	
69 2-Nitroaniline	65	14.488	14.501	(0.935)	213347	31.5937	1050	
73 Dimethyl Phthalate	163	15.057	15.081	(0.971)	924549	39.7911	1330	
74 Acenaphthylene	152	15.130	15.133	(0.976)	993854	30.2797	1010	
75 2,6-Dinitrotoluene	165	15.140	15.143	(0.977)	198285	38.5649	1280	
* 77 Acenaphthene-D10	164	15.503	15.505	(1.000)	837103	40.0000		
78 3-Nitroaniline	138	15.523	15.536	(1.001)	138444	21.4809	716(a)	
79 Acenaphthene	153	15.575	15.588	(1.005)	661895	30.2867	1010	
80 2,4-Dinitrophenol	184	15.792	15.816	(1.019)	78016	24.5137	817(a)	
86 4-Nitrophenol	139	16.217	16.261	(1.046)	274059	61.9176	2060	
82 Dibenzofuran	168	16.020	16.023	(1.033)	970850	34.5081	1150	
83 2,4-Dinitrotoluene	165	16.124	16.147	(1.040)	257210	35.6963	1190	
89 Diethylphthalate	149	16.848	16.851	(1.087)	827673	28.8694	962	
91 4-Chlorophenyl-phenylether	204	16.972	16.975	(1.095)	398647	37.5791	1250	
90 Fluorene	166	16.869	16.872	(1.088)	810415	32.5611	1080	
95 4-Nitroaniline	138	17.045	17.068	(1.099)	165387	26.3169	877(Q)	
96 4,6-Dinitro-2-Methylphenol	198	17.128	17.141	(0.895)	213954	64.0470	2130	
97 N-Nitrosodiphenylamine	169	17.293	17.306	(0.903)	589528	38.3802	1280	
\$ 101 2,4,6-Tribromophenol	330	17.479	17.493	(1.127)	248555	70.1379	2340	
104 4-Bromophenyl-phenylether	248	18.163	18.165	(0.949)	238904	46.9451	1560	
106 Hexachlorobenzene	284	18.245	18.248	(0.953)	257698	42.9196	1430	
111 Pentachlorophenol	266	18.804	18.817	(0.982)	255813	77.2179	2570	
* 114 Phenanthrene-D10	188	19.146	19.159	(1.000)	1046502	40.0000		
115 Phenanthrene	178	19.208	19.221	(1.003)	1026839	37.9730	1260	
116 Anthracene	178	19.332	19.345	(1.010)	1038734	38.5746	1280	
119 Carbazole	167	19.819	19.832	(1.035)	860252	35.8757	1200	
121 Di-n-butylphthalate	149	20.967	20.970	(1.095)	1266530	37.9229	1260	
126 Fluoranthene	202	22.147	22.161	(1.157)	937388	36.7346	1220	
128 Pyrene	202	22.675	22.678	(0.882)	963729	45.3997	1510	
\$ 129 Terphenyl-D14	244	23.265	23.268	(0.905)	573364	43.0244	1430	
135 Butylbenzylphthalate	149	24.642	24.645	(0.958)	403722	38.2838	1280	
* 139 Chrysene-D12	240	25.718	25.721	(1.000)	609779	40.0000		
140 3,3'-Dichlorobenzidine	252	25.780	25.773	(1.002)	239394	53.5445	1780	
138 Benzo(a)anthracene	228	25.697	25.700	(0.999)	597424	40.4955	1350	
141 Chrysene	228	25.770	25.783	(1.002)	597771	44.6601	1490	
142 bis(2-Ethylhexyl)phthalate	149	26.225	26.238	(1.020)	542455	37.6395	1250	
144 Di-n-octylphthalate	149	27.757	27.760	(0.958)	779721	35.0170	1170	
145 Benzo(b)fluoranthene	252	28.192	28.205	(0.973)	456416	41.1778	1370	
147 Benzo(k)fluoranthene	252	28.254	28.257	(0.975)	501141	43.3152	1440(H)	
148 Benzo(a)pyrene	252	28.854	28.867	(0.995)	385906	39.1996	1310	
* 150 Perylene-D12	264	28.989	28.981	(1.000)	415966	40.0000		
153 Indeno(1,2,3-cd)pyrene	276	31.079	31.082	(1.072)	209010	37.5812	1250	

Data File: $\t server \g cms-u.i\U011915.b\U9283.D$ Report Date: 20-Jan-2015 10:02

						CONCENTRA	ATTONS	
	QUANT SIG					ON-COLUMN	FINAL	
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/ml)	(ug/Kgdrywt)	REVIEW COD
	====	====	======	======	======	======	======	=======
154 Dibenzo(a,h)anthracene	278	31.162	31.165 (1.075)	207781	34.7408	1160	
155 Benzo(g,h,i)perylene	276	31.618	31.610 (1.091)	240570	37.8608	1260	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
 Q Qualifier signal failed the ratio test.
 H Operator selected an alternate compound hit.

Logbooks and Supporting Documents

	T: 5973-U
KATAHDIN ANALYTICAL SERVICES	GC/MS SVOA INJ LOG INSTRUMENT: 5973

COMMENTS	75		The second secon	5	<u>\</u>			A C	X	3	Z	(3)	70	X	UZ	026	7	290	Streen	The second secon										The state of the s
CHEMIST	15,																											SOVED BY:	DATE:	•
מרוא	i	ŝ					-																			->		AND APP		
ALS# METHOD	6390	0 8272C73)																				,		1	1,0		REVIEWED AND APPROVED BY		
#STV)	2	\$	١	Ş	٠	7-	7	G	101	[4	١	13	ιγ	بل))	Ü	- fi	169	n	h.	12	12	M	Z	24				
DF)	<i></i>																								رد ا	333	*	T	
DATAFILE	00310	19201	, 0¢	60	ري ا)) [1.2	5 1	7	Z	رر ر		مد	5)	n	h	22	23	W	Z	n	N	22	28	30	ب عج			64813	
	PAPP	55 th 0 de 0 0 (17	ماه	220	وعر	00)	1 (2%)	(M)	1-978 2575()	7	~	310027-698	5-151015	/ > /	Y	\\ \	510(42-1	}		3,	>	٥	7	<i>≫</i>	6-	3, 7	CODE	いなび	X75 2525	7
2000	MG (56827-1	٦	٦٠	-3	\ \?	١,	し、	فر ا	3810							.4										*		DFTPP	CAL. STD.	IS MIX

		5973-U
•	KATAHDIN ANALYTICAL SERVICES	GC/MS SVOA INJ LOG INSTRUMENT: 5973-U
	YTICAL S	LOG INS
	N ANAL	VOA INJ
4	KATAHDI	GC/MS S

ITS					SPUP PBT 1273	. ~	Sple		SPCP												Survival					TOTAL TOTAL
COMMENTS	Z) E	7	F	Š	٦ آ	32K2	M.C.	Ž	名	B	R	B	×	K	g	B	Ť	\		7					
CHEMIST		-																							OVED BY:	DATE:
ULING	2.0	63.)																							AND APPF	
ALS# METHOD	DF-08 390	0220120																							REVIEWED AND APPROVED BY:	
ALS#	}	2		٠,	×	<u>ب</u>	7	מגי	g	- 03	β	$ \hat{v} $	1,3	<i>b</i>)	الر	9)	1.1)))								
4	.	1	- 1															7				1		1		T
DATAFILE	CD313	U9269	0)	ì	رجد	32	7,	グ	7	7	ンと	79	∞	مل	75	جع	₹	1.85								5-124913
a a a	Some OFace	55TD 0.TO 019	1- 32 281 - 1)ーとれっしょう かつ	> \		5-11-1015	21- 7	2-363015	۲ - در	510230-1	510172-14	2-540 LS100	9,	176156989-2	Section 1985	156157043-2	イ ・							اجد	45 24-305 40-30-07 5
308	WG(57161-(7	3850	3500							3575	3510		-)	350	-	3810	-7							STANDARD DFTPP	IS MIX

SON

KATAHDIN ANALYTICAL SERVICES, INC. ORGANIC EXTRACTIONS LOG - SOIL SEMIVOLATILE

Extraction Method:	SW846 3550 (SONIC.)	SW846 3	540 (SOX)	SW846 3545 (AS	SW846 3580 (OIL / WIPES)
Analytical Method:	SW846 8270 🗸	OTHER		——————————————————————————————————————	
Standards	Surrogate ID (1): SY2つe*	S	Spike ID (1):	5/0A 5/07/01	Spike ID (3); Sim Janoz
Solvents / Chemicals	Surrogate ID (2):		Spike ID (2):		
	Solvent Lot # (Mecl2): DIA	\sim	Solvent Lot #	(Acetone): DL474	Sodium Sulfate (granular) Lot# よっちょくのう
	Filter Paper Lot # (SON)	5011620	Filter Paper Lo	ot#(KD) FC 7 bobs4	
Misc.	Nitrogen Bath Temperature:	36°C		ns Tuned: 🎺 🖰 ,	Balance ID: Matha 27500
Prep Start Time: \a	Prep Stop	Time: 10',50	Sc	x Start Time:	Sox End Time:

Ext.	Ext		Initial	Surr.	Spk.	Fra	ction		Pre-GPC			Post-G			1
Date	Jnit.	Sample ID	Weight (g)	Vol. (mL)	Spk. Vol. (mL)	SCAW	瓷	Date Conc.	Conc. Init.	Final Vol. (ml.)	Date Conc,	Conc. Init.	Final Vol. (mL)	Tray i.oc.	Comments
1-5-15	AR.	WG156989-1 WG156989-2	30.01	1.0	NR.			1-15-15	JWS	Sall	414-15	WAS		quini Ev	R 304926 SV R 304827 SH
					10	/			1.1			1		es	
		1-3	30,04			V		1			-			ca	
		H6154997-2	30.04	-			V		.				Π.	ex	
J	1	1 -3	300)	N	1		7	7	1		- 1	4	1	CL	
		GPC Blunk									7	1	1	ሩግ	\
													=>		
						1									///
	<					-									

EX-008 – Revision 2 – 12/05/2013

QAEX273

0,0000094

	Evt Evt			Initial Surr.		Fra	ction		Pre-GPC		1	Post-GP	c		<u> </u>
Ext. Date	Ext. Init,	Sample ID	Initial Weight (g)	Surr. Vol. (mL)	Spk. Vol. (ml.)	80.₽¥	SIM	Date Conc.	Conc. Init.	Final Vol. (mL)	Date Conc.	Conc. Init.	Final Vol. (mL)	Tray Loc.	Comments
1-15-15	- tele .	5T TH0230 - 16	3178	1.0	NR	\vee		1-15/15	THS		1-16-15	WAS	Int	C.8-	
		51 TH02(8-1A J-2A	కాచిం	4			1			1	1	4	7	cq	
7	4	A -2A	3),43	7	7		_	7	17	1	7	7	7	Cvo	
						ļ							2	ļ	
									ļ			\swarrow			
															-
									 	/		ļ			
	************								/	<u> </u>					
									/			<u> </u>			***************************************
									· · · · ·						
							/	<u> </u>	-						
:						_									
		· · · · · · · · · · · · · · · · · · ·							ļ						
				/					 			ļ			
									<u> </u>		***************************************				
								-4-4							
						_	_								
	4														

Date_

QAEX273

PCB DATA

QC Summary Section

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: AQ

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID	DCB	#	TCX	#
IDWGW-3178-011315	SI0230-2	A	10.9	*	37.5	*
IDWGW-3178-011315	SI0230-2	В	10.9	*	38.5	*
IDWGW-F0A37-011315	SI0230-3	A	11.9	*	26.4	*
IDWGW-F0A37-011315	SI0230-3	В	12.2	*	27.5	*
IDWGW-EG332-011315	SI0230-4	A	20.4	*	72.4	
IDWGW-EG332-011315	SI0230-4	В	21.6	*	71.5	
Method Blank Sample	WG156929-1	A	78.6		79.7	
Method Blank Sample	WG156929-1	В	76.5		78.1	
Laboratory Control S	WG156929-2	A	67.5		86.2	
Laboratory Control S	WG156929-2	В	70.5		84.0	
Laboratory Control S	WG156929-3	A	57.9		77.9	
Laboratory Control S	WG156929-3	В	60.5		76.7	

QC Limits

TCX TETRACHLORO-M-XYLENE 62-111
DCB DECACHLOROBIPHENYL 40-135

= Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: SL

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID	DCB #	TCX #
IDWS-0312-011315	SI0230-1	A	87.8	86.6
IDWS-0312-011315	SI0230-1	В	88.3	81.4
Method Blank Sample	WG157001-1	A	82.3	69.7
Method Blank Sample	WG157001-1	В	82.9	68.2
Laboratory Control S	WG157001-2	A	79.9	59.8
Laboratory Control S	WG157001-2	В	83.8	60.4
Laboratory Control S	WG157001-3	A	88.9	77.8
Laboratory Control S	WG157001-3	В	92.2	76.3

QC Limits

DCB DECACHLOROBIPHENYL 60-125
TCX TETRACHLORO-M-XYLENE 56-115

= Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical Services SDG: SI0230

Project : Navy Clean WE15-03-06 NWIRP Bethpage, **Lab Sample ID :** WG156929-1 **Lab File ID :** 7IA236.D **Date Extracted :** 14-JAN-15

Matrix : AQ Extraction Method : SW846 3510 Column A Column B

Instrument ID: GC07
Date Analyzed: 15-JAN-15
Time Analyzed: 12:28

Instrument ID: GC07
Date Analyzed: 15-JAN-15
Time Analyzed: 12:28

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG156929-2	7IA237.D	01/15/15	13:03
Laboratory Control S	WG156929-3	7IA238.D	01/15/15	13:37
IDWGW-3178-011315	SI0230-2	7IA242.D	01/15/15	15:56
IDWGW-F0A37-011315	SI0230-3	7IA243.D	01/15/15	16:31
IDWGW-EG332-011315	SI0230-4	7IA244.D	01/15/15	17:05

Form 4 Method Blank Summary

Lab Name: Katahdin Analytical Services SDG: SI0230

Project: Navy Clean WE15-03-06 NWIRP Bethpage, Lab Sample ID: WG157001-1

Lab File ID: 7IA282.D

Date Extracted: 15-JAN-15

Matrix: SL

Extraction Method: SW846 3540

Column AColumn BInstrument ID : GC07Instrument ID : GC07Date Analyzed : 19-JAN-15Date Analyzed : 19-JAN-15Time Analyzed : 12:45Time Analyzed : 12:45

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG157001-2	7IA283.D	01/19/15	13:20
Laboratory Control S	WG157001-3	7IA284.D	01/19/15	13:55
IDWS-0312-011315	SI0230-1	7IA285.D	01/19/15	14:29

Form 8 GC Analytical Sequence

Lab Name : Katahdin Analytical ServicesSDG : SI0230Project : Navy Clean WE15-03-06 NWIRP Bethpage,Column ID : A

Instrument ID: GC07

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	TCX
Initial Calibration	WG156298-1	12/29/14	10:27	5.157	26.05	1021
Initial Calibration	WG156298-3	12/29/14	12:13	5.177	26.06	
Initial Calibration	WG156298-5	12/29/14	12:48	5.169	26.07	
Initial Calibration	WG156298-7	12/29/14	13:22	5.173	26.07	
Initial Calibration	WG156298-9	12/29/14	13:57	5.174	26.07	
Initial Calibration	WG156298-11	12/29/14	14:32	5.175	26.07	
Independent Source	WG156298-13	12/29/14	15:06			
Independent Source	WG156298-14	12/29/14	15:41			
Initial Calibration	WG156298-15	12/29/14	16:16	1		
Initial Calibration	WG156298-27	12/29/14	19:44			
Initial Calibration	WG156298-39	12/29/14	23:12			
Initial Calibration	WG156298-51	12/30/14	02:39			
Initial Calibration	WG156298-63	12/30/14	06:07			
Continuing Calibrati	WG156982-1	01/15/15	10:39	5.173	26.07	
Method Blank Sample	WG156929-1	01/15/15	12:28	5.187	26.07	
Laboratory Control S	WG156929-2	01/15/15	13:03	5.176	26.07	
Laboratory Control S	WG156929-3	01/15/15	13:37	5.176	26.07	
IDWGW-3178-011315	SI0230-2	01/15/15	15:56	5.171	26.07	
IDWGW-F0A37-011315	SI0230-3	01/15/15	16:31	5.174	26.07	
IDWGW-EG332-011315	SI0230-4	01/15/15	17:05	5.177	26.07	
Continuing Calibrati	WG156982-3	01/15/15	18:15	5.166	26.06	
Continuing Calibrati	WG157171-1	01/19/15	10:53	5.161	26.06	
Method Blank Sample	WG157001-1	01/19/15	12:45	5.181	26.07	
Laboratory Control S	WG157001-2	01/19/15	13:20	5.172	26.07	
Laboratory Control S	WG157001-3	01/19/15	13:55	5.174	26.07	
IDWS-0312-011315	SI0230-1	01/19/15	14:29	5.173	26.07	
Continuing Calibrati	WG157171-3	01/19/15	18:32	5.17	26.06	

Form 8 GC Analytical Sequence

Lab Name : Katahdin Analytical ServicesSDG : SI0230Project : Navy Clean WE15-03-06 NWIRP Bethpage,Column ID : B

Instrument ID: GC07

Client Sample ID	Lab Sample ID	Date Analyzed	Time Analyzed	TCX	DCB	TCX
Initial Calibration	WG156298-2	12/29/14	10:27	5.385	26.98	ICA
Initial Calibration	WG156298-4	12/29/14	12:13	5.372	26.98	
Initial Calibration	WG156298-6	12/29/14	12:48	5.387	26.99	
Initial Calibration	WG156298-8	12/29/14	13:22	5.392	27.00	
Initial Calibration	WG156298-10	12/29/14	13:57	5.395	27.00	
Initial Calibration	WG156298-12	12/29/14	14:32	5.395	27.00	
Independent Source	WG156298-13	12/29/14	15:06	0.000	27100	
Independent Source	WG156298-14	12/29/14	15:41			
Initial Calibration	WG156298-16	12/29/14	16:16			
Initial Calibration	WG156298-28	12/29/14	19:44			
Initial Calibration	WG156298-40	12/29/14	23:12			
Initial Calibration	WG156298-52	12/30/14	02:39			
Initial Calibration	WG156298-64	12/30/14	06:07			
Continuing Calibrati	WG156982-2	01/15/15	10:39	5.384	26.98	
Method Blank Sample	WG156929-1	01/15/15	12:28	5.385	26.98	
Laboratory Control S	WG156929-2	01/15/15	13:03	5.387	26.98	
Laboratory Control S	WG156929-3	01/15/15	13:37	5.386	26.98	
IDWGW-3178-011315	SI0230-2	01/15/15	15:56	5.381	26.98	
IDWGW-F0A37-011315	SI0230-3	01/15/15	16:31	5.383	26.98	
IDWGW-EG332-011315	SI0230-4	01/15/15	17:05	5.385	26.98	
Continuing Calibrati	WG156982-4	01/15/15	18:15	5.377	26.97	
Continuing Calibrati	WG157171-2	01/19/15	10:53	5.37	26.96	
Method Blank Sample	WG157001-1	01/19/15	12:45	5.374	26.97	
Laboratory Control S	WG157001-2	01/19/15	13:20	5.38	26.97	
Laboratory Control S	WG157001-3	01/19/15	13:55	5.384	26.97	
IDWS-0312-011315	SI0230-1	01/19/15	14:29	5.381	26.97	
Continuing Calibrati	WG157171-4	01/19/15	18:32	5.38	26.96	

Sample Data Section

KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
 - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-1

Client ID: IDWS-0312-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By:HG **SDG:** SI0230

Lab File ID: 7IA285.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15

Extract Date: 15-JAN-15

Extraction Method: SW846 3540

Lab Prep Batch: WG157001

Analysis Date: 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: SL **% Solids:** 79.

Report Date: 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	11.	ug/Kgdrywt	1	17	21.	7.6	11.
Aroclor-1221	U	11.	ug/Kgdrywt	1	17	21.	9.9	11.
Aroclor-1232	U	12.	ug/Kgdrywt	1	17	21.	12.	12.
Aroclor-1242	U	11.	ug/Kgdrywt	1	17	21.	7.3	11.
Aroclor-1248	U	11.	ug/Kgdrywt	1	17	21.	7.7	11.
Aroclor-1254	U	11.	ug/Kgdrywt	1	17	21.	5.9	11.
Aroclor-1260	U	11.	ug/Kgdrywt	1	17	21.	7.6	11.
Tetrachloro-M-Xylene		86.6	%					
Decachlorobiphenyl		88.3	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA285.D

Report Date: 20-Jan-2015 10:14

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA19.b\\7IA285.D

Lab Smp Id: SI0230-1 Client Smp ID: IDWS-0312-011315

Inj Date : 19-JAN-2015 14:29 Operator : JLP Smp Info : SI0230-1 Misc Info : WG157171, WG157001, WG156298-1 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 8

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws Cpnd Variable	0.01000 20.570	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg) Local Compound Variable

CONCENTRATIONS

			(ON-COL	FINAL
DШ	EVD DM	דת דת	DEGDONGE	/ / T \	/ / T/ cu

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
====	=======	=======	=======	======	======	========	=====	========

\$ 3	Tetrachloro	CAS #: 877-09-8		
5.173	5.172	0.001	1259974 0.08645	36.3

\$ 12 Decachlorobiphenyl	CAS #: 2051-24-3
--------------------------	------------------

^{26.066 26.058 0.008 895576 0.08771 36.8}

Data File: 7IA285.D

Report Date: 20-Jan-2015 10:14

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA19.b\GC07IA19.b\7IA285.D

Lab Smp Id: SI0230-1 Client Smp ID: IDWS-0312-011315

Inj Date : 19-JAN-2015 14:29

Operator : JLP Smp Info : SI0230-1 Misc Info : WG157171,WG157001,WG156298-2 Inst ID: gc07.i

Comment

: \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m Method

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 8

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
M		% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS

			ON-COL	FINAL	
ייים	שמ מעש	מת שות	DECDONCE (110 /mt)	(110 /Va)	

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
====	=======	=======	=======	======	======	=========	=====	========

\$ 2	Tetrachlor	o-m-xylene		CAS #:	877-09-8
5.381	5.388	-0.007	4900158 0.08130	34.1	

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-2

Client ID: IDWGW-3178-011315

Project: Navy Clean WE15-03-06 NWIRP Beth_I Extracted By: JMS SDG: SI0230 Extraction Method

J. A. Ella ID. 71 A 242

Lab File ID: 7IA242.D

Sample Date: 13-JAN-15 Received Date: 14-JAN-15

Extract Date: 14-JAN-15

Extraction Method: SW846 3510

Lab Prep Batch: WG156929

Analysis Date: 15-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Report Date: 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.47	0.16	0.24
Tetrachloro-M-Xylene	*	38.5	%					
Decachlorobiphenyl	*	10.9	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA242.D

Report Date: 16-Jan-2015 14:24

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\\7IA242.D

Lab Smp Id: SI0230-2 Client Smp ID: IDWGW-3178-011315

Inj Date : 15-JAN-2015 15:56

Operator : JLP Smp Info : SI0230-2 Misc Info : WG156982, WG156929, WG156298-1 Inst ID: gc07.i

Comment

: \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m Method

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 11

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name Value Descri	
Vo 1.060 Sample	ion Factor Volume (L) e Volume (L) Compound Variable

CONCENTRATIONS

ON-COL FINAL	ON-COL	FINAL
--------------	--------	-------

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====		======	======	======	======	========	=====	========
\$ 3	Tetrachlor	o-m-xylene			CAS #:	877-09-8		
5.171	5.161	0.010	546135	0.03747	0.354		(aR)	
\$ 12	Decachloro	biphenyl			CAS #:	2051-24-3		
26.069	9 26.051	0.018	111392	0.01091	0.103		(aR)	

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Data File: 7IA242.D

Report Date: 16-Jan-2015 14:25

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\\7IA242.D

Lab Smp Id: SI0230-2 Client Smp ID: IDWGW-3178-011315

Inj Date : 15-JAN-2015 15:56

Operator : JLP Smp Info : SI0230-2 Misc Info : WG156982, WG156929, WG156298-1 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date : 16-Jan- $2\overline{0}15$ 13: $5\overline{2}$ jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 11

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.060	Sample Volume (L)

Cpnd Variable Local Compound Variable

CONCENTRATIONS

ON-COL	FINAL

RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	=======	======	========	====	========
\$ 2	Tetrachlo	oro-m-xylene		CAS #:	877-09-8		
5.381	5.371	0.010	2318312 0.03846	0.363		(aR)	

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3

26.977 26.957 0.020 267714 0.01093 0.103 (aR)

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-3

Client ID: IDWGW-F0A37-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: JMS **SDG:** SI0230

Lab File ID: 7IA243.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15

Extract Date: 14-JAN-15

Extraction Method: SW846 3510

Lab Prep Batch: WG156929

Analysis Date: 15-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Report Date: 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.47	0.16	0.24
Tetrachloro-M-Xylene	*	27.5	%					
Decachlorobiphenyl	*	12.2	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA243.D

Report Date: 16-Jan-2015 14:24

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\\7IA243.D

Lab Smp Id: SI0230-3 Client Smp ID: IDWGW-F0A37-011315

Inj Date : 15-JAN-2015 16:31

Inst ID: gc07.i

Operator : JLP Smp Info : SI0230-3 Misc Info : WG156982,WG156929,WG156298-1

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 12

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.060	Sample Volume (L)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS

	ON-COL	FINAL			
DECDOMOR	(110 /mT)	(1107 /T.)	TADCTT	DANCE	PATTO

RI EXP RI D	DLI KI	RESPONSE (ug/IIIL) (ug/L)	TARGET RANGE	RATIO	REVIEW CODE
==== ====== ==	=====	=======================================	===== ==	=====	========	=====	========
	_						
\$ 3 Tetrachloro	-m-xylene			CAS #: 8	77-09-8		
5.174 5.161	0.013	385417 0	.02644	0.249		(aR)	
\$ 12 Decachlorob	oiphenyl			CAS #: 2	051-24-3		
26.067 26.051	0.016	120686 0	.01182	0.112		(aR)	
	* * * = *		· 2			(320)	

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Data File: 7IA243.D

Report Date: 16-Jan-2015 14:25

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\7IA243.D

Lab Smp Id: SI0230-3

Client Smp ID: IDWGW-F0A37-011315

Inj Date : 15-JAN-2015 16:31

Operator : JLP Smp Info : SI0230-3 Misc Info : WG156982, WG156929, WG156298-1 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date : 16-Jan- $2\overline{0}15$ 13: $5\overline{2}$ jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 12

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.060	Sample Volume (L)

Local Compound Variable Cpnd Variable

CONCENTRATIONS

ON-COL	FINAL

RT EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/L)	TARGET RANGE	RATIO	REVIEW CODE
==== ======	======	=======================================	======	========	====	========
\$ 2 Tetrachlo	oro-m-xylene		CAS #:	877-09-8		
5.383 5.371	0.012	1653197 0.02743	0.259		(aR)	
\$ 12 Decachlor	robiphenyl		CAS #:	2051-24-3		
26.977 26.957	0.020	299590 0.01223	0.115		(aR)	

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Report of Analytical Results

Client: ENSAFE Lab ID: SI0230-4

Client ID: IDWGW-EG332-011315

Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: JMS **SDG:** SI0230

Lab File ID: 7IA244.D

Sample Date: 13-JAN-15 **Received Date:** 14-JAN-15

Extract Date: 14-JAN-15

Extraction Method: SW846 3510

Lab Prep Batch: WG156929

Analysis Date: 15-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

Report Date: 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.24	ug/L	1	.5	0.47	0.14	0.24
Aroclor-1221	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1232	U	0.24	ug/L	1	.5	0.47	0.084	0.24
Aroclor-1242	U	0.24	ug/L	1	.5	0.47	0.17	0.24
Aroclor-1248	U	0.24	ug/L	1	.5	0.47	0.19	0.24
Aroclor-1254	U	0.24	ug/L	1	.5	0.47	0.077	0.24
Aroclor-1260	U	0.24	ug/L	1	.5	0.47	0.16	0.24
Tetrachloro-M-Xylene		72.4	%					
Decachlorobiphenyl	*	21.6	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA244.D

Report Date: 16-Jan-2015 14:24

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\\7IA244.D

Lab Smp Id: SI0230-4 Client Smp ID: IDWGW-EG332-011315

Inj Date : 15-JAN-2015 17:05 Operator : JLP Smp Info : SI0230-4 Misc Info : WG156982, WG156929, WG156298-1 Inst ID: gc07.i

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m

Ouant Type: ESTD Meth Date : 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 13

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.060	Sample Volume (L)
Cpnd Variable		Local Compound Variable

Local Compound Variable

CONCENTRATIONS

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	====	========

\$ 3	retrachion	0-m-xyrene		CAS # · 6	3//-09-8
5.177	5.161	0.016	1055606 0.07243	0.683	

3.11	3.101	0.010	1033000 0.07243	0.003

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3 26.070 26.051 0.019 207948 0.02037 0.192

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Data File: 7IA244.D

Report Date: 16-Jan-2015 14:25

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\\7IA244.D Client Smp ID: IDWGW-EG332-011315

Lab Smp Id: SI0230-4

Inj Date : 15-JAN-2015 17:05 Operator : JLP Smp Info : SI0230-4 Misc Info : WG156982, WG156929, WG156298-1 Inst ID: gc07.i

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date : 16-Jan- $2\overline{0}15$ 13: $5\overline{2}$ jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 13

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)

Cpnd Variable Local Compound Variable

CONCENTRATIONS

ON-COL FINAL

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	====	========

CAS #: 877-09-8 \$ 2 Tetrachloro-m-xylene

5.385 5.371 0.014 4308046 0.07147 0.674 ______

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3 26.980 26.957 0.023 528369 0.02157 0.204 (aR)

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).
- R Spike/Surrogate failed recovery limits.

Standards Data Section

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Natrument ID: GC07

Lab File IDs: 7HL407.D 7HL408.D 7HL409.D Column ID: A

7HL413.D 7HL410.D 7HL411.D **Calibration Date(s):** 29-DEC-14 10:27

30-DEC-14 10:10

	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					Max %RSD	
	0.0500000	0.1000000	0.2500000	1.0000	2.5000	10.0000	New	b	m1	m2	%RSD	70KSD	
Aroclor-1221(2)	155100	138240	128464	125218	127428	116819	AVG		131878		10.07303	20.00000	О
Aroclor-1221(1)	60380	55890	53844	47451	48104	39336	AVG		50834		14.63829	20.00000	О
Aroclor-1221(3)	115040	100060	95292	89334	90999	78215	AVG		94823		12.97568	20.00000	О
Aroclor-1221(4)	45880	40580	41644	40360	43037	37275	AVG		41463		6.95290	20.00000	О
Aroclor-1232(1)	19432	29416	77244	271768	670526	2519408	LNR	-0.06544	251023		0.99979	0.99000	О
Aroclor-1232(5)	6626	10974	27010	108548	261002	980344	LNR	-0.06074	97761		0.99972	0.99000	О
Aroclor-1232(4)	6410	10461	26568	108355	270494	1087770	LNR	0.00307	108781		1.00000	0.99000	О
Aroclor-1232(3)	18059	28813	70715	264304	664092	2661404	LNR	-0.00759	265848		0.99999	0.99000	О
Aroclor-1232(2)	9988	15533	39387	148139	353535	1329855	LNR	-0.06936	132468		0.99976	0.99000	О
Aroclor-1242(1)	292680	287510	297312	270737	260256	252478	AVG		276829		6.64050	20.00000	О
Aroclor-1242(3)	525360	519520	522268	485305	498218	502410	AVG		508847		3.13865	20.00000	О
Aroclor-1242(4)	193680	198110	216880	204432	207866	215957	AVG		206154		4.53669	20.00000	О
Aroclor-1242(2)	230420	230610	245764	224083	218414	218531	AVG		227970		4.49532	20.00000	О
Aroclor-1242(5)	219760	224100	237768	216870	213238	215824	AVG		221260		4.02225	20.00000	О
Aroclor-1016(2)	270280	264710	278656	254777	259351	250350	AVG		263021		3.95844	20.00000	О
Aroclor-1016(4)	234340	232190	247516	226954	243584	249468	AVG		239009		3.81777	20.00000	О
Aroclor-1016(5)	254700	252680	267400	235028	249283	251509	AVG		251767		4.12873	20.00000	О
Aroclor-1016(1)	333780	335740	342832	306804	306898	298246	AVG		320717		5.87458	20.00000	О
Aroclor-1016(3)	612020	610910	601652	555845	582534	582373	AVG		590889		3.65615	20.00000	О
Aroclor-1248(1)	365360	327490	320464	294706	332980	291682	AVG		322114		8.44197	20.00000	О
Aroclor-1248(5)	201620	198880	213672	210695	251020	222329	AVG		216369		8.76693	20.00000	О
Aroclor-1248(3)	393620	391860	395640	376789	440790	372900	AVG		395267		6.12283	20.00000	О
Aroclor-1248(4)	222100	227900	236228	245357	285645	262987	AVG		246703		9.68100	20.00000	О
Aroclor-1248(2)	367980	358030	363812	334142	379256	324512	AVG		354622		5.92499	20.00000	О
Aroclor-1254(5)	448780	488690	485820	522974	554467	609956	AVG		518448		11.07873	20.00000	О
Aroclor-1254(4)	435260	454260	461272	471894	461460	489892	AVG		462340		3.93021	20.00000	О
Aroclor-1254(2)	512280	543440	520356	496987	503727	521710	AVG		516417		3.15755	20.00000	О
Aroclor-1254(3)	355920	387680	400232	453969	475484	523731	AVG		432836		14.44491	20.00000	О
Aroclor-1254(1)	485560	481520	463068	444344	446980	457008	AVG		463080		3.73091	20.00000	О
Aroclor-1260(1)	504020	517330	516588	463166	494172	520041	AVG		502553		4.30918	20.00000	О
Aroclor-1260(2)	816520	788560	770656	721875	782198	787544	AVG		777892		4.02757	20.00000	О
Aroclor-1260(3)	641540	629230	621132	645735	694761	735299	AVG		661283		6.71876	20.00000	О
Aroclor-1260(5)	642040	571820	552740	590048	638272	671424	AVG		611057		7.57989	20.00000	О
Aroclor-1260(4)	402640	407420	421960	388324	431503	439918	AVG		415294		4.64801	20.00000	О
Tetrachloro-m-xylene	15087000	13219000	14420600	14562350	14976220	15180790	AVG		14574327		4.99783	20.00000	
Decachlorobiphenyl	11890000	9940500	10247200	9821550	9621020	9740535	AVG		10210134		8.32748	20.00000	

Lab Name: Katahdin Analytical Services **SDG:** SI0230 Project: Navy Clean WE15-03-06 NWIRP Bethpage, N Instrument ID: GC07

Lab File IDs: 7HL407.D 7HL408.D 7HL409.D Column ID: A 7HL413.D 7HL410.D

7HL411.D Calibration Date(s): 29-DEC-14 10:27

30-DEC-14 10:10

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Natrument ID: GC07

Lab File IDs: 7HL407.D 7HL408.D 7HL409.D Column ID: B

7HL413.D 7HL410.D 7HL411.D **Calibration Date(s):** 29-DEC-14 10:27

30-DEC-14 10:10

	0.0500000	0.1000000	0.2500000	1.0000	2.5000	10.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Level 6	Crv					%RSD	
Aroclor-1221(3)	511360	442880	416692	359933	354064	288517	AVG		395574		19.75858	20.00000	О
Aroclor-1221(1)	202460	173550	168140	152419	145938	115143	AVG		159608		18.41451	20.00000	О
Aroclor-1221(4)	240060	208430	184964	177296	170587	144418	AVG		187626		17.60144	20.00000	О
Aroclor-1221(2)	724640	642430	601600	530950	526443	442610	AVG		578112		17.1959€	20.00000	О
Aroclor-1232(5)	28962	47232	115141	410454	958576	3507332	LNR	-0.10617	348607		0.99948	0.99000	О
Aroclor-1232(2)	42058	66098	159367	555475	1300281	4527369	LNR	-0.14954	449453		0.99872	0.99000	О
Aroclor-1232(1)	85364	133979	314677	1102206	2556463	8803648	LNR	-0.16316	873471		0.99848	0.99000	О
Aroclor-1232(4)	36401	56446	140992	505261	1200552	4460160	LNR	-0.08703	443748		0.99967	0.99000	О
Aroclor-1232(3)	71574	115323	280231	1006587	2435313	8972362	LNR	-0.08735	893045		0.99960	0.99000	О
Aroclor-1016(4)	1090940	1133110	1097032	943726	1002874	957832	AVG		1037586		7.69581	20.00000	О
Aroclor-1016(2)	1106480	1116980	1089908	876963	941444	861001	AVG		998796		11.92946	20.00000	О
Aroclor-1016(5)	881060	959650	931288	813489	842615	816181	AVG		874047		6.98882	20.00000	О
Aroclor-1016(3)	2290020	2217960	2184352	1865659	1999366	1865015	AVG		2070395		8.96194	20.00000	О
Aroclor-1016(1)	1266260	1257620	1230532	1060180	1052768	951369	AVG		1136455		11.63766	20.00000	О
Aroclor-1242(5)	867240	904920	893804	772293	763678	727536	AVG		821579		9.24933	20.00000	О
Aroclor-1242(4)	996280	1038520	1009356	901531	874425	839068	AVG		943197		8.68992	20.00000	О
Aroclor-1242(3)	2061420	2014320	1961188	1737094	1764797	1621412	AVG		1860038		9.48772	20.00000	О
Aroclor-1242(1)	1139400	1169410	1113508	968436	921674	825307	AVG		1022956		13.51035	20.00000	О
Aroclor-1242(2)	929440	994450	970956	852570	825681	751702	AVG		887466		10.52763	20.00000	О
Aroclor-1248(3)	1595400	1601600	1474756	1373572	1507722	1218874	AVG		1461987		9.98109	20.00000	О
Aroclor-1248(2)	1410020	1407030	1305280	1213722	1333948	1051854	AVG		1286976		10.58242	20.00000	О
Aroclor-1248(1)	1266400	1244780	1194276	1101353	1219493	982359	AVG		1168110		9.20631	20.00000	О
Aroclor-1248(5)	825580	839100	818816	762984	868146	705194	AVG		803303		7.35921	20.00000	О
Aroclor-1248(4)	1057680	1051490	1005052	956001	1081521	890638	AVG		1007064		7.19433	20.00000	О
Aroclor-1254(4)	1809880	1824760	1831356	1758841	1774815	1699008	AVG		1783110		2.80520	20.00000	О
Aroclor-1254(5)	1831960	1919730	1891376	1837360	1791764	1776347	AVG		1841423		3.01720	20.00000	О
Aroclor-1254(1)	1743320	1704360	1639852	1466999	1469999	1418099	AVG		1573772		8.83067	20.00000	О
Aroclor-1254(2)	2052140	2056370	1905292	1768903	1730629	1648216	AVG		1860258		9.23032	20.00000	О
Aroclor-1254(3)	1504040	1504190	1463932	1360980	1364334	1323620	AVG		1420183		5.62882	20.00000	О
Aroclor-1260(3)	2102100	2001410	1944872	1824922	1889772	1869412	AVG		1938748		5.19960	20.00000	О
Aroclor-1260(2)	2153880	2118320	2042232	1845161	1953987	1900084	AVG		2002277		6.13738	20.00000	О
Aroclor-1260(5)	1808060	1853040	1884460	1766071	1878024	1808812	AVG		1833078		2.53110	20.00000	О
Aroclor-1260(4)	1350380	1370030	1343724	1216416	1323772	1279150	AVG		1313912		4.32936	20.00000	О
Aroclor-1260(1)	1726360	1688060	1640556	1471555	1539645	1509882	AVG		1596010		6.48320	20.00000	О
Tetrachloro-m-xylene	68980000	61157000	61723400	55516150	57457420	56820760	AVG		60275788		8.16713	20.00000	
Decachlorobiphenyl	28817000	24597000	24093400	22711050	23543080	23182000	AVG		24490588		9.06873	20.00000	

Lab Name : Katahdin Analytical Services **SDG:** SI0230 **Project :** Navy Clean WE15-03-06 NWIRP Bethpage, Nature ID: GC07

Lab File IDs: 7HL407.D 7HL408.D 7HL409.D **Column ID:** B

7HL413.D 7HL410.D 7HL411.D Calibration Date(s): 29-DEC-14 10:27

30-DEC-14 10:10

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value Report Date: 05-Jan-2015 14:11

Calibration History

Method : \\target_server\\gg\chem\\gc07.i\\GC07HL29.b\\PCB078.m Start Cal Date: 29-DEC-2014 10:27

End Cal Date : 30-DEC-2014 10:10

Last Cal Level: 4

Last Cal Type : Continuing Calibration

Initial Calibration

Injection Date	Sublist	Calibration File
Cal Level: 1 , Cal	l Amount: 0.05000	
29-DEC-2014 16:50	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL407.D 7HL401.D 7HL395.D 7HL389.D 7HL383.D 7HL375.D
+	+ l Amount: 0.10000	+
30-DEC-2014 03:49 30-DEC-2014 00:21 29-DEC-2014 20:53 29-DEC-2014 17:25	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	THL408.D THL402.D THL396.D THL390.D THL384.D THL376.D
+	+ l Amount: 0.25000	+
30-DEC-2014 04:23 30-DEC-2014 00:56 29-DEC-2014 21:28 29-DEC-2014 18:00	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL409.D 7HL403.D 7HL397.D 7HL391.D 7HL385.D 7HL377.D
+	+	+
+=====================================	======================================	7HL413.D 7HL412.D 7HL406.D 7HL400.D 7HL394.D 7HL388.D 7HL382.D 7HL374.D
+		·
1		7HL410.D

29-DEC-2014 18:34	AR1248 AR1242 AR1660 +	7HL392.D 7HL386.D 7HL378.D
+	+ l Amount: 10.00000	+
29-DEC-2014 22:37	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL411.D 7HL405.D 7HL399.D 7HL393.D 7HL387.D 7HL379.D
Continuing Calibrat: Ccal Level Mode: BY		
30-DEC-2014 10:10 30-DEC-2014 09:35 30-DEC-2014 06:07 30-DEC-2014 02:39 29-DEC-2014 23:12 29-DEC-2014 19:44 29-DEC-2014 16:16 29-DEC-2014 10:27	AR1268 AR1262 AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL413.D 7HL412.D 7HL406.D 7HL400.D 7HL394.D 7HL388.D 7HL382.D 7HL374.D

Report Date: 05-Jan-2015 14:12

Calibration History

Method : \\target_server\gg\chem\gc07.i\\GC07HL29.b\\PCB078.m\\PCB078.m\\Start Cal Date: 29-DEC-2014 10:27

End Cal Date : 30-DEC-2014 10:10

Last Cal Level: 4

Last Cal Type : Continuing Calibration

Initial Calibration

Injection Date	Sublist	Calibration File
Cal Level: 1 , Cal	l Amount: 0.05000	
29-DEC-2014 16:50	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL407.D 7HL401.D 7HL395.D 7HL389.D 7HL383.D 7HL375.D
+	+ l Amount: 0.10000	+
30-DEC-2014 03:49 30-DEC-2014 00:21 29-DEC-2014 20:53 29-DEC-2014 17:25	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	THL408.D THL402.D THL396.D THL390.D THL384.D THL376.D
+	+ l Amount: 0.25000	+
30-DEC-2014 04:23 30-DEC-2014 00:56 29-DEC-2014 21:28 29-DEC-2014 18:00	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL409.D 7HL403.D 7HL397.D 7HL391.D 7HL385.D 7HL377.D
+	+	+
+=====================================	======================================	7HL413.D 7HL412.D 7HL406.D 7HL400.D 7HL394.D 7HL388.D 7HL382.D 7HL374.D
+		·
1		7HL410.D

29-DEC-2014 22:02 29-DEC-2014 18:34 29-DEC-2014 13:57 +	_	7HL392.D 7HL386.D 7HL378.D
+	+ l Amount: 10.00000	+
30-DEC-2014 09:01 30-DEC-2014 05:33 30-DEC-2014 02:05 29-DEC-2014 22:37 29-DEC-2014 19:09 29-DEC-2014 14:32	AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL411.D 7HL405.D 7HL399.D 7HL393.D 7HL387.D 7HL379.D
Continuing Calibrat Ccal Level Mode: BY		
30-DEC-2014 10:10 30-DEC-2014 09:35 30-DEC-2014 06:07 30-DEC-2014 02:39 29-DEC-2014 23:12 29-DEC-2014 19:44 29-DEC-2014 16:16 29-DEC-2014 10:27	AR1268 AR1262 AR1232 AR1221 AR1254 AR1248 AR1242 AR1660	7HL413.D 7HL412.D 7HL406.D 7HL400.D 7HL394.D 7HL388.D 7HL382.D 7HL374.D

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL380.D

Report Date: 05-Jan-2015 14:09

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa01504

Sample Matrix: SOLID Fraction: PCB

Lab Smp Id: WG156298-13

Level: LOW Operator: JLP Data Type: GC MULTI COMP SpikeList File: 1016ind.spk SampleType: LCS Quant Type: ESTD

Sublist File: AR1016.sub
Method File: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Misc Info: WG156298, WG156298, WG156298-1, TH0797-1

SPIKE COMPOUND	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
6 Aroclor-1016	1.00	1.04	104.00	80-120

Data File: 7HL380.D

Report Date: 05-Jan-2015 14:08

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa01504

Sample Matrix: SOLID Fraction: PCB

Lab Smp Id: WG156298-13

Level: LOW Operator: JLP Data Type: GC MULTI COMP SpikeList File: 1016ind.spk SampleType: LCS Quant Type: ESTD

Sublist File: AR1016.sub Method File: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Misc Info: WG156298, WG156298, WG156298-2, TH0797-1

SPIKE COMPOUND	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
5 Aroclor-1016	1.00	1.05	105.00	80-120

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL381.D

Report Date: 05-Jan-2015 14:09

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa01504

Sample Matrix: SOLID Fraction: PCB

Lab Smp Id: WG156298-14

Level: LOW Operator: JLP Data Type: GC MULTI COMP SpikeList File: 1260ind.spk SampleType: LCS Quant Type: ESTD

Sublist File: AR1260.sub Method File: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Misc Info: WG156298, WG156298, WG156298-1, TH0797-1

SPIKE COMPOUND	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
9 Aroclor-1260	1.00	1.06	106.00	80-120

Data File: 7HL381.D

Report Date: 05-Jan-2015 14:08

Katahdin Analytical Services

RECOVERY REPORT

Client Name: Client SDG: SDGa01504

Sample Matrix: SOLID Fraction: PCB

Lab Smp Id: WG156298-14

Level: LOW Operator: JLP Data Type: GC MULTI COMP SpikeList File: 1260ind.spk SampleType: LCS Quant Type: ESTD

Sublist File: AR1260.sub Method File: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Misc Info: WG156298, WG156298, WG156298-2, TH0797-1

SPIKE COMPOUND	CONC ADDED ug/Kgdrywt	CONC RECOVERED ug/Kgdrywt	% RECOVERED	LIMITS
9 Aroclor-1260	1.00	1.08	108.00	80-120

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL374.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07HL29.b\\7HL374.D

Lab Smp Id: WG156298-1

Inj Date : 29-DEC-2014 10:27 Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-1

Misc Info: Comment

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 2 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)
Cond Variable		Local Compound Variable

Local Compound Variable Cpnd Variable

AMOUNTS

					ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RAI	NGE RATIO	REVIEW CODE
==== =		======	======	======	======	=======	=== ====	========
\$ 3 1	etrachlo	oro-m-xylen	е		CAS #	: 877-09-8		
			291247					
6 A	aroclor-	1016			CAS #	: 12674-11-2		
7.132	7.132	0.000	306804	1.00000	0.957	80.00- 120	.00 100.00	
7.715	7.715	0.000	254777	1.00000	0.969	158.77- 238	.15 83.04	
8.722	8.722	0.000	555845	1.00000	0.941	296.98- 445	.46 181.17	
9.260	9.260	0.000	226954	1.00000	0.950	114.78- 172	.16 73.97	
10.382	10.382	0.000	235028	1.00000	0.934	112.32- 168	.48 76.61	
		Average of	Peak Amounts :	=	0.95020			
9 A	roclor-	1260			CAS #	: 11096-82-5		
15.010	15.010	0.000	463166	1.00000	0.922	80.00- 120	.00 100.00	
16.210	16.210	0.000	721875	1.00000	0.928	94.69- 142	.03 155.86	
17.360	17.360	0.000	645735	1.00000	0.976	89.28- 133	.92 139.42	
18.667	18.667	0.000	388324	1.00000	0.935	72.48- 108	.72 83.84	
21.340	21.340	0.000	590048	1.00000	0.966	0.00- 0	.00 127.39	
		Average of	Peak Amounts :	=	0.94540			
		_						
\$ 12 Г	ecachlo:	robiphenvl			CAS #	: 2051-24-3		
			196431					
20.010	20.010	0.000	170401	5.02000	0.0172			

Data File: 7HL374.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL374.D

Lab Smp Id: WG156298-2

Inj Date : 29-DEC-2014 10:27

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-2

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 10:27 Cal File: 7HL374.D

Als bottle: 2 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
O 77 1- 1- 1-		T 1

Cpnd Variable Local Compound Variable

		CAL-AMT	ON-COL			
RT EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW C
==== ====== :	======	============	======	========	=====	======
\$ 2 Tetrachlo	ro-m-xylene		CAS #:	877-09-8		
5.385 5.385	0.000	1110323 0.02000	0.0663			
5 Aroclor-1	016		CAS #:	12674-11-2		
7.651 7.651	0.000	1060180 1.00000	1.00	80.00- 120.00	100.00	
8.366 8.366	0.000	876963 1.00000	4.92	158.77- 238.15	82.72	
9.370 9.370	0.000	1865659 1.00000	1.51	296.98- 445.46	175.98	
10.075 10.075	0.000	943726 1.00000	1.17	114.78- 172.17	89.02	
11.185 11.185	0.000	813489 1.00000	1.92	112.32- 168.48	76.73	
	2	Peak Amounts =				
9 Aroclor-1				11096-82-5		
15.878 15.878	0.000	1471555 1.00000	1.00	80.00- 120.00	100.00	
16.833 16.833	0.000	1845161 1.00000	1.00	94.69- 142.03	125.39	
18.300 18.300	0.000	1824922 1.00000	1.00	89.28- 133.92	124.01	
19.643 19.643	0.000	1216416 1.00000	1.00	72.48- 108.72	82.66	
22.441 22.441	0.000	1766071 1.00000	1.00	0.00- 0.00	120.01	
1	Average of F	Peak Amounts =	1.00000			
		454221 0.02000				
20.9/0 26.9/6	0.000	454221 0.02000	0.0837			

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL375.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07HL29.b\\7HL375.D

Lab Smp Id: WG156298-3

Inj Date : 29-DEC-2014 12:13

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-3

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo Cond Variable	1.000	Sample Volume (L)
('nnd Variable		Local ('ompound Variable

Cpnd Variable Local Compound Variable

				AMOUN	113				
				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
==== =		======	======	======	======	======	=====	=====	========
\$ 3 7	Tetrachlo	oro-m-xyle	ne		CAS #	877-09-8	3		
			15087						
	Aroclor-					: 12674-11			
7.154	7.132	0.022	16689	0.05000	0.0520	80.00- 1	20.00	100.00	
7.737	7.715	0.022	13514	0.05000	0.0514	158.77- 2	238.15	80.98	
8.744	8.722	0.022	30601	0.05000	0.0518	296.98- 4	45.46	183.36	
9.284	9.260	0.024	11717	0.05000	0.0490	114.78- 1	72.16	70.21	
10.407	10.382	0.025	12735	0.05000	0.0506	112.32- 1	68.48	76.31	
		Average o	f Peak Amounts =	=	0.05096				
9 <i>I</i>	Aroclor-	1260			CAS #	: 11096-82	2-5		
15.027	15.010	0.017	25201	0.05000	0.0501	80.00- 1	20.00	100.00	
16.231	16.210	0.021	40826	0.05000	0.0525	94.69- 1	42.03	162.00	
17.382	17.360	0.022	32077	0.05000	0.0485	89.28- 1	33.92	127.28	
18.681	18.667	0.014	20132	0.05000	0.0485	72.48- 1	08.72	79.89	
21.352	21.340	0.012	32102	0.05000	0.0525	0.00-	0.00	127.38	
		Average o	f Peak Amounts =	=	0.05042				
\$ 12 [Decachlo	robiphenyl			CAS #	2051-24-	- 3		
26.061	26.048	0.013	11890	0.00100	0.00116				

Data File: 7HL375.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL375.D

Lab Smp Id: WG156298-4

Inj Date : 29-DEC-2014 12:13

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-4

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 12:13 Cal File: 7HL375.D

Als bottle: 3 Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt	0.01000	Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
O		Taral Commonwed Warriable

Cpnd Variable Local Compound Variable

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	======	======	======	========	=====	========
\$ 2 T	etrachl	oro-m-xyler	ie		CAS #	: 877-09-8		
			68980					
	roclor-					: 12674-11-2		
7.637	7.651	-0.014	63313	0.05000	0.0544	80.00- 120.00	100.00	
8.355	8.366	-0.011	55324	0.05000	0.157	158.77- 238.15	87.38	
9.359	9.370	-0.011	114501	0.05000	0.0804	296.98- 445.46	180.85	
10.064	10.075	-0.011	54547	0.05000	0.0640	114.78- 172.17	86.15	
11.175	11.185	-0.010	44053	0.05000	0.0858	112.32- 168.48	69.58	
		_	Peak Amounts					
	roclor-					: 11096-82-5		
15.874	15.878	-0.004	86318	0.05000	0.0540	80.00- 120.00	100.00	
16.834	16.833	0.001	107694	0.05000	0.0538	94.69- 142.03	124.76	
18.302	18.300	0.002	105105	0.05000	0.0535	89.28- 133.92	121.76	
19.642	19.643	-0.001	67519	0.05000	0.0526	72.48- 108.72	78.22	
22.444	22.441	0.003	90403	0.05000	0.0506	0.00- 0.00	104.73	
		=	Peak Amounts					
						· 2051-24-3		
			28817					

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL376.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL376.D

Lab Smp Id: WG156298-5

Inj Date : 29-DEC-2014 12:48 Operator : JLP Smp Info : WG156298-5 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m Method

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 4 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

Local Compound Variable Cpnd Variable

AMOUNTS

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== :	======	======	======	======	======	========	=====	========
\$ 3 7	Tetrachlo	oro-m-xyle	ne		CAS #	: 877-09-8		
5.169	5.157	0.012	26438	0.00200	0.00181			
6 1	Aroclor-1	1016			CAS #	: 12674-11-2		
7.144	7.132	0.012	33574	0.10000	0.105	80.00- 120.00	100.00	
7.728	7.715	0.013	26471	0.10000	0.101	158.77- 238.15	78.84	
8.738	8.722	0.016	61091	0.10000	0.103	296.98- 445.46	181.96	
9.276	9.260	0.016	23219	0.10000	0.0971	114.78- 172.16	69.16	
10.396	10.382	0.014	25268	0.10000	0.100	112.32- 168.48	75.26	
		Average o	f Peak Amounts :	=	0.10122			
9 1	Aroclor-1	1260			CAS #	: 11096-82-5		
15.026	15.010	0.016	51733	0.10000	0.103	80.00- 120.00	100.00	
16.231	16.210	0.021	78856	0.10000	0.101	94.69- 142.03	152.43	
17.376	17.360	0.016	62923	0.10000	0.0952	89.28- 133.92	121.63	
18.683	18.667	0.016	40742	0.10000	0.0981	72.48- 108.72	78.75	
21.363	21.340	0.023	57182	0.10000	0.0936	0.00- 0.00	110.53	
		Average o	f Peak Amounts :	=	0.09818			
\$ 12 I	Decachlor	robiphenyl			CAS #	2051-24-3		
26.068	26.048	0.020	19881	0.00200	0.00195			

Katahdin Analytical Services 0000398

Data File: 7HL376.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL376.D

Lab Smp Id: WG156298-6

Inj Date : 29-DEC-2014 12:48

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-6

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 12:48 Cal File: 7HL376.D

Als bottle: 4 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
0		Tagal Commonwed Track abla

Cpnd Variable Local Compound Variable

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	======	======	======	========	=====	========
\$ 2 T	etrachlo	oro-m-xyle	ne		CAS #	: 877-09-8		
			122314					
5 A	roclor-1	1016			CAS #	: 12674-11-2		
7.656	7.651	0.005	125762	0.10000	0.105	80.00- 120.00	100.00	
8.372	8.366	0.006	111698	0.10000	0.209	158.77- 238.15	88.82	
9.377	9.370	0.007	221796	0.10000	0.139	296.98- 445.46	176.36	
10.082	10.075	0.007	113311	0.10000	0.126	114.78- 172.17	90.10	
11.194	11.185	0.009	95965	0.10000	0.156	112.32- 168.48	76.31	
		Average o	f Peak Amounts :	=	0.14700			
9 A	roclor-1	1260			CAS #	: 11096-82-5		
15.887	15.878	0.009	168806	0.10000	0.104	80.00- 120.00	100.00	
16.844	16.833	0.011	211832	0.10000	0.104	94.69- 142.03	125.49	
18.314	18.300	0.014	200141	0.10000	0.101	89.28- 133.92	118.56	
19.656	19.643	0.013	137003	0.10000	0.104	72.48- 108.72	81.16	
22.454	22.441	0.013	185304	0.10000	0.102	0.00- 0.00	109.77	
		_	f Peak Amounts :					
						: 2051-24-3		
			49194					

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL377.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07HL29.b\\7HL377.D

Lab Smp Id: WG156298-7

Inj Date : 29-DEC-2014 13:22

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-7

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 5 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

Cpnd Variable Local Compound Variable

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =		======	======	======	======	========	=====	========
\$ 3 1	Tetrachlo	oro-m-xyle	ne		CAS #	: 877-09-8		
			72103					
	Aroclor-1					: 12674-11-2		
7.151	7.132	0.019	85708	0.25000	0.267	80.00- 120.00	100.00	
7.734	7.715	0.019	69664	0.25000	0.265	158.77- 238.15	81.28	
8.744	8.722	0.022	150413	0.25000	0.254	296.98- 445.46	175.49	
9.284	9.260	0.024	61879	0.25000	0.259	114.78- 172.16	72.20	
10.404	10.382	0.022	66850	0.25000	0.266	112.32- 168.48	78.00	
		Average o	f Peak Amounts :	=	0.26220			
9 <i>I</i>	Aroclor-1	L260			CAS #	: 11096-82-5		
15.031	15.010	0.021	129147	0.25000	0.257	80.00- 120.00	100.00	
16.236	16.210	0.026	192664	0.25000	0.248	94.69- 142.03	149.18	
17.386	17.360	0.026	155283	0.25000	0.235	89.28- 133.92	120.24	
18.691	18.667	0.024	105490	0.25000	0.254	72.48- 108.72	81.68	
21.364	21.340	0.024	138185	0.25000	0.226	0.00- 0.00	107.00	
		_	f Peak Amounts :					
26.069	26.048	0.021	51236	0.00500	0.00502			

Data File: 7HL377.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\77HL377.D

Lab Smp Id: WG156298-8

Inj Date : 29-DEC-2014 13:22

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-8

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 13:22 Cal File: 7HL377.D

Als bottle: 5 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt	0.01000	Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
O		Taral Commonwed Warriable

Cpnd Variable Local Compound Variable

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =		======	=======	======	======	========	=====	========
\$ 2 1	Tetrachlo	oro-m-xyler	ie		CAS #	: 877-09-8		
			308617					
5 A	Aroclor-1	1016			CAS #	: 12674-11-2		
7.664	7.651	0.013	307633	0.25000	0.256	80.00- 120.00	100.00	
8.379	8.366	0.013	272477	0.25000	0.385	158.77- 238.15	88.57	
9.382	9.370	0.012	546088	0.25000	0.310	296.98- 445.46	177.51	
10.089	10.075	0.014	274258	0.25000	0.290	114.78- 172.17	89.15	
11.202	11.185	0.017	232822	0.25000	0.327	112.32- 168.48	75.68	
		Average of	Peak Amounts =	=	0.31360			
9 <i>I</i>	Aroclor-1	1260			CAS #	: 11096-82-5		
15.894	15.878	0.016	410139	0.25000	0.251	80.00- 120.00	100.00	
16.852	16.833	0.019	510558	0.25000	0.250	94.69- 142.03	124.48	
18.322	18.300	0.022	486218	0.25000	0.247	89.28- 133.92	118.55	
19.664	19.643	0.021	335931	0.25000	0.254	72.48- 108.72	81.91	
22.462	22.441	0.021	471115	0.25000	0.258	0.00- 0.00	114.87	
		Average of	Peak Amounts =	=	0.25200			
\$ 12 [Decachlo	robiphenyl			CAS #	: 2051-24-3		
26.997	26.976	0.021	120467	0.00500	0.00721			

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL378.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL378.D

Lab Smp Id: WG156298-9

Inj Date : 29-DEC-2014 13:57 Operator : JLP Smp Info : WG156298-9 Inst ID: gc07.i

Misc Info: Comment

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)
Cond Variable		Local Compound Variable

Local Compound Variable Cpnd Variable

				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	======	=====	=====	========
\$ 3	Tetrachlo	oro-m-xyle	ne		CAS #:	877-09-8	В		
5.174	5.157	0.017	748811	0.05000	0.0514				
6	Aroclor-	1016			CAS #:	12674-11	1-2		
7.149	7.132	0.017	767245	2.50000	2.39	80.00- 1	120.00	100.00	
7.734	7.715	0.019	648378	2.50000	2.46	158.77- 2	238.15	84.51	
8.744	8.722	0.022	1456335	2.50000	2.46	296.98- 4	445.46	189.81	
9.282	9.260	0.022	608961	2.50000	2.55	114.78- 1	172.16	79.37	
10.404	10.382	0.022	623208	2.50000	2.48	112.32- 1	168.48	81.23	
		Average of	F Peak Amounts :	=	2.46800				
9	Aroclor-	1260			CAS #:	: 11096-82	2-5		
15.032	15.010	0.022	1235431	2.50000	2.46	80.00- 1	120.00	100.00	
16.234	16.210	0.024	1955495	2.50000	2.51	94.69- 1	142.03	158.28	
17.379	17.360	0.019	1736902	2.50000	2.63	89.28- 1	133.92	140.59	
18.689	18.667	0.022	1078757	2.50000	2.60	72.48- 1	108.72	87.32	
21.359	21.340	0.019	1595681	2.50000	2.61	0.00-	0.00	129.16	
		Average of	F Peak Amounts :	=	2.56200				
\$ 12	Decachlo	robiphenyl			CAS #:	2051-24-	-3		
26.069	26.048	0.021	481051	0.05000	0.0471				

Data File: 7HL378.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL378.D

Lab Smp Id: WG156298-10

Inj Date : 29-DEC-2014 13:57

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-10

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 13:57 Cal File: 7HL378.D

Als bottle: 6 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt	0.01000	Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
O		Taral Commonwed Warriable

Cpnd Variable Local Compound Variable

AMOUNTS

				AMOUN	VIS			
				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	=====	========
		-			"			
\$ 2	Tetrachi	oro-m-xyle	ne		CAS #:	877-09-8		
			2872871					
		 1016				: 12674-11-2		
7.667	7.651	0.016				80.00- 120.00	100.00	
8.382	8.366	0.016	2353611	2.50000	2.74	158.77- 238.15	89.43	
9.383	9.370	0.013	4998415	2.50000	2.60	296.98- 445.46	189.92	
10.092	10.075	0.017	2507186	2.50000	2.53	114.78- 172.17	95.26	
11.205	11.185	0.020	2106538	2.50000	2.66	112.32- 168.48	80.04	
		=	f Peak Amounts :					
		 1260				: 11096-82-5		
						80.00- 120.00		
						94.69- 142.03		
18.322	18.300	0.022	4724431	2.50000	2.42	89.28- 133.92	122.74	
19.663	19.643	0.020	3309431	2.50000	2.50	72.48- 108.72	85.98	
22.462	22.441	0.021	4695060	2.50000	2.55	0.00- 0.00	121.98	
		_	f Peak Amounts :					
			1177154					

Katahdin Analytical Services 0000408

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL379.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07HL29.b\\7HL379.D

Lab Smp Id: WG156298-11

Inj Date : 29-DEC-2014 14:32

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-11

Misc Info : Comment :

Method : \target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 7 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

Cpnd Variable Local Compound Variable

				11110011				
			(CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	======= :	======	======	=========	=====	========
\$ 3 T	etrachlo	oro-m-xylene	е		CAS #:	877-09-8		
			3036158 (
		.016				: 12674-11-2		
7.152	7.132	0.020	2982464	10.0000	9.30	80.00- 120.00	100.00	
7.737	7.715	0.022	2503495 1	10.0000	9.52	158.77- 238.15	83.94	
8.740	8.722	0.018	5823725 1	10.0000	9.86	296.98- 445.46	195.27	
9.280	9.260	0.020	2494678 1	10.0000	10.4	114.78- 172.16	83.64	
10.402	10.382	0.020	2515092 1	10.0000	9.99	112.32- 168.48	84.33	
		Average of	Peak Amounts =		9.81400			
9 A	roclor-1	260			CAS #:	: 11096-82-5		
15.029	15.010	0.019	5200408 1	10.0000	10.3	80.00- 120.00	100.00(A)	
16.230	16.210	0.020	7875444	10.0000	10.1	94.69- 142.03	151.44	
17.377	17.360	0.017	7352989 1	10.0000	11.1	89.28- 133.92	141.39	
18.685	18.667	0.018	4399181 1	10.0000	10.6	72.48- 108.72	84.59	
21.355	21.340	0.015	6714236 1	10.0000	11.0	0.00- 0.00	129.11	
			Peak Amounts =					
						· 2051-24-3		
			1948107 (
20.070	20.040	0.022	1940107 (0.20000	0.191			

Data File: 7HL379.D

Report Date: 05-Jan-2015 14:02

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL379.D

Lab Smp Id: WG156298-12

Inj Date : 29-DEC-2014 14:32

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-12

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D

Als bottle: 7 Calibration Sample, Level: 6

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
O 77 1- 1- 1-		T 1

Cpnd Variable Local Compound Variable

			CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	=======	======	========	=====	========
\$ 2 T	etrachl	oro-m-xylene		CAS #	877-09-8		
			11364152 0.20000				
	roclor-				: 12674-11-2		
7.665	7.651	0.014	9513687 10.0000	8.37	80.00- 120.00	100.00	
8.380	8.366	0.014	8610005 10.0000	8.62	158.77- 238.15	90.50	
9.385	9.370	0.015	18650149 10.0000	9.01	296.98- 445.46	196.03	
10.090	10.075	0.015	9578318 10.0000	9.23	114.78- 172.17	100.68	
11.203	11.185	0.018	8161812 10.0000	9.34	112.32- 168.48	85.79	
		=	Peak Amounts =				
	roclor-				: 11096-82-5		
15.897	15.878	0.019	15098823 10.0000	9.46	80.00- 120.00	100.00	
16.852	16.833	0.019	19000840 10.0000	9.49	94.69- 142.03	125.84	
18.318	18.300	0.018	18694119 10.0000	9.64	89.28- 133.92	123.81	
19.662	19.643	0.019	12791504 10.0000	9.74	72.48- 108.72	84.72	
22.458	22.441	0.017	18088117 10.0000	9.87	0.00- 0.00	119.80	
		_	Peak Amounts =				
			4636400 0.20000				

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL380.D

Report Date: 05-Jan-2015 14:09

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL380.D

Lab Smp Id: WG156298-13

Inj Date : 29-DEC-2014 15:06 Operator : JLP Inst ID: Smp Info : WG156298-13,TH0797 Misc Info : WG156298,WG156298,WG156298-1,TH0797-1 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m
Meth Date : 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 29-DEC-2014 14:32 Cal File: 7HL379.D Als bottle: 8 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1016.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
M	0.00000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS		
ONT	COT	TITATAT

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
==== :	======	======	======	======	======	========	=====	========
6 <i>I</i>	Aroclor-	1016			CAS #:	12674-11-2		
7.152	7.132	0.020	327652	1.02162	1.02	80.00- 120.00	100.00	
7.735	7.715	0.020	273520	1.03992	1.04	158.77- 238.15	83.48	
8.745	8.722	0.023	606157	1.02584	1.02	296.98- 445.46	185.00	
9.284	9.260	0.024	255792	1.07022	1.07	114.78- 172.16	78.07	
10.405	10.382	0.023	259522	1.03080	1.03	112.32- 168.48	79.21	
		Average of	Peak Concentra	ations =	1.04			

Data File: 7HL380.D

Report Date: 05-Jan-2015 14:08

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL380.D

Lab Smp Id: WG156298-13

Inj Date : 29-DEC-2014 15:06

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-13,TH0797

Misc Info: WG156298, WG156298, WG156298-2, TH0797-1

Comment

Method : \target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1016.sub

Target Version: 4.12 Sample Matrix: SOIL

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws	0.01000	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS

			ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	=======================================	======	========	=====	========
5	Aroclor-	1016		CAS #:	12674-11-2		
7.667	7.651	0.016	1183224 1.04115	1.04	80.00- 120.00	100.00	
8.382	8.366	0.016	1054966 1.05624	1.06	158.77- 238.15	89.16	
9.385	9.370	0.015	2165897 1.04613	1.05	296.98- 445.46	183.05	
10.093	10.075	0.018	1087631 1.04823	1.05	114.78- 172.17	91.92	
11.205	11.185	0.020	931884 1.06617	1.07	112.32- 168.48	78.76	
		Average of	Peak Concentrations =	1.05			

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL381.D

Report Date: 05-Jan-2015 14:09

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL381.D

Lab Smp Id: WG156298-14

Inj Date : 29-DEC-2014 15:41

Operator : JLP Inst ID:

Smp Info : WG156298-14,TH0797

Misc Info : WG156298,WG156298,WG156298-1,TH0797-1 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m
Meth Date : 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 29-DEC-2014 14:32 Cal File: 7HL379.D Als bottle: 9 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1260.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
M	0.00000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

COI	NCENTRA	TIONS
ONT	COT	TITATAT

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	======	======	======	========	=====	========
9 A	roclor-1	1260			CAS #:	11096-82-5		
15.034	15.010	0.024	548071	1.09057	1.09	80.00- 120.00	100.00	
16.237	16.210	0.027	840008	1.07985	1.08	94.69- 142.03	153.27	
17.385	17.360	0.025	788622	1.19256	1.19	89.28- 133.92	143.89	
18.694	18.667	0.027	404362	0.97368	0.974	72.48- 108.72	73.78	
21.362	21.340	0.022	581404	0.95147	0.951	0.00- 0.00	106.08	
		Average of I	Peak Concentra	ations =	1.06			

Data File: 7HL381.D

Report Date: 05-Jan-2015 14:08

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL381.D

Lab Smp Id: WG156298-14

Inj Date : 29-DEC-2014 15:41

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-14,TH0797

Misc Info: WG156298, WG156298, WG156298-2, TH0797-1

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 29-DEC-2014 14:32 Cal File: 7HL379.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1260.sub

Target Version: 4.12 Sample Matrix: SOIL

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
M M	0.00000	% Moisture
Ws Cpnd Variable	0.03000	Weight of Sample (Kg) Local Compound Variable

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
==== =		======	======	======	======	========	=====	========
9 A	roclor-1	1260			CAS #:	11096-82-5		
15.898	15.878	0.020	1739830	1.09011	1.09	80.00- 120.00	100.00	
16.855	16.833	0.022	2179190	1.08836	1.09	94.69- 142.03	125.25	
18.325	18.300	0.025	2315670	1.19442	1.19	89.28- 133.92	133.10	
19.668	19.643	0.025	1290827	0.98243	0.982	72.48- 108.72	74.19	
22.462	22.441	0.021	1873014	1.02179	1.02	0.00- 0.00	107.66	
		Average of Pe	eak Concentra	tions =	1.08			

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL382.D

Report Date: 05-Jan-2015 13:57

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL382.D

Lab Smp Id: WG156298-15

Inj Date : 29-DEC-2014 16:16 Operator : JLP Smp Info : WG156298-15 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m Method

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 10 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1242.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Ingal Compound Wariable

Local Compound Variable Cpnd Variable

AMOU	NTS	

				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
==== :		======	======	======	======	======		=====	========
5 2	Aroclor-	1242			CAS #:	53469-21	L-9		
7.152	7.152	0.000	270737	1.00000	0.978	0.00-	0.00	100.00	
7.735	7.735	0.000	224083	1.00000	0.983	0.00-	0.00	82.77	
8.745	8.745	0.000	485305	1.00000	0.954	0.00-	0.00	179.25	
9.284	9.284	0.000	204432	1.00000	0.992	0.00-	0.00	75.51	
10.405	10.405	0.000	216870	1.00000	0.980	0.00-	0.00	80.10	
		Average of	Peak Amounts =	=	0.97740				

Data File: 7HL382.D

Report Date: 05-Jan-2015 14:03

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\\7HL382.D

Lab Smp Id: WG156298-16

Inj Date : 29-DEC-2014 16:16

Operator : JLP Smp Info : WG156298-16 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m Method

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 10 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1242.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
O		Togal Commound Wasiable

Cpnd Variable Local Compound Variable

AMOUN	TS

			CAL-AMT	ON-COL					
RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIE	W CODE
==== =	======	======	=======================================	======	======	=====	====	=====	=====
6 A	roclor-	L242		CAS #:	53469-21	L-9			
7.668	7.668	0.000	968436 1.00000	1.00	0.00-	0.00	100.00(M)	М9	
8.382	8.382	0.000	852570 1.00000	4.91	0.00-	0.00	88.04	М9	
9.385	9.385	0.000	1737094 1.00000	1.56	0.00-	0.00	179.37	М9	11 ()
10.093	10.093	0.000	901531 1.00000	1.24	0.00-	0.00	93.09	М9	, IUY
11.205	11.205	0.000	772293 1.00000	1.96	0.00-	0.00	79.75	М9	· .
		Average of	Peak Amounts =	2.13400					2:56 pm, Jan 05, 2015

QC Flag Legend

M - Compound response manually integrated.

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL388.D

Report Date: 05-Jan-2015 13:58

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL388.D

Lab Smp Id: WG156298-27

Inj Date : 29-DEC-2014 19:44 Operator : JLP Smp Info : WG156298-27 Inst ID: gc07.i

Misc Info : Comment

Method : \target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 16 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1248.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

Local Compound Variable Cpnd Variable

AMOUNTS									
				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
====		======	======	======	======	=====		=====	========
7	Aroclor-1	1248			CAS #:	12672-29	9-6		
8.678	8.678	0.000	294706	1.00000	1.06	0.00-	0.00	100.00	
9.689	9.689	0.000	334142	1.00000	1.00	0.00-	0.00	113.38	
10.396	10.396	0.000	376789	1.00000	3.28	0.00-	0.00	127.85	
12.856	12.856	0.000	245357	1.00000	1.04	0.00-	0.00	83.25	
14.294	14.294	0.000	210695	1.00000	1.00	0.00-	0.00	71.49	
		Average of	Peak Amounts =		1.47600				

Data File: 7HL388.D

Report Date: 05-Jan-2015 14:03

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL388.D

Lab Smp Id: WG156298-28

Inj Date : 29-DEC-2014 19:44 Operator : JLP Smp Info : WG156298-28 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m Method

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 16 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1248.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		I agal Compound Variable

AMO	UU	TS

				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
==== =	======	======	=======	======	======	======		=====	========
7 A	roclor-1	1248			CAS #:	12672-29	9-6		
9.376	9.376	0.000	1101353	1.00000	0.878	0.00-	0.00	100.00	
10.314	10.314	0.000	1213722	1.00000	0.862	0.00-	0.00	110.20	
11.192	11.192	0.000	1373572	1.00000	1.67	0.00-	0.00	124.72	
13.727	13.727	0.000	956001	1.00000	1.00	0.00-	0.00	86.80	
15.282	15.282	0.000	762984	1.00000	1.00	0.00-	0.00	69.28	
		Average of I	Peak Amounts =	=	1.08200				

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL394.D

Report Date: 05-Jan-2015 13:58

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL394.D

Lab Smp Id: WG156298-39

Inj Date : 29-DEC-2014 23:12 Operator : JLP Smp Info : WG156298-39 Inst ID: gc07.i

Misc Info : Comment

Method : \target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 22 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1254.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

				AMOUN	TS			
				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	E RATIO	REVIEW CODE
====	======	======	======	======	======	========	=====	========
8	Aroclor-	1254			CAS #:	11097-69-1		
11.877	11.877	0.000	444344	1.00000	2.51	80.00- 120.00	100.00	
12.840	12.840	0.000	496987	1.00000	1.92	80.00- 120.00	111.85	
15.580	15.580	0.000	453969	1.00000	2.66	80.00- 120.00	102.17	
16.225	16.225	0.000	471894	1.00000	1.00	80.00- 120.00	106.20	
17.373	17.373	0.000	522974	1.00000	2.90	0.00- 0.00	117.70	
		Average of	Peak Amounts =	:	2.19800			

Data File: 7HL394.D

Report Date: 05-Jan-2015 14:03

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL394.D

Lab Smp Id: WG156298-40

Inj Date : 29-DEC-2014 23:12

Operator : JLP Inst ID: gc07.i

Smp Info : WG156298-40

Misc Info : Comment :

Method : \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 22 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1254.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
O 1 77 1-1 -		Tagal Commonwed Wassiable

Cpnd Variable Local Compound Variable

AMO	UU	TS

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== =		======	======	======	======	========	=====	========
8 A	roclor-	1254			CAS #:	11097-69-1		
12.768	12.768	0.000	1466999	1.00000	3.22	80.00- 120.00	100.00	
13.490	13.490	0.000	1768903	1.00000	1.80	80.00- 120.00	120.58	
14.868	14.868	0.000	1360980	1.00000	2.00	80.00- 120.00	92.77	
16.418	16.418	0.000	1758841	1.00000	3.66	80.00- 120.00	119.89	
18.313	18.313	0.000	1837360	1.00000	4.26	80.00- 120.00	125.25	
		Average of Pea	ak Amounts =	=	2.98800			

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL400.D

Report Date: 05-Jan-2015 13:58

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\\7HL400.D

Lab Smp Id: WG156298-51

Inj Date : 30-DEC-2014 02:39 Operator : JLP Smp Info : WG156298-51 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m Method

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 28 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1221.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		I agal Compound Variable

AMOUN	TS

			CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
====		======	=======================================	======	======		=====	========
2	Aroclor-1	1221		CAS #:	11104-28	3-2		
5.153	5.153	0.000	47451 1.00000	1.00	0.00-	0.00	100.00	
5.723	5.723	0.000	125218 1.00000	1.00	0.00-	0.00	263.89	
5.955	5.955	0.000	89334 1.00000	1.00	0.00-	0.00	188.27	
7.598	7.598	0.000	40360 1.00000	1.00	0.00-	0.00	85.06	
		Average of	Peak Amounts =	1.00000				

Data File: 7HL400.D

Report Date: 05-Jan-2015 14:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL400.D

Lab Smp Id: WG156298-52

Inj Date : 30-DEC-2014 02:39 Operator : JLP Smp Info : WG156298-52 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m Method

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 28 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1221.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Ingal Compound Wariable

AMO	UU	TS

				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	======		=====	========
3	Aroclor-	1221			CAS #:	11104-28	3-2		
5.503	5.503	0.000	152419	1.00000	1.00	0.00-	0.00	100.00	
6.049	6.049	0.000	530950	1.00000	1.00	0.00-	0.00	348.35	
6.331	6.331	0.000	359933	1.00000	1.00	0.00-	0.00	236.15	
8.281	8.281	0.000	177296	1.00000	1.00	0.00-	0.00	116.32	
		Average of	Peak Amounts =		1.00000				

Data File: \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL406.D

Report Date: 05-Jan-2015 13:58

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07HL29.b\7HL406.D

Lab Smp Id: WG156298-63

Inj Date : 30-DEC-2014 06:07 Operator : JLP Smp Info : WG156298-63 Inst ID: gc07.i

Misc Info : Comment

Method : \target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m

Meth Date: 30-Dec-2014 12:02 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 34 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1232.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

				AMOUN	TS				
				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	=====	=====	=====	========
4	Aroclor-	1232			CAS #:	11141-1	6-5		
6.153	6.154	-0.001	271768	1.00000	0.916	0.00-	0.00	100.00	
7.141	7.142	-0.001	148139	1.00000	0.958	0.00-	0.00	54.51	
8.733	8.734	-0.001	264304	1.00000	1.07	0.00-	0.00	97.25	
9.276	9.277	-0.001	108355	1.00000	1.00	0.00-	0.00	39.87	
10.395	10.395	0.000	108548	1.00000	1.00	0.00-	0.00	39.94	
		Average of	Peak Amounts :	=	0.98880				

Data File: 7HL406.D

Report Date: 05-Jan-2015 14:04

Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07HL29.b\GC07HL29.b\7HL406.D

Lab Smp Id: WG156298-64

Inj Date : 30-DEC-2014 06:07 Operator : JLP Smp Info : WG156298-64 Inst ID: gc07.i

Misc Info : Comment

: \\target_server\gg\chem\gc07.i\GC07HL29.b\PCB078.m\PCB078.m Method

Meth Date: 30-Dec-2014 12:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 34 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1232.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt.		Dilution Factor Final Volume (L)
VC Vo	1.000	Sample Volume (L)
Chand Wassiable		Tagal Common Variable

Cpnd Variable Local Compound Variable

AMOU	NTS	

				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET	RANGE	RATIO	REVIEW CODE
==== =		======	=======	======	======	======		=====	========
4 A	roclor-	1232			CAS #:	11141-16	5-5		
6.581	6.582	-0.001	1102206	1.00000	0.904	0.00-	0.00	100.00	
7.649	7.650	-0.001	555475	1.00000	0.954	0.00-	0.00	50.40	
9.371	9.372	-0.001	1006587	1.00000	1.10	0.00-	0.00	91.32	
10.079	10.080	-0.001	505261	1.00000	0.922	0.00-	0.00	45.84	
11.188	11.188	0.000	410454	1.00000	0.932	0.00-	0.00	37.24	
		Average of	Peak Amounts =	:	0.96240				

Lab Name: Katahdin Analytical Services

Project : Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG156982-1 **Analytical Date:** 01/15/15 10:39

Lab File ID :7IA233.D Instrument ID: GC07
Initial Calibration Date(s): 12/29/14 10:27 12/30/14 10:10
Column ID: A

Compound	RRF/Amount	RF1	CCAL RRF1	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
6 Aroclor-1016(4)	239009	238640	238640	0.001	-0.15426	20.00000	Averaged
6 Aroclor-1016(5)	251767	257202	257202	0.001	2.15885	20.00000	Averaged
6 Aroclor-1016(2)	263021	266391	266391	0.001	1.28141	20.00000	Averaged
6 Aroclor-1016(1)	320717	316107	316107	0.001	-1.43732	20.00000	Averaged
6 Aroclor-1016(3)	590889	583067	583067	0.001	-1.32375	20.00000	Averaged
9 Aroclor-1260(4)	415294	429897	429897	0.001	3.51627	20.00000	Averaged
9 Aroclor-1260(1)	502553	504530	504530	0.001	0.39342	20.00000	Averaged
9 Aroclor-1260(5)	611057	581548	581548	0.001	-4.82922	20.00000	Averaged
9 Aroclor-1260(3)	661283	653094	653094	0.001	-1.23832	20.00000	Averaged
9 Aroclor-1260(2)	777892	755377	755377	0.001	-2.89439	20.00000	Averaged
3 Tetrachloro-m-xylene	14574327	14783650	14783650	0.001	1.43625	20.00000	Averaged
12 Decachlorobiphenyl	10210134	10701750	10701750	0.001	4.81498	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA233.D

Report Date: 23-Jan-2015 08:06

Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07IA15.b\\7IA233.D

Lab Smp Id: WG156982-1

Inj Date : 15-JAN-2015 10:39

Operator : JLP Smp Info : WG156982-1,SI0230 Inst ID: gc07.i

Misc Info: WG156982, WG156982, WG156298, SI0230-2

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Local Compound Variable

Local Compound Variable

				CAL-AMT	ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	=====	========
\$ 3	Tetrachl	oro-m-xyle	ne		CAS #:	877-09-8		
			295673					
	Aroclor-				"	12674-11-2		
7.149	7.134	0.015	316107	1.00000	0.986	80.00- 120.00	100.00	
7.731	7.719	0.012	266391	1.00000	1.01	158.77- 238.15	84.27	
8.744	8.731	0.013	583067	1.00000	0.987	296.98- 445.46	184.45	
9.284	9.271	0.013	238640	1.00000	0.998	114.78- 172.16	75.49	
10.404	10.389	0.015	257202	1.00000	1.02	112.32- 168.48	81.37	
		Average o	f Peak Amounts :	=	1.00020			
9	Aroclor-	1260			CAS #:	11096-82-5		
15.028	15.014	0.014	504530	1.00000	1.00	80.00- 120.00	100.00	
16.229	16.221	0.008	755377	1.00000	0.971	94.69- 142.03	149.72	
17.384	17.373	0.011	653094	1.00000	0.988	89.28- 133.92	129.45	
18.688	18.671	0.017	429897	1.00000	1.04	72.48- 108.72	85.21	
21.366	21.358	0.008	581548	1.00000	0.952	0.00- 0.00	115.27	
		Average o	f Peak Amounts =	=	0.99020			
		 robiphenyl						
			214035			2001 21 3		
20.071	20.031	0.020	214033	0.02000	0.0210			

Lab Name: Katahdin Analytical Services

Project : Navy Clean WE15-03-06 NWIRP Bethpage, l **SDG:** SI0230 **Lab ID :** WG156982-2 **Analytical Date:** 01/15/15 10:39

Compound	RRF/Amount	RF1	CCAL RRF1	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
5 Aroclor-1016(4)	1037586	1081820	1081820	0.001	4.26319	20.00000	Averaged
5 Aroclor-1016(1)	1136455	1166259	1166259	0.001	2.62257	20.00000	Averaged
5 Aroclor-1016(3)	2070395	2115932	2115932	0.001	2.19942	20.00000	Averaged
5 Aroclor-1016(5)	874047	921102	921102	0.001	5.38355	20.00000	Averaged
5 Aroclor-1016(2)	998796	1036609	1036609	0.001	3.78586	20.00000	Averaged
9 Aroclor-1260(4)	1313912	1403996	1403996	0.001	6.85616	20.00000	Averaged
9 Aroclor-1260(1)	1596010	1627374	1627374	0.001	1.96517	20.00000	Averaged
9 Aroclor-1260(5)	1833078	1998898	1998898	0.001	9.04600	20.00000	Averaged
9 Aroclor-1260(3)	1938748	2011910	2011910	0.001	3.77367	20.00000	Averaged
9 Aroclor-1260(2)	2002277	2078335	2078335	0.001	3.79856	20.00000	Averaged
2 Tetrachloro-m-xylene	60275788	60989400	60989400	0.001	1.18391	20.00000	Averaged
12 Decachlorobiphenyl	24490588	25299850	25299850	0.001	3.30438	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: 7IA233.D

Report Date: 23-Jan-2015 08:07

Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\7IA233.D

Lab Smp Id: WG156982-2

Inj Date : 15-JAN-2015 10:39

Operator : JLP Inst ID: gc07.i

Smp Info : WG156982-2,SI0230

Misc Info: WG156982, WG156982, WG156298, SI0230-2

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date: 16-Jan-2015 13:52 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Local Compound Variable

Cpnd Variable Local Compound Variable

AM	OU	NT:	3

				~~~				
					ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGI	E RATIO	REVIEW CODE
==== =		======	======	======	======	========	=====	========
\$ 2 T	etrachlo	oro-m-xylen	е		CAS #	: 877-09-8		
			1219788					
5 A	roclor-1	1016			CAS #	: 12674-11-2		
7.652	7.636	0.016	1166259	1.00000	1.03	80.00- 120.00	100.00	
8.369	8.352	0.017	1036609	1.00000	1.04	158.77- 238.15	88.88	
9.372	9.356	0.016	2115932	1.00000	1.02	296.98- 445.46	181.43	
10.079	10.059	0.020	1081820	1.00000	1.04	114.78- 172.17	7 92.76	
11.189	11.172	0.017	921102	1.00000	1.05	112.32- 168.48	78.98	
		Average of	Peak Amounts =	=	1.03600			
9 A	roclor-1	1260			CAS #	: 11096-82-5		
15.879	15.859	0.020	1627374	1.00000	1.02	80.00- 120.00	100.00	
16.839	16.814	0.025	2078335	1.00000	1.04	94.69- 142.03	3 127.71	
18.306	18.287	0.019	2011910	1.00000	1.04	89.28- 133.92	2 123.63	
19.649	19.627	0.022	1403996	1.00000	1.07	72.48- 108.72	86.27	
22.447	22.424	0.023	1998898	1.00000	1.09	0.00- 0.00	122.83	
		Average of	Peak Amounts =	=	1.05200			
\$ 12 5	ecachlor	cobiphenvl			CAS #	: 2051-24-3		
			505997					
	,,,,,,		303337		0207			







Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG156982-4 **Analytical Date:** 01/15/15 18:15

		1202424	0.001	15 99772	•••••	
455 13			0.001	15.88672	20.00000	Averaged
	344924	1344924	0.001	18.34383	20.00000	Averaged
395 2:	366824	2366824	0.001	14.31749	20.00000	Averaged
1047	065660	1065660	0.001	21.92247	20.00000	Averaged
96 1	168284	1168284	0.001	16.96923	20.00000	Averaged
912 1:	525544	1525544	0.001	16.10700	20.00000	Averaged
6010 13	873916	1873916	0.001	17.41257	20.00000	Averaged
078 2	138876	2138876	0.001	16.68223	20.00000	Averaged
748 2	180292	2180292	0.001	12.45876	20.00000	Averaged
277 2	342888	2342888	0.001	17.01117	20.00000	Averaged
5788 6	7911400	67911400	0.001	12.66779	20.00000	Averaged
0588 2	7876600	27876600	0.001	13.82577	20.00000	Averaged
2	796 1 8912 1 5010 1 8078 2 8748 2 2277 2	796     1168284       8912     1525544       5010     1873916       8078     2138876       8748     2180292       2277     2342888       75788     67911400	796     1168284     1168284       8912     1525544     1525544       5010     1873916     1873916       8078     2138876     2138876       8748     2180292     2180292       2277     2342888     2342888       25788     67911400     67911400	796     1168284     1168284     0.001       8912     1525544     1525544     0.001       5010     1873916     1873916     0.001       8078     2138876     2138876     0.001       8748     2180292     2180292     0.001       2277     2342888     2342888     0.001       25788     67911400     67911400     0.001	796     1168284     1168284     0.001     16.96923       8912     1525544     1525544     0.001     16.10700       8010     1873916     1873916     0.001     17.41257       8078     2138876     2138876     0.001     16.68223       8748     2180292     2180292     0.001     12.45876       2277     2342888     2342888     0.001     17.01117       25788     67911400     67911400     0.001     12.66779	796       1168284       1168284       0.001       16.96923       20.00000         8912       1525544       1525544       0.001       16.10700       20.00000         8010       1873916       1873916       0.001       17.41257       20.00000         8078       2138876       2138876       0.001       16.68223       20.00000         8748       2180292       2180292       0.001       12.45876       20.00000         2277       2342888       2342888       0.001       17.01117       20.00000         25788       67911400       67911400       0.001       12.66779       20.00000

^{* =} Compound out of QC criteria

Data File: 7IA246.D

Report Date: 23-Jan-2015 08:07

### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\\7IA246.D

Lab Smp Id: WG156982-4

Inj Date : 15-JAN-2015 18:15

Operator : JLP Inst ID: gc07.i

Smp Info : WG156982-4,SI0230

Misc Info: WG156982, WG156982, WG156298, SI0230-2

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date: 16-Jan-2015 13:52 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 15 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Iogal Compound Variable

Cpnd Variable Local Compound Variable

AM	OU	NTS	

				ON-COL			
RT EXP RT I	DLT RT	RESPONSE (ug	g/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
==== ====== =:	=====	=======================================	====	======	========	=====	========
\$ 2 Tetrachlor	o-m-xylene			CAS #:	877-09-8		
5.377 5.371							
5 Aroclor-10	16			CAS #:	: 12674-11-2		
7.644 7.636	0.008	336231 1.0	0000	0.296	80.00- 120.00	100.00	
8.359 8.352	0.007	292071 1.0	0000	0.292	158.77- 238.15	86.87	
9.364 9.356	0.008	591706 1.0	0000	0.286	296.98- 445.46	175.98	
10.071 10.059	0.012	300606 1.0	0000	0.290	114.78- 172.17	89.40	
11.181 11.172	0.009	266415 1.0	0000	0.305	112.32- 168.48	79.24	
Α·	verage of Pea	k Amounts =		0.29380			
9 Aroclor-12	60			CAS #:	: 11096-82-5		
15.872 15.859	0.013	468479 1.0	0000	0.294	80.00- 120.00	100.00	
16.831 16.814	0.017	585722 1.0	0000	0.292	94.69- 142.03	125.03	
18.302 18.287	0.015	545073 1.0	0000	0.281	89.28- 133.92	116.35	
19.642 19.627	0.015	381386 1.0	0000	0.290	72.48- 108.72	81.41	
22.442 22.424	0.018	534719 1.0	0000	0.292	0.00- 0.00	114.14	
A	verage of Pea	k Amounts =		0.28980			
\$ 12 Decachlorol	biphenyl			CAS #:	: 2051-24-3		
26.971 26.957							







Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, l **SDG:** SI0230 **Lab ID :** WG156982-3 **Analytical Date:** 01/15/15 18:15

Lab File ID :7IA246.D
Instrument ID: GC07
Initial Calibration Date(s): 12/29/14 10:27 12/30/14 10:10
Column ID: A

Compound	RRF/Amount	RF0.250	CCAL RRF0.250	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
6 Aroclor-1016(4)	239009	240260	240260	0.001	0.52354	20.00000	Averaged
6 Aroclor-1016(5)	251767	272120	272120	0.001	8.08418	20.00000	Averaged
6 Aroclor-1016(2)	263021	280456	280456	0.001	6.62890	20.00000	Averaged
6 Aroclor-1016(1)	320717	346624	346624	0.001	8.07793	20.00000	Averaged
6 Aroclor-1016(3)	590889	596744	596744	0.001	0.99089	20.00000	Averaged
9 Aroclor-1260(4)	415294	414400	414400	0.001	-0.21531	20.00000	Averaged
9 Aroclor-1260(1)	502553	532752	532752	0.001	6.00915	20.00000	Averaged
9 Aroclor-1260(5)	611057	513960	513960	0.001	-15.89005	20.00000	Averaged
9 Aroclor-1260(3)	661283	587240	587240	0.001	-11.19684	20.00000	Averaged
9 Aroclor-1260(2)	777892	756016	756016	0.001	-2.81224	20.00000	Averaged
3 Tetrachloro-m-xylene	14574327	15107200	15107200	0.001	3.65625	20.00000	Averaged
2 Decachlorobiphenyl	10210134	11436400	11436400	0.001	12.01028	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA246.D

Report Date: 23-Jan-2015 08:06

### Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07IA15.b\\7IA246.D

Lab Smp Id: WG156982-3

Inj Date : 15-JAN-2015 18:15

Inst ID: gc07.i

Operator : JLP Inst II Smp Info : WG156982-3,SI0230 Misc Info : WG156982,WG156298,SI0230-2

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 15 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cpnd Variable		Local Compound Variable

Local Compound Variable

					ON-COL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	=====	========
\$ 3	Tetrachl	oro-m-xyle	ne		CAS #:	877-09-8		
			75536					
	Aroclor-					: 12674-11-2		
7.143	7.134	0.009	86656	1.00000	0.270	80.00- 120.00	100.00	
7.724	7.719	0.005	70114	1.00000	0.266	158.77- 238.15	80.91	
8.738	8.731	0.007	149186	1.00000	0.252	296.98- 445.46	172.16	
9.279	9.271	0.008	60065	1.00000	0.251	114.78- 172.16	69.31	
10.399	10.389	0.010	68030	1.00000	0.270	112.32- 168.48	78.51	
		_	f Peak Amounts =					
	Aroclor-					: 11096-82-5		
15.028	3 15.014	0.014	133188	1.00000	0.265	80.00- 120.00	100.00	
16.231	16.221	0.010	189004	1.00000	0.243	94.69- 142.03	141.91	
17.381	17.373	0.008	146810	1.00000	0.222	89.28- 133.92	110.23	
18.684	18.671	0.013	103600	1.00000	0.249	72.48- 108.72	77.78	
21.368	3 21.358	0.010	128490	1.00000	0.210	0.00- 0.00	96.47	
		Average o	f Peak Amounts =	:	0.23780			
\$ 12	Decachlo:	robiphenyl			CAS #:	2051-24-3		
			57182					







Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG157171-1 **Analytical Date:** 01/19/15 10:53

Lab File ID :7IA279.D Instrument ID: GC07
Initial Calibration Date(s): 12/29/14 10:27 12/30/14 10:10 Column ID: A

Compound	RRF/Amount	RF1	CCAL RRF1	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
6 Aroclor-1016(4)	239009	251617	251617	0.001	5.27525	20.00000	Averaged
6 Aroclor-1016(5)	251767	266502	266502	0.001	5.85275	20.00000	Averaged
6 Aroclor-1016(2)	263021	278323	278323	0.001	5.81794	20.00000	Averaged
6 Aroclor-1016(1)	320717	332092	332092	0.001	3.54683	20.00000	Averaged
6 Aroclor-1016(3)	590889	607471	607471	0.001	2.80629	20.00000	Averaged
9 Aroclor-1260(4)	415294	429296	429296	0.001	3.37155	20.00000	Averaged
9 Aroclor-1260(1)	502553	513043	513043	0.001	2.08737	20.00000	Averaged
9 Aroclor-1260(5)	611057	606965	606965	0.001	-0.66971	20.00000	Averaged
9 Aroclor-1260(3)	661283	650613	650613	0.001	-1.61350	20.00000	Averaged
9 Aroclor-1260(2)	777892	763418	763418	0.001	-1.86070	20.00000	Averaged
3 Tetrachloro-m-xylene	14574327	15945050	15945050	0.001	9.40505	20.00000	Averaged
12 Decachlorobiphenyl	10210134	10214650	10214650	0.001	0.04423	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA279.D

Report Date: 23-Jan-2015 08:08

### Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07IA19.b\\7IA279.D

Lab Smp Id: WG157171-1

Inj Date : 19-JAN-2015 10:53

Operator : JLP Inst ID: qc07.i

Smp Info : WG157171-1,SI0230

Misc Info: WG157171, WG157171, WG156298, SI0230-1

Comment

Method : \target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt	0.01000	Dilution Factor Final Volume (L)
M		% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

		CAL-AMT	ON-COL		
RT EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL)	TARGET RANGE	RATIO
==== ======	= ======	=======================================	======	========	=====
\$ 3 Tetrach	loro-m-xylen	e	CAS #:	877-09-8	
		318901 0.02000			
6 Aroclor				12674-11-2	
7.134 7.143	3 -0.009	332092 1.00000	1.04	80.00- 120.00	100.00
7.717 7.725	-0.008	278323 1.00000	1.06	158.77- 238.15	83.81
8.727 8.735	-0.008	607471 1.00000	1.03	296.98- 445.46	182.92
9.264 9.272	2 -0.008	251617 1.00000	1.05	114.78- 172.16	75.77
10.389 10.392	2 -0.003	266502 1.00000	1.06	112.32- 168.48	80.25
	_	Peak Amounts =			
9 Aroclor	-1260		CAS #:	11096-82-5	
15.016 15.013	0.003	513043 1.00000	1.02	80.00- 120.00	100.00
16.216 16.218	3 -0.002	763418 1.00000	0.981	94.69- 142.03	148.80
17.366 17.36	7 -0.001	650613 1.00000	0.984	89.28- 133.92	126.81
18.671 18.673	-0.002	429296 1.00000	1.03	72.48- 108.72	83.68
21.344 21.34	7 -0.003	606965 1.00000	0.993	0.00- 0.00	118.31
	Average of	Peak Amounts =	1.00160		
\$ 12 Decachlo					
•				ZUSI-Z4-3	
26.062 26.058	3 0.004	204293 0.02000	0.0200		







Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG157171-2 **Analytical Date:** 01/19/15 10:53

Compound	RRF/Amount	RF1	CCAL RRF1	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
5 Aroclor-1016(4)	1037586	1125796	1125796	0.001	8.50150	20.00000	Averaged
5 Aroclor-1016(1)	1136455	1199052	1199052	0.001	5.50812	20.00000	Averaged
5 Aroclor-1016(3)	2070395	2222763	2222763	0.001	7.35935	20.00000	Averaged
5 Aroclor-1016(5)	874047	931240	931240	0.001	6.54344	20.00000	Averaged
5 Aroclor-1016(2)	998796	1063913	1063913	0.001	6.51955	20.00000	Averaged
9 Aroclor-1260(4)	1313912	1411705	1411705	0.001	7.44288	20.00000	Averaged
9 Aroclor-1260(1)	1596010	1687126	1687126	0.001	5.70901	20.00000	Averaged
9 Aroclor-1260(5)	1833078	2022423	2022423	0.001	10.32936	20.00000	Averaged
9 Aroclor-1260(3)	1938748	2082769	2082769	0.001	7.42855	20.00000	Averaged
9 Aroclor-1260(2)	2002277	2168878	2168878	0.001	8.32056	20.00000	Averaged
2 Tetrachloro-m-xylene	60275788	64869600	64869600	0.001	7.62132	20.00000	Averaged
12 Decachlorobiphenyl	24490588	25706500	25706500	0.001	4.96481	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: 7IA279.D

Report Date: 23-Jan-2015 08:09

### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA19.b\GC07IA19.b\7IA279.D

Lab Smp Id: WG157171-2

Inj Date : 19-JAN-2015 10:53

Operator : JLP Inst ID: gc07.i

Smp Info : WG157171-2,SI0230

Misc Info: WG157171, WG157171, WG156298, SI0230-1

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
M	0.0000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

		111001			
		CAL-AMT	ON-COL		
RT EXI	P RT DLT RT	RESPONSE (ug/mL)	(ug/mL) TARGET RANGE	RATIO	REVIEW CODE
==== ====		=======================================		=====	========
\$ 2 Teti	rachloro-m-xylen	e	CAS #: 877-09-8		
5.370	5.388 -0.018	1297392 0.02000	0.0215		
5 Aroc	clor-1016		CAS #: 12674-11-2		
7.634	7.649 -0.015	1199052 1.00000	1.06 80.00- 120.00	100.00	
8.350	8.363 -0.013	1063913 1.00000	1.06 158.77- 238.15	88.73	
9.350	9.364 -0.014	2222763 1.00000	1.07 296.98- 445.46	185.38	
10.057 10	0.068 -0.011	1125796 1.00000	1.08 114.78- 172.17	93.89	
11.169 11	1.181 -0.012	931240 1.00000	1.06 112.32- 168.48	77.66	
	Average of	Peak Amounts =	1.06600		
9 Aroc	clor-1260		CAS #: 11096-82-5		
15.857 15	5.869 -0.012	1687126 1.00000	1.06 80.00- 120.00	100.00	
16.812 16	6.828 -0.016	2168878 1.00000	1.08 94.69- 142.03	128.55	
18.279 18	8.296 -0.017	2082769 1.00000	1.07 89.28- 133.92	123.45	
19.624 19	9.638 -0.014	1411705 1.00000	1.07 72.48- 108.72	83.68	
22.419 22	2.433 -0.014	2022423 1.00000	1.10 0.00- 0.00	119.87	
		Peak Amounts =			
			CAS #: 2051-24-3		
		514130 0.02000			







Lab Name: Katahdin Analytical Services

Project: Navy Clean WE15-03-06 NWIRP Bethpage, 1 SDG: SI0230

**Lab ID :**WG157171-4 **Analytical Date:** 01/19/15 18:32

Lab File ID :7IA292.D
Initial Calibration Date(s): 12/29/14 10:27 12/30/14 10:10
Instrument ID: GC07
Column ID: B

Compound	RRF/Amount	RF0.250	CCAL RRF0.250	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
5 Aroclor-1016(4)	1037586	1232260	1232260	0.001	18.76224	20.00000	Averaged
5 Aroclor-1016(1)	1136455	1348860	1348860	0.001	18.69017	20.00000	Averaged
5 Aroclor-1016(3)	2070395	2370456	2370456	0.001	14.49292	20.00000	Averaged
5 Aroclor-1016(5)	874047	1073496	1073496	0.001	22.81899	20.00000	Averaged
5 Aroclor-1016(2)	998796	1171860	1171860	0.001	17.32726	20.00000	Averaged
9 Aroclor-1260(4)	1313912	1475528	1475528	0.001	12.30036	20.00000	Averaged
9 Aroclor-1260(1)	1596010	1839904	1839904	0.001	15.28151	20.00000	Averaged
9 Aroclor-1260(5)	1833078	2120280	2120280	0.001	15.66776	20.00000	Averaged
9 Aroclor-1260(3)	1938748	2149296	2149296	0.001	10.86000	20.00000	Averaged
9 Aroclor-1260(2)	2002277	2260504	2260504	0.001	12.89665	20.00000	Averaged
2 Tetrachloro-m-xylene	60275788	69047400	69047400	0.001	14.55246	20.00000	Averaged
12 Decachlorobiphenyl	24490588	26575600	26575600	0.001	8.51352	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: 7IA292.D

Report Date: 23-Jan-2015 08:09

### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA19.b\GC07IA19.b\7IA292.D

Lab Smp Id: WG157171-4

Inj Date : 19-JAN-2015 18:32

Operator : JLP Inst ID: gc07.i

Smp Info : WG157171-4,SI0230

Misc Info: WG157171, WG157171, WG156298, SI0230-1

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 14 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt	0.01000	Dilution Factor Final Volume (L)
M	0.00000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

		CAL-AMT	ON-COL		
RT EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/mL) TARGET RANGE	RATIO	REVIEW CODE
==== ======	======	=======================================		=====	========
\$ 2 Tetrachlo	oro-m-xylene		CAS #: 877-09-8		
5.380 5.388	-0.008	345237 0.02000	0.00573		
5 Aroclor-1	.016		CAS #: 12674-11-2		
7.646 7.649	-0.003	337215 1.00000	0.297 80.00- 120.00	100.00	
8.360 8.363	-0.003	292965 1.00000	0.293 158.77- 238.15	86.88	
9.360 9.364	-0.004	592614 1.00000	0.286 296.98- 445.46	175.74	
10.066 10.068	-0.002	308065 1.00000	0.297 114.78- 172.17	91.36	
11.178 11.181	-0.003	268374 1.00000	0.307 112.32- 168.48	79.59	
	Average of Pe	eak Amounts =	0.29600		
9 Aroclor-1	260		CAS #: 11096-82-5		
15.865 15.869	-0.004	459976 1.00000	0.288 80.00- 120.00	100.00	
16.820 16.828	-0.008	565126 1.00000	0.282 94.69- 142.03	122.86	
18.290 18.296	-0.006	537324 1.00000	0.277 89.28- 133.92	116.82	
19.631 19.638	-0.007	368882 1.00000	0.281 72.48- 108.72	80.20	
22.430 22.433	-0.003	530070 1.00000	0.289 0.00- 0.00	115.24	
	Average of Pe	eak Amounts =	0.28340		
\$ 12 Decachlor	robiphenyl		CAS #: 2051-24-3		
26.960 26.968	-0.008	132878 0.02000	0.00542		







# Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG157171-3 **Analytical Date:** 01/19/15 18:32

Lab File ID: 7IA292.D Instrument ID: GC07

**Initial Calibration Date(s):** 12/29/14 10:27 12/30/14 10:10 **Column ID:** A

Compound	RRF/Amount	RF0.250	CCAL RRF0.250	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
6 Aroclor-1016(4)	239009	262520	262520	0.001	9.83701	20.00000	Averaged
6 Aroclor-1016(5)	251767	283228	283228	0.001	12.49620	20.00000	Averaged
6 Aroclor-1016(2)	263021	296952	296952	0.001	12.90066	20.00000	Averaged
6 Aroclor-1016(1)	320717	366124	366124	0.001	14.15806	20.00000	Averaged
6 Aroclor-1016(3)	590889	624300	624300	0.001	5.65438	20.00000	Averaged
9 Aroclor-1260(4)	415294	434020	434020	0.001	4.50906	20.00000	Averaged
9 Aroclor-1260(1)	502553	544216	544216	0.001	8.29030	20.00000	Averaged
9 Aroclor-1260(5)	611057	612680	612680	0.001	0.26555	20.00000	Averaged
9 Aroclor-1260(3)	661283	607700	607700	0.001	-8.10285	20.00000	Averaged
9 Aroclor-1260(2)	777892	787844	787844	0.001	1.27932	20.00000	Averaged
3 Tetrachloro-m-xylene	14574327	16197800	16197800	0.001	11.13927	20.00000	Averaged
12 Decachlorobiphenyl	10210134	8998800	8998800	0.001	-11.86404	20.00000	Averaged

^{* =} Compound out of QC criteria

Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA292.D

Report Date: 23-Jan-2015 08:08

#### Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc07.i\\GC07IA19.b\\7IA292.D

Lab Smp Id: WG157171-3

Inj Date : 19-JAN-2015 18:32

Operator : JLP Inst ID: qc07.i

Smp Info : WG157171-3,SI0230

Misc Info: WG157171, WG157171, WG156298, SI0230-1

Comment

Method : \target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D

Als bottle: 14 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: AR1660.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
M		% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

#### AMOUNTS

				AMOUN	ITS				
				CAL-AMT	ON-COL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/mL)	TARGET R	RANGE	RATIO	REVIEW CODE
==== =	======	======	======	======	======	======	====	=====	========
\$ 3 T	etrachlo	oro-m-xylene	:		CAS #:	877-09-8			
			80989						
		 L016				12674-11-			
			91531					100.00	
			74238						
			156075						
			65630						
			70807						
			Peak Amounts =						
	roclor-1					11096-82-			
15.023	15.013	0.010	136054	1.00000	0.271	80.00- 12	20.00	100.00	
16.227	16.218	0.009	196961	1.00000	0.253	94.69- 14	12.03	144.77	
17.377	17.367	0.010	151925	1.00000	0.230	89.28- 13	33.92	111.67	
18.682	18.673	0.009	108505	1.00000	0.261	72.48- 10	8.72	79.75	
21.358	21.347	0.011	153170	1.00000	0.251	0.00-	0.00	112.58	
		_	Peak Amounts =						
			44994				•		



## **Raw QC Data Section**





### **Report of Analytical Results**

**Client:** 

Lab ID: WG156929-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: 7IA236.D

Sample Date: Received Date:

Extract Date: 14-JAN-15

**Extracted By:** JMS

**Extraction Method:** SW846 3510

Lab Prep Batch: WG156929

**Analysis Date:** 15-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

**Report Date:** 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	0.25	ug/L	1	.5	0.50	0.15	0.25
Aroclor-1221	U	0.25	ug/L	1	.5	0.50	0.20	0.25
Aroclor-1232	U	0.25	ug/L	1	.5	0.50	0.089	0.25
Aroclor-1242	U	0.25	ug/L	1	.5	0.50	0.18	0.25
Aroclor-1248	U	0.25	ug/L	1	.5	0.50	0.20	0.25
Aroclor-1254	U	0.25	ug/L	1	.5	0.50	0.082	0.25
Aroclor-1260	U	0.25	ug/L	1	.5	0.50	0.17	0.25
Tetrachloro-M-Xylene		79.7	%					
Decachlorobiphenyl		78.6	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA236.D

Report Date: 16-Jan-2015 14:24

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\\7IA236.D

Lab Smp Id: WG156929-1 Client Smp ID: WG156929-Blank

Inst ID: gc07.i

Comment :

Method : \\target_server\gg\chem\gc07.i\\GC07IA15.b\\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 5 QC Sample: BLANK

Dil Factor: 1.00000

\$ 3 Tetrachloro-m-xylene

Integrator: Falcon Compound Sublist: SW8082DoD+6268.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Indal Compound Variable

Local Compound Variable Cpnd Variable

> CONCENTRATIONS ON-COL FINAL

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	========	====	========

CAS #: 877-09-8

5.187	5.161	0.026	1161821 0.07972	0.797

______

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3

26.072 26.051 0.021 802658 0.07861 0.786



Data File: 7IA236.D

Report Date: 16-Jan-2015 14:25

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\7IA236.D

Lab Smp Id: WG156929-1 Client Smp ID: WG156929-Blank

Inj Date : 15-JAN-2015 12:28

Operator : JLP Smp Info : WG156929-1,SI0230 Inst ID: gc07.i

Misc Info: WG156982, WG156929, WG156298-1, SI0230-2

Comment

: \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m Method

Meth Date: 16-Jan-2015 13:52 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 5 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD+6268.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)

Local Compound Variable Cpnd Variable

CONCENTRATIONS

ON-COL	FINAL

RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	=======	======	=======	======	======	========	=====	========

\$ 2	Tetrachloro-m-xylene	CAS	#:	877-09-8
------	----------------------	-----	----	----------

5.385	5.371	0.014	4708309 0.07811	0.781

\$ 12 Decachlorobiphenyl CAS #: 2051-24-3 26.980 26.957 0.023 1872920 0.07648 0.765







### **Report of Analytical Results**

**Client:** 

Lab ID: WG157001-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: 7IA282.D

Sample Date: Received Date:

Extract Date: 15-JAN-15

**Extracted By:**HG

**Extraction Method:** SW846 3540 **Lab Prep Batch:** WG157001

**Analysis Date:** 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: SL % Solids: NA

**Report Date:** 23-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Aroclor-1016	U	8.5	ug/Kgdrywt	1	17	17.	6.0	8.5
Aroclor-1221	U	8.5	ug/Kgdrywt	1	17	17.	7.9	8.5
Aroclor-1232	U	10.	ug/Kgdrywt	1	17	17.	9.3	10.
Aroclor-1242	U	8.5	ug/Kgdrywt	1	17	17.	5.8	8.5
Aroclor-1248	U	8.5	ug/Kgdrywt	1	17	17.	6.1	8.5
Aroclor-1254	U	8.5	ug/Kgdrywt	1	17	17.	4.7	8.5
Aroclor-1260	U	8.5	ug/Kgdrywt	1	17	17.	6.0	8.5
Tetrachloro-M-Xylene		69.7	%					
Decachlorobiphenyl		82.9	%					

Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA282.D

Report Date: 20-Jan-2015 10:13

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA19.b\\7IA282.D

Lab Smp Id: WG157001-1 Client Smp ID: WG157001-Blank

Inst ID: gc07.i

Comment

: \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m Method

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 5 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD+6268.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws Cpnd Variable	0.01000	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg) Local Compound Variable
cpiid variabic		Local Compound Variable

			ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	=======	======	========	=====	========

\$ 3 Te	etrachlor	o-m-xylene			CAS #:	877-09-8
5.181	5.172	0.009	1012457	0.06947	23.2	
\$ 12 De	ecachloro	biphenyl			CAS #:	2051-24-3
26.071	26.058	0.013	837802	0.08206	27.4	



Data File: 7IA282.D

Report Date: 20-Jan-2015 10:14

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\\GC07IA19.b\\GC07IA19.b\\7IA282.D

Lab Smp Id: WG157001-1 Client Smp ID: WG157001-Blank

Inj Date : 19-JAN-2015 12:45

Operator : JLP Inst ID: gc07.i

Smp Info : WG157001-1,SI0230

Misc Info : WG157171, WG157001, WG156298-2, SI0230-1

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: BLANK

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: SW8082DoD+6268.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws	0.01000	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS
ON-COL FINAL

RT	EXP RT	DLT RT	RESPONSE (ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	=======================================	======	========	=====	========

\$ 2 Tetrachloro-m-xylene		CAS #: 877-09-8	
5.374 5.388 -0.014	4109100 0.06817	22.7	
\$ 12 Decachlorobiphenyl		CAS #: 2051-24-3	
26.969 26.968 0.001	2031918 0.08297	27.6	

-----







### **LCS/LCSD Recovery Report**

**LCS ID:** WG156929-2 **LCSD ID:** WG156929-3

Project: SDG: SI0230

**Report Date:** 23-JAN-15 **LCS File ID:** 7IA237.D

**Received Date:** 

**Extract Date:** 14-JAN-15

**Extracted By:** JMS

Extraction Method: SW846 3510 Lab Prep Batch: WG156929 LCSD File ID: 7IA238.D **Analysis Date:** 15-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: AQ % Solids: NA

	Spike	LCS	LCS	LCSD	LCSD	Conc		RPD	
Compound	Amt	Conc	Rec (%)	Conc	<b>Rec</b> (%)	Units	<b>RPD</b> (%)	Limit	Limits
Aroclor-1016	5.00	4.79	95.8	5.25	105.	ug/L	9	30	25-145
Aroclor-1260	5.00	4.45	89.0	4.54	90.8	ug/L	2	30	30-145
Tetrachloro-M-Xylene			86.2		77.9				62-111
Decachlorobiphenyl			70.5		60.5				40-135

Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA237.D

Report Date: 16-Jan-2015 14:24

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\\7IA237.D

Lab Smp Id: WG156929-2 Client Smp ID: WG156929-LCS

Inj Date : 15-JAN-2015 13:03 Operator : JLP Inst ID: Smp Info : WG156929-2,SI0230 Misc Info : WG156982,WG156929,WG156298-1,SI0230-2 Inst ID: gc07.i

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 6 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Local Compound Variable

Local Compound Variable

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	RATIO	REVIEW CODE
====	======	======	======	======	======	=========	=====	========
\$ 3	Tetrachlo	oro-m-xyler	ne		CAS #	877-09-8		
5.176	5.161	0.015	1256674	0.08623	0.862			
6	Aroclor-1	1016			CAS #	12674-11-2		
7.151	7.134	0.017	143360	0.44700	4.47	80.00- 120.00	100.00	
7.734	7.719	0.015	118512	0.45058	4.50	158.77- 238.15	82.67	
8.747	8.731	0.016	251536	0.42569	4.26	296.98- 445.46	175.46	
9.289	9.271	0.018	102682	0.42962	4.30	114.78- 172.16	71.63	
10.404	10.389	0.015	117731	0.46762	4.68	112.32- 168.48	82.12	
		Average of	Peak Concentra	ations =	4.44			
9	Aroclor-1	1260			CAS #	: 11096-82-5		
15.031	15.014	0.017	204833	0.40758	4.08	80.00- 120.00	100.00	
16.237	16.221	0.016	303328	0.38994	3.90	94.69- 142.03	148.09	
17.391	17.373	0.018	254091	0.38424	3.84	89.28- 133.92	124.05	
18.696	18.671	0.025	168623	0.40603	4.06	72.48- 108.72	82.32	
21.374	21.358	0.016	216764	0.35474	3.55	0.00- 0.00	105.82	
		Average of	Peak Concentra	ations =	3.88			
\$ 12	Decachlo	robiphenyl			CAS #	2051-24-3		
26.071	26.051	0.020	689118	0.06749	0.675			



Data File: 7IA237.D

Report Date: 16-Jan-2015 14:25

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\\7IA237.D

Lab Smp Id: WG156929-2 Client Smp ID: WG156929-LCS

Inj Date : 15-JAN-2015 13:03

Operator : JLP Inst ID: gc07.i

Smp Info : WG156929-2,SI0230

Misc Info: WG156982, WG156929, WG156298-1, SI0230-2

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date: 16-Jan-2015 13:52 jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 6 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Local Compound Variable

Local Compound Variable

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	RATIO	REVIEW CODE
==== =	======	======	======	======	======	========	=====	========
\$ 2 T	etrachlo	oro-m-xyler	ne		CAS #	: 877-09-8		
5.387	5.371	0.016	5064750	0.08403	0.840			
5 A	roclor-1	1016			CAS #	: 12674-11-2		
7.655	7.636	0.019	535202	0.47094	4.71	80.00- 120.00	100.00	
8.370	8.352	0.018	476536	0.47711	4.77	158.77- 238.15	89.04	
9.374	9.356	0.018	965708	0.46644	4.66	296.98- 445.46	180.44	
10.080	10.059	0.021	504552	0.48628	4.86	114.78- 172.17	94.27	
11.190	11.172	0.018	432681	0.49503	4.95	112.32- 168.48	80.84	
		Average of	F Peak Concentra	ations =	4.79			
9 A	roclor-1	1260			CAS #	: 11096-82-5		
15.880	15.859	0.021	735793	0.46102	4.61	80.00- 120.00	100.00	
16.842	16.814	0.028	887928	0.44346	4.43	94.69- 142.03	120.68	
18.309	18.287	0.022	842829	0.43473	4.35	89.28- 133.92	114.55	
19.650	19.627	0.023	593532	0.45173	4.52	72.48- 108.72	80.67	
22.454	22.424	0.030	795336	0.43388	4.34	0.00- 0.00	108.09	
		Average of	F Peak Concentra	ations =	4.45			
\$ 12 D	ecachlo	robiphenyl			CAS #	2051-24-3		
26.979	26.957	0.022	1726126	0.07048	0.705			



Data File: \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA238.D

Report Date: 16-Jan-2015 14:24

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA15.b\7IA238.D

Lab Smp Id: WG156929-3 Client Smp ID: WG156929-LCSD

Inj Date : 15-JAN-2015 13:37

Operator : JLP Inst ID: gc07.i

Smp Info : WG156929-3,SI0230

Misc Info: WG156982, WG156929, WG156298-1, SI0230-2

Comment :

Method : \\target_server\gg\chem\gc07.i\\GC07IA15.b\\PCB078.m

Meth Date: 16-Jan-2015 13:43 kasgc Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: LCSD

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)
Cpnd Variable		Local Compound Variable

				CONCENTR	ATIONS			
				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	RATIO	REVIEW CODE
==== =		======	======	======	======	========	=====	========
\$ 3 1	Tetrachl	oro-m-xylene			CAS #:	877-09-8		
		0.015						
		1016				12674-11-2		
7.150	7.134	0.016	154446	0.48157	4.82	80.00- 120.00	100.00	
						158.77- 238.15		
8.746	8.731	0.015	276041	0.46716	4.67	296.98- 445.46	178.73	
9.286	9.271	0.015	114899	0.48073	4.81	114.78- 172.16	74.39	
10.406	10.389	0.017	125986	0.50041	5.00	112.32- 168.48	81.57	
		Average of Pe						
	Aroclor-					11096-82-5		
15.035	15.014	0.021	228825	0.45533	4.55	80.00- 120.00	100.00	
						94.69- 142.03		
17.391	17.373	0.018	251836	0.38083	3.81	89.28- 133.92	110.06	
18.693	18.671	0.022	167255	0.40274	4.03	72.48- 108.72	73.09	
21.373	21.358	0.015	205584	0.33644	3.36	0.00- 0.00	89.84	
		Average of Pe						
\$ 12 I						2051-24-3		
26.070	26.051	0.019						



Data File: 7IA238.D

Report Date: 16-Jan-2015 14:25

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA15.b\GC07IA15.b\7IA238.D

Lab Smp Id: WG156929-3 Client Smp ID: WG156929-LCSD

Inj Date : 15-JAN-2015 13:37

Operator : JLP Inst ID: gc07.i

Smp Info : WG156929-3,SI0230

Misc Info: WG156982, WG156929, WG156298-1, SI0230-2

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA15.b\PCB078.m\PCB078.m

Meth Date : 16-Jan- $2\overline{0}15$  13: $5\overline{2}$  jprescott Quant Type: ESTD Cal Date : 30-DEC-2014 10:10 Cal File: 7HL413.D Als bottle: 7 QC Sample: LCSD

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: WATER

Processing Host: V200T2

Concentration Formula: Amt * DF * Vt*(1/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cpnd Variable		Local Compound Variable

Local Compound Variable

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	( ug/L)	TARGET RANGE	E RATIO	REVIEW CODE
==== =	======	======	======	======	======	========	=====	========
\$ 2 T	etrachlo	oro-m-xyler	ne		CAS #	: 877-09-8		
5.386	5.371	0.015	4620958	0.07666	0.767			
5 A	roclor-1	1016			CAS #	: 12674-11-2		
7.653	7.636	0.017	584956	0.51472	5.15	80.00- 120.00	100.00	
8.369	8.352	0.017	524110	0.52474	5.25	158.77- 238.15	89.60	
9.373	9.356	0.017	1053662	0.50892	5.09	296.98- 445.46	5 180.13	
10.081	10.059	0.022	544887	0.52515	5.25	114.78- 172.17	7 93.15	
11.191	11.172	0.019	481987	0.55144	5.51	112.32- 168.48	82.40	
		Average of	Peak Concentra	ations =	5.25			
9 A	roclor-1	1260			CAS #	: 11096-82-5		
15.883	15.859	0.024	766119	0.48002	4.80	80.00- 120.00	100.00	
16.841	16.814	0.027	944746	0.47184	4.72	94.69- 142.03	3 123.32	
18.309	18.287	0.022	894052	0.46115	4.61	89.28- 133.92	2 116.70	
19.651	19.627	0.024	592861	0.45122	4.51	72.48- 108.72	2 77.38	
22.448	22.424	0.024	746045	0.40699	4.07	0.00- 0.00	97.38	
		Average of	Peak Concentra	ations =	4.54			
\$ 12 D	ecachlor	robiphenyl			CAS #	2051-24-3		
26.976	26.957	0.019	1482462	0.06053	0.605			







### **LCS/LCSD Recovery Report**

**LCS ID:** WG157001-2 **LCSD ID:** WG157001-3

Project: SDG: SI0230

**Report Date:** 23-JAN-15 **LCS File ID:** 7IA283.D

**Received Date:** 

Extract Date: 15-JAN-15

**Extracted By:**HG

Extraction Method: SW846 3540 Lab Prep Batch: WG157001 LCSD File ID: 7IA284.D **Analysis Date:** 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8082A

Matrix: SL % Solids: NA

	Spike	LCS	LCS	LCSD	LCSD	Conc		RPD	
Compound	Amt	Conc	Rec (%)	Conc	Rec (%)	Units	<b>RPD</b> (%)	Limit	Limits
Aroclor-1016	167.	159.	95.2	170.	102.	ug/Kgdrywt	7	30	40-140
Aroclor-1260	167.	169.	101.	181.	108.	ug/Kgdrywt	7	30	60-130
Tetrachloro-M-Xylene			60.4		77.8				56-115
Decachlorobiphenyl			83.8		92.2				60-125

Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA283.D

Report Date: 20-Jan-2015 10:13

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA283.D

Lab Smp Id: WG157001-2 Client Smp ID: WG157001-LCS

Inj Date : 19-JAN-2015 13:20

Operator : JLP Inst ID: gc07.i

Smp Info : WG157001-2,SI0230

Misc Info: WG157171, WG157001, WG156298-1, SI0230-1

Comment

Method : \\target_server\gg\chem\gc07.i\\GC07IA19.b\\PCB078.m

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.01000	Final Volume (L)
M	0.00000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

CONCENTRAT	IONS

			ON-COL	FINAL			
RT EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
	=======	======	======	======	========	=====	========
\$ 3 Tetrach	loro-m-xylene			CAS #:	877-09-8		
5.172 5.173	0.000	870871	0.05975	19.9			
6 Aroclor	-1016			CAS #:	12674-11-2		
7.147 7.143	0.004	132386	0.41278	138	80.00- 120.00	100.00	
7.730 7.72	0.005	112352	0.42716	142	158.77- 238.15	84.87	
8.739 8.73	0.004	248069	0.41982	140	296.98- 445.46	187.38	
9.279 9.27	0.007	104646	0.43783	146	114.78- 172.16	79.05	
10.399 10.39	0.007	117631	0.46722	156	112.32- 168.48	88.85	
	Average of	Peak Concentra	tions =	144			
9 Aroclor	-1260			CAS #:	11096-82-5		
15.027 15.01	0.014	230897	0.45945	153	80.00- 120.00	100.00	
16.232 16.21	0.014	331509	0.42616	142	94.69- 142.03	143.57	
17.384 17.36	0.017	269710	0.40786	136	89.28- 133.92	116.81	
18.690 18.67	0.017	195605	0.47100	157	72.48- 108.72	84.72	
21.367 21.34	7 0.020	255758	0.41855	140	0.00- 0.00	110.77	
	Average of	Peak Concentra	tions =	146			
\$ 12 Decachlo	orobiphenyl			CAS #:	2051-24-3		
26.069 26.05	0.011	813761	0.07970	26.6			



Data File: 7IA283.D

Report Date: 20-Jan-2015 10:14

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA19.b\GC07IA19.b\7IA283.D

Lab Smp Id: WG157001-2 Client Smp ID: WG157001-LCS

Inj Date : 19-JAN-2015 13:20

Operator : JLP Inst ID: gc07.i

Smp Info : WG157001-2,SI0230

Misc Info: WG157171, WG157001, WG156298-2, SI0230-1

Comment

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws Cpnd Variable	0.01000 0.00000	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg) Local Compound Variable

		ON-COL	FINAL			
RT EXP RT DI	LT RT RESPONSE	(ug/mL)	(ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
==== ====== ===		======	======	========	=====	========
\$ 2 Tetrachloro-	-m-xylene		CAS #:	877-09-8		
5.380 5.388 -	-0.008 3638604	0.06037	20.1			
5 Aroclor-1016				12674-11-2		
7.647 7.649 -	-0.002 509538	0.44836	149	80.00- 120.00	100.00	
8.362 8.363 -	-0.001 464950	0.46551	155	158.77- 238.15	91.25	
9.362 9.364 -	-0.002 984201	0.47537	158	296.98- 445.46	193.16	
10.070 10.068	0.002 495166	0.47723	159	114.78- 172.17	97.18	
11.180 11.181 -	-0.001 451817	0.51693	172	112.32- 168.48	88.67	
Ave	erage of Peak Concentr	ations =	159			
9 Aroclor-1260	)		CAS #:	11096-82-5		
15.870 15.869	0.001 803027	0.50315	168	80.00- 120.00	100.00	
16.827 16.828 -	-0.001 1015859	0.50735	169	94.69- 142.03	126.50	
18.297 18.296	0.001 941380	0.48556	162	89.28- 133.92	117.23	
19.640 19.638	0.002 690431	0.52548	175	72.48- 108.72	85.98	
22.438 22.433	0.005 950502	0.51853	173	0.00- 0.00	118.36	
Ave	erage of Peak Concentr	ations =	169			
\$ 12 Decachlorobi	iphenyl		CAS #:	2051-24-3		
26.967 26.968 -	-0.001 2052478	0.08381	27.9			



Data File: \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA284.D

Report Date: 20-Jan-2015 10:13

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc07.i\GC07IA19.b\7IA284.D

Lab Smp Id: WG157001-3 Client Smp ID: WG157001-LCSD

Inj Date : 19-JAN-2015 13:55

Operator : JLP Inst ID: gc07.i

Smp Info : WG157001-3,SI0230

Misc Info: WG157171, WG157001, WG156298-1, SI0230-1

Comment

Method : \target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m

Meth Date: 20-Jan-2015 10:03 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: LCSD

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF Vt M Ws Cpnd Variable	0.01000	Dilution Factor Final Volume (L) % Moisture Weight of Sample (Kg) Local Compound Variable

				COLICELITI					
				ON-COL	FINAL				
RT	EXP RT	DLT RT	RESPONSE	(ug/mL)	(ug/Kg)	TARGET	r RANGE	RATIO	REVIEW CODE
==== =	====== :		=======	======	======	=====	======	=====	========
\$ 3 T	etrachlo	ro-m-xylene			CAS #:	877-09-	-8		
5.174	5.172	0.002	1130695	0.07758	25.9				
6 A	roclor-10	016			CAS #:	12674-1	11-2		
7.149	7.143	0.006	144993	0.45209	151	80.00-	120.00	100.00	
7.733	7.725	0.008	121368	0.46144	154	158.77-	238.15	83.71	
8.748	8.735	0.013	266077	0.45030	150	296.98-	445.46	183.51	
9.283	9.272	0.011	111328	0.46579	155	114.78-	172.16	76.78	
10.404	10.392	0.012	123444	0.49031	163	112.32-	168.48	85.14	
	1	Average of	Peak Concentra	ations =	155				
9 A	roclor-12	260			CAS #:	11096-8	82-5		
15.033	15.013	0.020	245033	0.48758	162	80.00-	120.00	100.00	
16.238	16.218	0.020	356028	0.45768	152	94.69-	142.03	145.30	
17.384	17.367	0.017	272258	0.41171	137	89.28-	133.92	111.11	
18.691	18.673	0.018	211572	0.50945	170	72.48-	108.72	86.34	
21.373	21.347	0.026	269512	0.44106	147	0.00-	0.00	109.99	
	I	Average of	Peak Concentra	ations =	154				
\$ 12 D	ecachlor	obiphenyl			CAS #:	2051-24	4-3		
			908170						



Data File: 7IA284.D

Report Date: 20-Jan-2015 10:14

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc07.i\GC07IA19.b\GC07IA19.b\7IA284.D

Lab Smp Id: WG157001-3 Client Smp ID: WG157001-LCSD

Inj Date : 19-JAN-2015 13:55

Operator : JLP Inst ID: gc07.i

Smp Info : WG157001-3,SI0230

Misc Info: WG157171, WG157001, WG156298-2, SI0230-1

Comment :

Method : \\target_server\gg\chem\gc07.i\GC07IA19.b\PCB078.m\PCB078.m

Meth Date: 20-Jan-2015 10:04 jprescott Quant Type: ESTD Cal Date: 30-DEC-2014 10:10 Cal File: 7HL413.D QC Sample: LCSD

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: LCSDoD.sub

Target Version: 4.12 Sample Matrix: SOIL

Processing Host: V200T2

Concentration Formula: Amt * DF * 1000*Vt*(100/(100-M))/Ws * CpndVariable

Name	Value	Description
DF	1.000	Dilution Factor
Vt	0.01000	Final Volume (L)
M	0.0000	% Moisture
Ws	0.03000	Weight of Sample (Kg)
Cpnd Variable		Local Compound Variable

		ON-CO	DL FINAL			
RT EXP RT	DLT RT	RESPONSE (ug/r	nL) (ug/Kg)	TARGET RANGE	RATIO	REVIEW CODE
==== ====== =	======	=======================================	-== ======	========	=====	========
\$ 2 Tetrachlor	ro-m-xylene		CAS #	: 877-09-8		
5.384 5.388						
5 Aroclor-10				: 12674-11-2		
7.649 7.649	0.000	551065 0.484	190 162	80.00- 120.00	100.00	
8.366 8.363	0.003	507207 0.507	782 169	158.77- 238.15	92.04	
9.366 9.364	0.002	1022305 0.493	377 164	296.98- 445.46	185.51	
10.074 10.068	0.006	541845 0.522	222 174	114.78- 172.17	98.33	
11.182 11.181	0.001	478663 0.547	764 182	112.32- 168.48	86.86	
A	verage of Pea	ak Concentrations	s = 170			
9 Aroclor-12	160		CAS #	: 11096-82-5		
15.874 15.869	0.005	841134 0.527	702 176	80.00- 120.00	100.00	
16.831 16.828	0.003	1046422 0.522	262 174	94.69- 142.03	124.41	
18.299 18.296	0.003	1054008 0.543	365 181	89.28- 133.92	125.31	
19.642 19.638	0.004	733472 0.558	324 186	72.48- 108.72	87.20	
22.441 22.433	0.008	1032185 0.563	309 188	0.00- 0.00	122.71	
A	verage of Pea	ak Concentrations	3 = 181			
\$ 12 Decachloro	biphenyl		CAS #	: 2051-24-3		
26.972 26.968	0.004	2256279 0.092	213 30.7			



## **Logbooks and Supporting Documents**

AP PCB

504

## KATAHDIN ANALYTICAL SERVICES, INC. ORGANIC EXTRACTIONS LOG - SOIL PESTICIDE/PCB

Extraction Method: (check one)	SW846 3550	SW846 3540	/	SW846 3545	SW846	3546	SW846 3580	
Analytical Method: (check one)	SW846 8081	· · · · · · · · · · · · · · · · · · ·	SW846	3082		EPA 608	01/040 3350	
Standards	Surrogate ID:	42	Spike ID	GC140 PCB		Spike ID:		
Solvents	Solvent Lot # (Mecl2):	DF2.J	Solvent I	_ot# (Acetone):		Solvent Lot # (He	exane): 1)L 750	
Consumables	Filter Paper Lot # (SON	I)	Filter Pa	per Lot # (KD)		Acid Lot # 65072		
	Sodium Sulfate (granula	ar) Lot #: 2716404	Sodium 5	Sulfate (powder) Lot #: 3	) ) ) ) ) )	Vial Lot#		
Misc.	Nitrogen Bath Tempera	ture: عن		r Amplitude:		Balance ID: Me	ATL. PIYOU	
Prep Start Time: 12.4	Pre Pre		1-15-1	Soxhlett Start Time:	15.00	Soxhlett S		

	7		*****	1		,	<b>!</b>	*******	<u> </u>	re - GPC		ـــــــ		Post -	GPC .		
Extl. Date	Ext. Init.	San	nple ID	Initia) Weight (g)	Surr. Vol. (mt.)	Spike Vol. (mL)	Frag Pest	PCB	Date Conc.	Conc.	Final Vol. (mL)	Acid Wash	Date Conc.	Conc.	Finai Vol. (mL)	Tray	Comments
15-15	-tz	HUIS	7001-1	30=1	1.0	NR		$\sqrt{}$					1-16-15		tomb	Loc.	R 304893
-	-		-2 -3	30.02	-	1.0		-}-						<del>                                     </del>		15	
	1	1	-4	3225	1	1		+	$\angle$				1	1	1	AL.	Toxa
												-					ج آئی
																	2000
		·															
				-				_									
								_									
							1										Wost

EX-010 – Revision 2 – 04/18/2014

QAEY278

00000152

								Pı	re - GPC			]	Post - 0	3PC		
Ext. Date	Ext. Init.	Sample ID	Initial Weight (g)	Surr. Vol. (ml.)	Spike Vol. (mL)	Fra	ction	Date Conc.	Conc. Init.	Final Vol. (mL)	Acid Wash	Date Conc.	Conc. Init.	Finat Vol. (mL)	Tray Loc.	Comments
1-15-15	-#S	570250-16	30.04	),c	NR		V			$\overline{Z}$	4	1-16-15	WKS	Jone	47	
		SI019-16	30,75		1						$\coprod$				14	
	ļ		3175			<u> </u>			/_		Ц_			<u> </u>	45	
		-4	30,00			ļ	-					-	₩.		Atro	
		- 70	3-42	1	1		-		-		$\vdash$	+	H		14	
· · · · · · · · · · · · · · · · · · ·	4	1 - 107	30,93	7	-		J				<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		112	
											<u> </u>			<u> </u>		
	ļ		-			ļ			<del> </del>		-			<del> </del>		
											ļ					
														<b> </b>		
							<u> </u>									
										1						
											ļ	<u> </u>				
			<u> </u>								<u> </u>	<u> </u>	ļ			
			-				ļ				ļ	ļ		ļ		· · · · · · · · · · · · · · · · · · ·
							<u> </u>					<u> </u>				
						<u> </u>	-				ļ					W5-7 (-1
																Wrs (-1)

EX-010 - Revision 2 - 04/18/2014

Reviewed By_

Date



## KATAHDIN ANALYTICAL SERVICES, INC. ORGANIC EXTRACTIONS LOG - AQUEOUS PESTICIDE/PCB

Extraction Method: (check one)	SW846 3520 (CLLE)		SW846 3510 (SE	P) 🗸	SW846 3535 (SPE)			
Analytical Method: (check one)	SW846 8081	SW846 8082	EPA 608	CLP OLM04.2	CLP OLC2.1 Other:			
Standards	Surrogate ID: GC1	MAN	Spike ID: 60	1471 BH	Spike ID: Pc 15			
Solvents	Solvent Lat # (Meci2)	: a e77	Solvent Lot # (He		Solvent Lot # (Acetone):			
Consumables	Filter Paper Lot # 9	6069461	Acid Lot # 650		NaSO4Lot# 27564004			
Nitrogen Bath Tempen	ature: 370C	Vial Lot #:	<u> </u>		711	64004		
Prep Start Time: \	·48 P	rep End Time: 3:30	CLU	Start Time:	CLLE End Tin			

Date Extracted	Ext.	s	ample ID	Initial Vol.	Surr.	Spike	Fra	ction	Finel	Date	Tray	1		Clea	an-Up		
	]			mL.	Vol.	Vol.	Pest	PCB	Vol. mL	Conc.	Location Cotyp	initials	GPC	Flor.	Acid Wash	Other	Comments
114-6	D.S.	MC121		1000	Int	٨٨	~	V	longe	1-14-15	Cio	MAS			<b>4</b>		R3047498
	Ц.	mc 156	129-2	<u> </u>	<u> </u>	12		1			cy						1304743 PUB
	11			1-							CIZ						
			-4	lous							O _l						ML 510172-14
			-5	1		J				,	WZ						M20 7 5
		N 615 (89	ملي-مد	(636		Ne	/	<b>←</b>			P3 -				1		PLP Blagge POT1222
	Ц.	WEISLE	931-2	(000		12	3				04						3CJ Bank Paris
	1	- (	~}								05					**	7701
	1	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>		]	لہ	1				06						fox ecinars
-		<del>\</del>	<del>} -{ :</del>	1000					$\dashv$	_						(M)	THE COURT
1.41	Jus.	WEISTE	330-le	(000)	Test	<b>ly</b> nk	V		7	1	07	D		$\neg \uparrow$			tchlor acuses

EX-002 - Revision 1 - 10/15/09



Date	Ext.		Initial	Surr.	Spike	Fre	tion	Final	D.	ate	Tron			Cle	an-Up		
Extracted	Init.	Sample ID	Vol. mL	Vol.	Vol.	Pest	PCB	Vol. ml.	Co	ene onc.	Tray Location Proxy	Initials	GPC	Flor.	Acid Wash	Other	Comments
14-16	JN.	S10142-3 H	lopo	Inl	hv		~	land	1-14	15		WAS			1		•
1		1-44	7	1			П				pg						
		b H	1640		l i						DЮ						
		-7 1	1060								00						
		J'-8 H	]								012	-					
		5101713 BI	980			_	/				٤٦						SPLP Strate
		J-131	1090				7				٤٤						SAP
		S10172-14W	1060				~				23						uslp
		SL0199-82	מכמן			_	<u></u>				૧						
		51 0 230-2F	1000				~				25						
	<u> </u>	\ 36	$\Box$							···	il			<u> </u>			
	<u> </u>	J-4F	1	J	4		/	1	7		47	4			M	<u></u>	
	<u> </u>																
								<u> </u>	<u> </u>								
			, <u></u>						ļ								-
·	ļ							<u> </u>	<u> </u>	~					<u> </u>	<u> </u>	
		<u> </u>							<u> </u>								
***************************************			-						<u> </u>								
					<del> </del>		_		-						ļ	ļ	. , was 1-141
	1															<del> </del> -	·

### Katahdin Analytical Services, Inc.

	<del></del>	
GC Laboratory Instrument Runlog	Standard	Standard ID
Instrument: GC07		
Amount Injected: 2 uL		
Column Numbers: 406 40)	7	

Method:

SW846 8082 EPA 608

(circle)

(circle)	1	T. C.							
Date	Init.	Result File	Sample ID	Y/I	1	nalytical /orkgroup	Method	Comments	
12-29-14	<u>198</u>	741-374	AR1660 1.0	The state of	W61	56298-1,2	PCB 078	P 7477	
		1 375	0.05			) -3,4		97478	
		376	0.10			-5,6		P7479	
		377	0,75			-7.8		17481	
	_	378	25			-9,10		87480	
		379	10			-11,12		97476	
		380	ARIDIG 1.0	1		-13		P748>	
		381	ARIZED 1.0			-14		67483	
		382	AR1242 1.0			-15,16		97418	
		383	0.05			-1718		7484	
		384	0.1			-19,20		77485	
		385	0.25			-21,22		17486	
	-	386	-2.5			-23,24		7487	
		387	4 10			-25,26		7417	
		388	AR1248 1.0	2 4 4		-27,28		7343	
	-	389	0.05			-29,30		77344	
	$\dashv$	390	0.1			-31,32		7345	
	-H	391	0.25		ļ	-53,34		77346	
		392	2,5			-35,36		ראָנד?	
		393	10			-37,38		7303	
		714 1	HR 1254 1.0			-39,40	1	7416	
12-30-14	+	395	0.05			-41,42	9	Mos	
12 20 17	++	396	0.1			-43,44	P	7489	
<del></del>	+	397	0.75 2.5			-45,46		7498	
	++	398 39A	1 25			47,48		7491	
	++	4	10			-49,50	P	7310	
-	++		HR1221 1.0	$\bot$		-51,52		7327	
	╁┼	401	0.05			-53,54		73×4	
<del>***</del>	$\Box$	40%	0.1			-55,56		7325	
eranifikker - P	<u> </u>	403	0.25	$ \mathcal{A} $	-2.3	-57.58	. 1 12	1326	

GC Laboratory Instrument Runlog	Standard	Standard ID
Instrument: GC07	Apriloho 1.0	P747)
Amount Injected: 2 uL	M21242 1	107418
Column Numbers: 400 407	AR1254 +	PTYTO
,	A21660 0.25	P7481

Method:

SW846 8082 / EPA 608

15

(circle)	7		/					
Date	lnit.	Result File	Sample ID	Y/N		alytical orkgroup	Method	Comments
123014	716	7HL 404	ARIZZI 2.5	Y	W619	6298-59,6	POBO7X	17328
	<u> </u>	<u> 1 405</u>	10	١		الماراوا –		P7323
		1 40c	AR1232 1.0			-63,64		P7333
		407	0.05			-65,66		P7330
	<u> </u>	408	0.1			-67,18		וכנדק
	4	409	0.75			-69,70		<del>የ</del> 7332
		410				-71.72		87334
	<del></del>	411				-75.74		97329
4	<u> </u>		AR 12621.0			-75,76		P7423
	<u> </u>	413	AR12681.0	7	1	77,78		97429
			ARIZSY TII	7	WOIS	6352		
	-		Wr156302-1 3580					1.7 500/1000
	4_	416	THOR39-106	1			.4	1:2 L
		<u> </u>	WG156302-2	1				1:10 100/1000
		418	L-3					
		419	T40816-10L I	4				1
		1 1	RINSE	Ν				oil samples
		421	A2/12/001.0	7		-1,2		<b>V</b>
		122	ACIZYZ					
		425	AR1254 & Wr156105-1 3550	4				
	$\dashv$	424	WY156105-1 3550	7				
		475	-2	1				
		426						
	+-+	427	TU0767-1					TLATB
	+-+	418	TH0783-1	44				
	1-1	479	1 -2					
	+	430	<u></u> √ -3	1, 1			]	MВ
	-	107	1710/03-1	<b>4</b>				
1-		132	RINSE	N				colored soils
	<u> </u>	¥ 433.	telle60 0.25	<u> </u>	- 4	-3,4	<b>- K</b>	

GC Laboratory Instrument Runlog	Standard	Standard ID		
Instrument: GC07	ARIUGO 1.0	17477		
Amount Injected: 2 uL	AC1742 1	P7418		
Column Numbers: 400 407	AC1254 L.	P7416		
	ARTINGO 0.25	97481		
14 (1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,			

Method:

SW846 (8082) / EPA 608

(circle)		SW846 (8	082) / EPA 608		<del></del>		· · · · · · · · · · · · · · · · · · ·	
Date	lnit.	Result File	Sample ID	Y/N	Analytic Workgro		Method	Comments
1-14-15	DI	71AZ11	S10167-12 3550	1	W6 156	844 PC	B078	
<u> </u>		717	1 -12 1	(	1		1	. 279.4
		212	7 -14					
	1	77	<del></del>					
		715						
		1 21					<u> </u>	
ļ <del>, ,</del>		71	<u> </u>					
		71		-				¥ - 2
<del>  </del>		711	<del></del>	1			<u> </u>	
<del>                                     </del>	H		ARIVED 1.0	12				Colored soils
		707	1 2 USISA	17				
		722	ACIZSU L	1				
		1	810167-21 3550	7				
	1	72	1 -22 1					
		226	-23					
		ZV	1,7 -54 9					
		128	124568794					
		1774	5					
<u> </u>	<u>di</u>		AR1660 0,25	1			J	TB
1-16-18	1.0	NIM	LWIC + Sept					
1-15-15	-7 <i>0</i> 3,	7TA 232	TIME	N	WG15698		3078	
<del>-\-</del>	+	774	ARILLO 1:0	7	<u> </u>	-12	1	
		234	ARIZYZ )	77				
	$\dashv$	7.30	AR1254 L W156929-1 3510	7				
		237	MISTS 16171 3210	+				
		238	3	1-1				
	11	239	-4	$\dashv$				
1	1	740	J. E.H					

GC Laboratory Instrument Runlog	Standard	Standard ID
Instrument: GC07	A21660 1.0	87477
Amount Injected: 2 uL	ARIZYZ 1	87418
Column Numbers:	A1754 J.	P7410
	ARILLO 0.25	97481
Method: SW84k 8083)/ EDA 600		

ii	rcle	)

(circle)							
Date	lnit.	Result File	Sample ID	Y/N	Analytical Workgroup	Method	Comments
18-15 1-10-15 1-10-15	J.R.	243 244 249 249 249 250 251 252 253 254 255 255 257 257 258 257 258 259 259 250 257 259 250 251 252 255 259 259 250 251 252 255 259 259 259 259	SIDUTZ-14  ARIBOD 0.25  ARIZUZ 1.0  ARIZUZ 1.0  SIOTYZ-3 4510  -4  -6  -13  ARIBOD TO  ARIBOD TO  ARIBOD TO  ARIZUZ 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W6156982	PUB078	T+DLAYB T+DLAYB TLAYB TLAYB  ST0199-8 ST0199-8 ST0199-8

Katahdin Analytical Services, Inc. GC Laboratory Instrument Runlog Standard Standard ID Instrument: GC07 AR10.60 1.0 N 7477 Amount Injected: 2 uL 1242 7418 406/407 Column Numbers: P7416 1660 0,75 SW846 Method: (8082) / EPA 608 (circle) Date Init. Result Sample Y/N Analytical Method Comments File ID Workgroup 1116154990-2 1-16-15 3590 W6157047 CB078 _3 510258-1 0.05 ALILLO -3,4 1-19-15 Prime WG15717 PCB078 172/12/e0 1.0 -1,V 3550 WG 157001-1 90220-90199-3 ARIGGO 0.25 -34 2540 -6

N

P. 1:10

es-upa-sr avaion, - up :

# TOTAL PETROLEUM HYDROCARBON

### **QC Summary Section**





## Form 2 System Monitoring Compound Recovery

Lab Name: Katahdin Analytical Services Project: Navy Clean WE15-03-06 NWIRP Bethpage, NY Matrix: SL

Lab Code: KAS SDG: SI0230

Client Sample ID	Lab Sample ID	Col. ID	OTP	#
IDWS-0312-011315	SI0230-1	A	64.0	
Method Blank Sample	WG157164-1	A	89.5	
Laboratory Control S	WG157164-2	A	92.0	
Laboratory Control S	WG157164-3	A	96.0	

**QC** Limits

OTP O-TERPHENYL

28-101

# = Column to be used to flag recovery limits.

* = Values outside of contract required QC limits.

D= System Monitoring Compound diluted out.





#### **Method Blank Summary**

Lab Name: Katahdin Analytical Services SDG: SI0230

Project: Navy Clean WE15-03-06 NWIRP Bethpage, Lab Sample ID: WG157164-1
Lab File ID: AIA20237.D

Date Extracted: 19-JAN-15

Instrument ID: GC10

Date Analyzed: 19-JAN-15

Matrix: SL Time Analyzed: 17:38

This Method Blank applies to the following samples, LCS, MS and MSD:

Client Sample ID	Lab Sample ID	Lab File ID	Date Analyzed	Time Analyzed
Laboratory Control S	WG157164-2	AIA20238.	01/19/15	18:14
Laboratory Control S	WG157164-3	AIA20239.	01/19/15	18:49
IDWS-0312-011315	SI0230-1	AIA20240.	01/19/15	19:25





# Form 8 GC Analytical Sequence

Lab Name : Katahdin Analytical ServicesSDG : SI0230Project : Navy Clean WE15-03-06 NWIRP Bethpage,Column ID : A

**Instrument ID**: GC10

		Date	Time	
<b>Client Sample ID</b>	Lab Sample ID	Analyzed	Analyzed	OTP
Initial Calibration	WG143219-9	05/20/14	15:00	11.64
Initial Calibration	WG143219-11	05/20/14	15:36	11.65
Initial Calibration	WG143219-10	05/20/14	16:11	11.64
Initial Calibration	WG143219-8	05/20/14	16:47	11.64
Initial Calibration	WG143219-7	05/20/14	17:22	11.64
Independent Source	WG143219-12	05/20/14	17:58	
Continuing Calibrati	WG157172-1	01/19/15	12:15	10.87
Method Blank Sample	WG157164-1	01/19/15	17:38	10.87
Laboratory Control S	WG157164-2	01/19/15	18:14	10.87
Laboratory Control S	WG157164-3	01/19/15	18:49	10.87
IDWS-0312-011315	SI0230-1	01/19/15	19:25	10.87
Continuing Calibrati	WG157172-2	01/19/15	21:48	10.87

### **Sample Data Section**

#### KATAHDIN ANALYTICAL SERVICES - ORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

- U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
  - Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
- Compound recovery outside of quality control limits.
- D Indicates the result was obtained from analysis of a diluted sample. Surrogate recoveries may not be calculable.
- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

or

- J Used for Pesticides, PCBs, Herbicides, Formaldehyde, Explosives and Method 504.1 analytes when there is a greater than 40% difference for detected concentrations between the two GC columns.
- B Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
- C Indicates that the flagged compound did not meet DoD criteria in the corresponding daily calibration verification (CV).
- L Indicates that the flagged compound did not meet DoD criteria in the corresponding Laboratory Control Sample (LCS) and/or Laboratory Control Sample Duplicate (LCSD) prepared and/or analyzed concurrently with the sample.
- M Indicates that the flagged compound did not meet DoD criteria in the Matrix Spike and/or Matrix Spike Duplicate prepared and/or analyzed concurrently with the native sample.
- N Presumptive evidence of a compound based on a mass spectral library search.
- A Indicates that a tentatively identified compound is a suspected aldol-condensation product.
- P Used for Pesticide/Aroclor analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. (for CLP methods only).

# Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.





#### **Report of Analytical Results**

Client: ENSAFE

Lab ID: SI0230-1

**Client ID:** IDWS-0312-011315 Project: Navy Clean WE15-03-06 NWIRP Bethr Extracted By: JMS

**SDG:** SI0230

Lab File ID: AIA20240.D

Sample Date: 13-JAN-15 **Received Date: 14-JAN-15** 

Extract Date: 19-JAN-15

**Extraction Method:** SW846 3550

Lab Prep Batch: WG157164

**Analysis Date:** 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8015D

**Matrix:** SL **% Solids:** 79.

**Report Date:** 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Extractable TPH C9-C36		11	mg/Kgdrywt	1	5	5.2	2.7	4.0
o-Terphenyl		64.0	%					

Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20240.D

Report Date: 20-Jan-2015 10:07

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20240.D

Lab Smp Id: SI0230-1 Client Smp ID: IDWS-0312-011315

Inj Date : 19-JAN-2015 19:25

Operator : JLP Inst ID: gc10.i

Smp Info : SI0230-1 Misc Info : WG157172, WG157164, WG143219-9

Comment

: \\target_server\gg\chem\gc10.i\GC10IA19.b\tph09b.m Method

Meth Date: 20-Jan-2015 08:57 jprescott Quant Type: ESTD

Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127A.D

Als bottle: 15

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: SW8015M-TPH.sub

Subtraction File: \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20229.D

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF Vt Ws M	0.00100 0.03630	Dilution Factor Final Volume (L) Weight of Sample (Kg) Moisture (%)
Cpnd Variable		Local Compound Variable

CONCENTRATIONS

					ON-COLUMN	FINAL	
Compounds	RT E	EXP RT	DLT RT	RESPONSE	(ug/ml)	(mg/Kgdrywt)	REVIEW CODE
	==== ==			======	======	======	========
\$ 8 O-Terphenyl	10.865 1	10.901	-0.036	499017	12.8181	0.444(M)	
S 10 Extractable TPH C9-C36	2.317-19	9.419		11706699	328.455	11.4(M)	

QC Flag Legend

M - Compound response manually integrated.

3:21 pm, Jan 21, 2015



### **Standards Data Section**





#### Form 6 **Initial Calibration Summary**

Lab Name: Katahdin Analytical Services **SDG:** SI0230 Project: Navy Clean WE15-03-06 NWIRP Bethpage, N Instrument ID: GC10

**Lab File IDs:** AHE20127A.AHE20126A.AHE20123A. Column ID: A

AHE20125A.AHE20124A.

Calibration Date(s): 20-MAY-14 15:00 20-MAY-14 17:22

	5.0000	20.0000	50.0000	100.0000	200.0000	New	b	m1	m2	%RSD	Max	
	Level 1	Level 2	Level 3	Level 4	Level 5	Crv					%RSD	
C-9	171028	714309	1769083	3478879	7048479	LNR	0.05092	35180		0.99995	0.99000	О
C-10	172839	721029	1786606	3520877	7110701	LNR	0.00619	35502		0.99997	0.99000	О
C-12	173460	724889	1795911	3541524	7152156	LNR	0.01744	35711		0.99997	0.99000	О
C-14	174978	728899	1806076	3555595	7193427	LNR	0.03168	35909		0.99996	0.99000	О
C-16	176399	734494	1818105	3899607	7239682	LNR	-0.65130	36601		0.99847	0.99000	О
C-18	177028	737909	1824593	3601762	7277140	LNR	0.02908	36333		0.99997	0.99000	О
C-19	176166	733588	1813903	3579499	7234739	LNR	0.03140	36119		0.99996	0.99000	О
C-20	175662	735967	1818652	3152793	6417615	LNR	-1.95581	31807		0.99856	0.99000	О
C-22	176729	741945	1828768	3325602	6642477	LNR	-1.64903	33036		0.99932	0.99000	О
C-24	177481	733754	1834591	3424533	6870357	LNR	-1.01172	34221		0.99967	0.99000	О
C-26	174689	727541	1772814	3466506	6943033	LNR	-0.44673	34645		0.99995	0.99000	О
C-28	174846	729927	1815686	3513403	7043696	LNR	-0.45167	35153		0.99992	0.99000	О
C-30	173897	724822	1779864	3519760	6981059	LNR	-0.45350	34892		0.99996	0.99000	О
C-36	161285	687834	1736736	3467529	7042197	LNR	0.50719	35207		0.99995	0.99000	О
Extractable TPH	2436492	10176911	25201394	49047875	98196763	LNR	-5.89194	35014		0.99995	0.99000	М
O-Terphenyl	76668	317098	783687	1541899	3120597	LNR	0.00157	38935		0.99995	0.99000	

Legend: O = Kept Original Curve

Y = Failed Minimum RF W = Failed %RSD Value

Data File: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20128A.D

Report Date: 09-Jun-2014 16:41

#### Katahdin Analytical Services

#### RECOVERY REPORT

Client Name: Client SDG: SDGa00508

Sample Matrix: LIQUID Fraction: DRO

Lab Smp Id:

Level: LOW Operator: AC Data Type: GC DATA
SpikeList File: IND_CHECK.spk SampleType: LCS Quant Type: ESTD

Sublist File: IND_CHECK.spk Quant Type: ESTD Sublist File: INDSOURCE.sub Method File: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Misc Info: WG143219,WG143219-12,SH3201-2

3 C-10       50.0       49.4       98.82       80-12         4 C-12       50.0       49.7       99.41       80-12         5 C-14       50.0       49.7       99.37       80-12         6 C-16       50.0       47.9       95.79       80-12         7 C-18       50.0       49.5       99.03       80-12         9 C-19       50.0       49.5       98.94       80-12         11 C-20       50.0       54.2       108.50       80-12         12 C-22       50.0       49.1       98.27       80-12         13 C-24       50.0       49.1       98.54       80-12         14 C-26       50.0       49.3       98.54       80-12         15 C-28       50.0       49.2       98.43       80-12         16 C-30       50.0       50.4       100.74       80-12	SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
30.0 49.2 90.31 00 12	3 C-10 4 C-12 5 C-14 6 C-16 7 C-18 9 C-19 11 C-20 12 C-22 13 C-24 14 C-26 15 C-28	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	49.4 49.7 49.7 47.9 49.5 54.2 49.1 48.6 49.3 49.2	98.82 99.41 99.37 95.79 99.03 98.94 108.50 98.27 97.13 98.54 98.43	80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120

Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20123A.D

Report Date: 09-Jun-2014 16:29

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20123A.D

Lab Smp Id: WG143219-9

Inj Date : 20-MAY-2014 15:00 Operator : AC Smp Info : WG143219-9 Inst ID: gc10.i

Misc Info : Comment

: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Method

Meth Date: 21-May-2014 14:50 acronin Quant Type: ESTD

Cal Date : 20-MAY-2014 15:00 Cal File: AHE20123A.D

Als bottle: 51 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt		Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		Indal Compound Variable

Local Compound Variable Cpnd Variable

					AMOUN	TS	
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	======	======	======	======	======	========
2 C-9	3.115	3.116	-0.001	1769083	50.0000	50.0	
3 C-10	4.349	4.349	0.000	1786606	50.0000	50.0	
4 C-12	6.497	6.497	0.000	1795911	50.0000	50.0	
5 C-14	8.298	8.298	0.000	1806076	50.0000	50.0	
6 C-16	9.883	9.883	0.000	1818105	50.0000	50.0	
7 C-18	11.305	11.305	0.000	1824593	50.0000	50.0	
\$ 8 O-Terphenyl	11.639	11.639	0.000	783687	20.0000	20.0	
9 C-19	11.965	11.965	0.000	1813903	50.0000	50.0	
11 C-20	12.596	12.596	0.000	1818652	50.0000	50.0	
12 C-22	13.777	13.777	0.000	1828768	50.0000	50.0	
13 C-24	14.863	14.863	0.000	1834591	50.0000	50.0	
14 C-26	15.869	15.869	0.000	1772814	50.0000	50.0	
15 C-28	16.804	16.804	0.000	1815686	50.0000	50.0	
16 C-30	17.677	17.678	-0.001	1779864	50.0000	50.0	
17 C-36	20.426	20.426	0.000	1736736	50.0000	50.0	
M 33 Extractable TPH				25201388	700.000	700	



Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20124A.D

Report Date: 09-Jun-2014 16:29

#### Katahdin Analytical Services

Data file : \\target_server\\gg\chem\\gc10.i\\GC10HE20.b\\AHE20124A.D

Lab Smp Id: WG143219-11

Inj Date : 20-MAY-2014 15:36

Operator : AC Inst ID: gc10.i

Smp Info : WG143219-11

Misc Info : Comment :

Method : \target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m

Meth Date: 21-May-2014 14:50 acronin Quant Type: ESTD

Cal Date : 20-MAY-2014 15:36 Cal File: AHE20124A.D Als bottle: 4 Calibration Sample, Level: 5

Als bottle: 4
Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)
Cpnd Variable		Local Compound Variable

					AMOUN	TS	
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	======	======	======	======	======	========
2 C-9	3.127	3.116	0.011	7048479	200.000	200	
3 C-10	4.363	4.349	0.014	7110701	200.000	200	
4 C-12	6.510	6.497	0.013	7152156	200.000	200	
5 C-14	8.312	8.298	0.014	7193427	200.000	200	
6 C-16	9.897	9.883	0.014	7239682	200.000	200	
7 C-18	11.322	11.305	0.017	7277140	200.000	200	
\$ 8 O-Terphenyl	11.650	11.639	0.011	3120597	80.0000	80.0	
9 C-19	11.981	11.965	0.016	7234739	200.000	200	
11 C-20	12.613	12.596	0.017	6417615	200.000	199	
12 C-22	13.795	13.777	0.018	6642477	200.000	199	
13 C-24	14.883	14.863	0.020	6870357	200.000	199	
14 C-26	15.889	15.869	0.020	6943033	200.000	200	
15 C-28	16.825	16.804	0.021	7043696	200.000	200	
16 C-30	17.699	17.678	0.021	6981059	200.000	200	
17 C-36	20.470	20.426	0.044	7042197	200.000	200(A)	
M 33 Extractable TPH				98196758	2800.00	2800	

#### QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.



Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20125A.D

Report Date: 09-Jun-2014 16:29

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20125A.D

Lab Smp Id: WG143219-10

Inj Date : 20-MAY-2014 16:11 Operator : AC Smp Info : WG143219-10 Inst ID: gc10.i

Misc Info : Comment

: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Method

Meth Date: 21-May-2014 14:50 acronin Quant Type: ESTD

Cal Date : 20-MAY-2014 16:11 Cal File: AHE20125A.D Calibration Sample, Level: 4

Als bottle: 5 Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt	0.00100	Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		I agal Compound Wariahl

Local Compound Variable Cpnd Variable

					AMOUN	TS	
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
=======================================	====			======	======	======	========
2 C-9	3.123	3.116	0.007	3478879	100.000	99.0	
3 C-10	4.355	4.349	0.006	3520877	100.000	99.2	
4 C-12	6.503	6.497	0.006	3541524	100.000	99.2	
5 C-14	8.305	8.298	0.007	3555595	100.000	99.1	
6 C-16	9.890	9.883	0.007	3899607	100.000	106	
7 C-18	11.312	11.305	0.007	3601762	100.000	99.2	
\$ 8 O-Terphenyl	11.644	11.639	0.005	1541899	40.0000	39.6	
9 C-19	11.971	11.965	0.006	3579499	100.000	99.2	
11 C-20	12.602	12.596	0.006	3152793	100.000	97.1	
12 C-22	13.783	13.777	0.006	3325602	100.000	98.9	
13 C-24	14.871	14.863	0.008	3424533	100.000	99.0	
14 C-26	15.877	15.869	0.008	3466506	100.000	99.6	
15 C-28	16.812	16.804	0.008	3513403	100.000	99.5	
16 C-30	17.686	17.678	0.008	3519760	100.000	100	
17 C-36	20.443	20.426	0.017	3467529	100.000	99.0	
M 33 Extractable TPH				49047869	1400.00	1390	



Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20126A.D

Report Date: 09-Jun-2014 16:29

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20126A.D

Lab Smp Id: WG143219-8

Inj Date : 20-MAY-2014 16:47 Operator : AC Smp Info : WG143219-8 Inst ID: gc10.i

Misc Info : Comment

: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Method

Meth Date: 21-May-2014 14:50 acronin Quant Type: ESTD

Cal Date : 20-MAY-2014 16:47 Cal File: AHE20126A.D

Als bottle: 6 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt	0.00100	Dilution Factor Final Volume (L)
Vo	1.000	Sample Volume (L)
Cond Variable		I agal Compound Wariahl

Local Compound Variable Cpnd Variable

						AMOUNT	'S	
						CAL-AMT	ON-COL	
Compo	ounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
====		====		======	======	======	======	========
2	2 C-9	3.119	3.116	0.003	714309	20.0000	20.3	
	3 C-10	4.348	4.349	-0.001	721029	20.0000	20.3	
4	4 C-12	6.496	6.497	-0.001	724889	20.0000	20.3	
	5 C-14	8.298	8.298	0.000	728899	20.0000	20.3	
(	5 C-16	9.882	9.883	-0.001	734494	20.0000	19.1	
,	7 C-18	11.304	11.305	-0.001	737909	20.0000	20.3	
\$ 8	3 O-Terphenyl	11.639	11.639	0.000	317098	8.00000	8.14	
9	9 C-19	11.964	11.965	-0.001	733588	20.0000	20.3	
1.3	1 C-20	12.594	12.596	-0.002	735967	20.0000	20.7	
12	2 C-22	13.775	13.777	-0.002	741945	20.0000	20.4	
13	3 C-24	14.861	14.863	-0.002	733754	20.0000	20.1	
1	4 C-26	15.866	15.869	-0.003	727541	20.0000	20.4	
1!	5 C-28	16.801	16.804	-0.003	729927	20.0000	20.1	
16	5 C-30	17.675	17.678	-0.003	724822	20.0000	20.2	
1'	7 C-36	20.419	20.426	-0.007	687834	20.0000	20.1	
м 3	3 Extractable TPH				10176907	280.000	283	



Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20127A.D

Report Date: 09-Jun-2014 16:29

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20127A.D

Lab Smp Id: WG143219-7

Inj Date : 20-MAY-2014 17:22

Operator : AC Smp Info : WG143219-7 Inst ID: gc10.i

Misc Info : Comment

: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Method

Meth Date : 21-May-2014 14:50 acronin Quant Type: ESTD

Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127A.D Calibration Sample, Level: 1

Als bottle: 7 Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.00100	Final Volume (L)
Vo	1.000	Sample Volume (L)
O 1 77 1- 1-		Tagal Commonwed Wassinbl.

Cpnd Variable Local Compound Variable

		AMOUNTS					
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	======	======	======	======	======	========
2 C-9	3.119	3.116	0.003	171028	5.00000	4.91	
3 C-10	4.348	4.349	-0.001	172839	5.00000	4.87	
4 C-12	6.495	6.497	-0.002	173460	5.00000	4.87	
5 C-14	8.297	8.298	-0.001	174978	5.00000	4.90	
6 C-16	9.880	9.883	-0.003	176399	5.00000	4.17	
7 C-18	11.301	11.305	-0.004	177028	5.00000	4.90	
\$ 8 O-Terphenyl	11.637	11.639	-0.002	76668	2.00000	1.97	
9 C-19	11.961	11.965	-0.004	176166	5.00000	4.91	
11 C-20	12.592	12.596	-0.004	175662	5.00000	3.57	
12 C-22	13.772	13.777	-0.005	176729	5.00000	3.70	
13 C-24	14.859	14.863	-0.004	177481	5.00000	4.17	
14 C-26	15.864	15.869	-0.005	174689	5.00000	4.60	
15 C-28	16.799	16.804	-0.005	174846	5.00000	4.52	
16 C-30	17.672	17.678	-0.006	173897	5.00000	4.53	
17 C-36	20.413	20.426	-0.013	161285	5.00000	5.09	
M 33 Extractable TPH				2436487	70.0000	63.7	



Data File: \target_server\gg\chem\gc10.i\GC10HE20.b\AHE20128A.D

Report Date: 09-Jun-2014 16:41

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10HE20.b\AHE20128A.D

Lab Smp Id:

Inj Date : 20-MAY-2014 17:58

Inst ID: gc10.i

Comment

: \\target_server\gg\chem\gc10.i\GC10HE20.b\tph09b.m Method

Meth Date : 21-May-2014 14:50 acronin Quant Type: ESTD Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127A.D

Als bottle: 8 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: INDSOURCE.sub

Target Version: 4.12 Processing Host: T8-D4700

Concentration Formula: Amt * DF * (Vt/Vo)*1000 * CpndVariable

Name	Value	Description
DF Vt Vo		Dilution Factor Final Volume (L) Sample Volume (L)
Cpnd Variable		Local Compound Variable

					CONCENTRA	TIONS	
					ON-COLUMN	FINAL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	( ug/L)	REVIEW CODE
	====				======	======	========
2 C-9	3.122	3.116	0.006	1739594	49.4992	49.5	
3 C-10	4.352	4.349	0.003	1753908	49.4088	49.4	
4 C-12	6.499	6.497	0.002	1774396	49.7049	49.7	
5 C-14	8.301	8.298	0.003	1783006	49.6854	49.7	
6 C-16	9.884	9.883	0.001	1776903	47.8970	47.9	
7 C-18	11.305	11.305	0.000	1797967	49.5152	49.5	
9 C-19	11.966	11.965	0.001	1785733	49.4714	49.5	
11 C-20	12.596	12.596	0.000	1787692	54.2494	54.2	
12 C-22	13.777	13.777	0.000	1677713	49.1347	49.1	
13 C-24	14.863	14.863	0.000	1696510	48.5630	48.6	
14 C-26	15.869	15.869	0.000	1722331	49.2675	49.3	
15 C-28	16.804	16.804	0.000	1745902	49.2144	49.2	
16 C-30	17.678	17.678	0.000	1773327	50.3700	50.4	
17 C-36	20.427	20.426	0.001	1716248	49.2542	49.2	







# Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, I **SDG:** SI0230 **Lab ID :** WG157172-1 **Analytical Date:** 01/19/15 12:15

Lab File ID : AIA20228.DInstrument ID: GC10Initial Calibration Date(s): 05/20/14 15:00 05/20/14 17:22Column ID: A

Compound	RRF/Amount	RF50	CCAL RRF50	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
2 C-9	50.00000	49.69704	34931	0.010	-0.60592	20.00000	Linear
3 C-10	50.00000	49.85344	35394	0.010	-0.29313	20.00000	Linear
4 C-12	50.00000	49.57080	35392	0.010	-0.85840	20.00000	Linear
5 C-14	50.00000	49.41275	35464	0.010	-1.17450	20.00000	Linear
6 C-16	50.00000	47.86057	35511	0.010	-4.27885	20.00000	Linear
7 C-18	50.00000	49.05376	35624	0.010	-1.89249	20.00000	Linear
9 C-19	50.00000	49.21837	35532	0.010	-1.56326	20.00000	Linear
11 C-20	50.00000	53.97046	35576	0.010	7.94093	20.00000	Linear
12 C-22	50.00000	52.25002	35613	0.010	4.50004	20.00000	Linear
13 C-24	50.00000	51.01087	35606	0.010	2.02175	20.00000	Linear
14 C-26	50.00000	50.44424	35262	0.010	0.88848	20.00000	Linear
15 C-28	50.00000	49.70046	35260	0.010	-0.59908	20.00000	Linear
16 C-30	50.00000	49.81531	35079	0.010	-0.36939	20.00000	Linear
17 C-36	50.00000	51.13252	35648	0.010	2.26504	20.00000	Linear
33 Extractable TPH	700	703	35421	0.010	0.42723	20.00000	Linear
8 O-Terphenyl	20.00000	22.95087	44677	0.010	14.75434	20.00000	Linear

^{* =} Compound out of QC criteria

Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20228.D

Report Date: 21-Jan-2015 15:19

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc10.i\\GC10IA19.b\\AIA20228.D

Lab Smp Id: WG157172-1

Inj Date : 19-JAN-2015 12:15

Operator : JLP Inst ID: gc10.i

Smp Info : WG157172-1,SI0230

Misc Info: WG157172, WG157172, WG143219-9, SI0230-1

Comment :

Method : \\target_server\gg\chem\gc10.i\GC10IA19.b\tph09b.m

Meth Date: 20-Jan-2015 08:57 jprescott Quant Type: ESTD

Als bottle: 4 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: cv.sub

Subtraction File: \\target_server\gg\chem\gc10.i\\GC10IA19.b\\AIA20226.D

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF Vt Ws M Cpnd Variable	0.00100 0.03000	Dilution Factor Final Volume (L) Weight of Sample (Kg) Moisture (%) Local Compound Variable

		AMOUNTS					
					CAL-AMT	ON-COL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
	====	======	======	======	======	======	========
2 C-9	2.352	2.357	-0.005	1746554	50.0000	49.7	
3 C-10	3.618	3.659	-0.041	1769693	50.0000	49.8	
4 C-12	5.792	5.828	-0.036	1769607	50.0000	49.6	
5 C-14	7.589	7.624	-0.035	1773215	50.0000	49.4	
6 C-16	9.162	9.196	-0.034	1775568	50.0000	47.9	
7 C-18	10.572	10.606	-0.034	1781200	50.0000	49.0	
\$ 8 O-Terphenyl	10.865	10.901	-0.036	893541	20.0000	23.0	
9 C-19	11.226	11.261	-0.035	1776594	50.0000	49.2	
11 C-20	11.851	11.887	-0.036	1778820	50.0000	54.0	
12 C-22	13.024	13.060	-0.036	1780631	50.0000	52.2	
13 C-24	14.103	14.141	-0.038	1780280	50.0000	51.0	
14 C-26	15.103	15.140	-0.037	1763097	50.0000	50.4	
15 C-28	16.033	16.071	-0.038	1762987	50.0000	49.7	
16 C-30	16.901	16.940	-0.039	1753974	50.0000	49.8	
17 C-36	19.268	19.319	-0.051	1782379	50.0000	51.1	
M 33 Extractable TPH				24794599	700.000	703	







# Form 7 Calibration Verification Summary

Lab Name: Katahdin Analytical Services

**Project :** Navy Clean WE15-03-06 NWIRP Bethpage, l **SDG:** SI0230 **Lab ID :** WG157172-2 **Analytical Date:** 01/19/15 21:48

Lab File ID :AIA20244.D Instrument ID: GC10
Initial Calibration Date(s): 05/20/14 15:00 05/20/14 17:22 Column ID: A

Compound	RRF/Amount	RF20	CCAL RRF20	Min	%D/ %Drift	Max %D/ %Drift	Curve Type
2 C-9	20.00000	19.86401	34866	0.010	-0.67995	20.00000	Linear
3 C-10	20.00000	20.18051	35623	0.010	0.90253	20.00000	Linear
4 C-12	20.00000	20.13121	35815	0.010	0.65605	20.00000	Linear
5 C-14	20.00000	20.05805	35924	0.010	0.29026	20.00000	Linear
6 C-16	20.00000	20.06261	36327	0.010	0.31306	20.00000	Linear
8 C-18	20.00000	19.82876	36022	0.010	-0.85618	20.00000	Linear
10 C-19	20.00000	20.09077	36296	0.010	0.45387	20.00000	Linear
11 C-20	20.00000	19.97394	36106	0.010	-0.13032	20.00000	Linear
12 C-22	20.00000	19.82807	36089	0.010	-0.85964	20.00000	Linear
13 C-24	20.00000	19.85615	36229	0.010	-0.71923	20.00000	Linear
14 C-26	20.00000	19.72628	35901	0.010	-1.36858	20.00000	Linear
15 C-28	20.00000	19.80597	35925	0.010	-0.97015	20.00000	Linear
16 C-30	20.00000	19.62641	34242	0.010	-1.86796	20.00000	Linear
17 C-36	20.00000	21.37200	36302	0.010	6.85998	20.00000	Linear
9 O-Terphenyl	8.00000	9.28257	45111	0.010	16.03211	20.00000	Linear

^{* =} Compound out of QC criteria

Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20244.D

Report Date: 21-Jan-2015 15:19

#### Katahdin Analytical Services

Data file: \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20244.D

Lab Smp Id: WG157172-2

Inj Date : 19-JAN-2015 21:48

Operator : JLP Smp Info : WG157172-2,SI0230 Inst ID: gc10.i

Misc Info : WG157172, WG157172, WG143219-9, SI0230-1

Comment

: \\target_server\gg\chem\gc10.i\GC10IA19.b\DR009B.m Method

Meth Date: 21-Jan-2015 08:03 jprescott Quant Type: ESTD Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127.D

Als bottle: 17 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: oilcv.sub

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF Vt Ws M	0.00100 0.03000	Dilution Factor Final Volume (L) Weight of Sample (Kg) Moisture (%)
Cpnd Variable	0.00000	Local Compound Variable

						AMOUNT	rs	
						CAL-AMT	ON-COL	
Comp	ounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(ug/ml)	REVIEW CODE
====		====	======	======	======	======	======	========
:	2 C-9	2.367	2.365	0.002	697325	20.0000	19.9	
:	3 C-10	3.624	3.660	-0.036	712455	20.0000	20.2	
	4 C-12	5.794	5.826	-0.032	716309	20.0000	20.1	
!	5 C-14	7.589	7.623	-0.034	718487	20.0000	20.0	
(	5 C-16	9.160	9.194	-0.034	726531	20.0000	20.1	
	3 C-18	10.569	10.603	-0.034	720430	20.0000	19.8	
\$	9 O-Terphenyl	10.868	10.899	-0.031	360889	8.00000	9.28	
1	C-19	11.223	11.257	-0.034	725928	20.0000	20.1	
1	1 C-20	11.848	11.883	-0.035	722122	20.0000	20.0	
1:	2 C-22	13.020	13.056	-0.036	721778	20.0000	19.8	
1	3 C-24	14.099	14.136	-0.037	724584	20.0000	19.8	
1	4 C-26	15.097	15.136	-0.039	718028	20.0000	19.7	
1	5 C-28	16.027	16.066	-0.039	718508	20.0000	19.8	
1	5 C-30	16.895	16.935	-0.040	684839	20.0000	19.6	
1'	7 C-36	19.259	19.309	-0.050	726035	20.0000	21.4	
M	l Diesel Range Organic				7199232	200.000	199	
M 3	2 Oil Range Organic				1410874	40.0000	41.0(a)	



# **Raw QC Data Section**





### **Report of Analytical Results**

**Client:** 

Lab ID: WG157164-1

Client ID: Method Blank Sample

Project: SDG: SI0230

Lab File ID: AIA20237.D

Sample Date: Received Date:

Extract Date: 19-JAN-15

Extracted By: JMS

**Extraction Method:** SW846 3550 **Lab Prep Batch:** WG157164

**Analysis Date:** 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8015D

Matrix: SL % Solids: NA

**Report Date:** 21-JAN-15

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Extractable TPH C9-C36	U	3.8	mg/Kgdrywt	t 1	5	5.0	2.6	3.8
o-Terphenyl		89.5	%					

Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20237.D

Report Date: 20-Jan-2015 10:07

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20237.D

Lab Smp Id: WG157164-1 Client Smp ID: WG157164-Blank

Inj Date : 19-JAN-2015 17:38

Operator : JLP Smp Info : WG157164-1,SI0230 Inst ID: gc10.i

Misc Info: WG157172, WG157164, WG143219-9, SI0230-1

Comment

: \\target_server\gg\chem\gc10.i\GC10IA19.b\tph09b.m Method

Meth Date: 20-Jan-2015 08:57 jprescott Quant Type: ESTD Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127A.D Als bottle: 12 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: SW8015M-TPH.sub

Subtraction File: \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20229.D

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF		Dilution Factor
Vt	0.00100	Final Volume (L)
Ws	0.03000	Weight of Sample (Kg)
M	0.0000	Moisture (%)
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
					ON-COLUMN	FINAL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(mg/Kgdrywt)	REVIEW CODE
	====	======	======	======	======	======	========
\$ 8 O-Terphenyl	10.866	10.901	-0.035	697753	17.9223	0.597	







### **LCS/LCSD Recovery Report**

**LCS ID:** WG157164-2 **LCSD ID:** WG157164-3

Project: SDG: SI0230

**Report Date:** 21-JAN-15 **LCS File ID:** AIA20238.D

**Received Date: Extract Date:** 19-JAN-15

Extracted By: JMS

Extraction Method:

Extraction Method: SW846 3550 Lab Prep Batch: WG157164 LCSD File ID: AIA20239.D **Analysis Date:** 19-JAN-15

Analyst: JLP

Analysis Method: SW846 8015D

Matrix: SL % Solids: NA

	Spike	LCS	LCS	LCSD	LCSD	Conc		RPD	
Compound	Amt	Conc	<b>Rec</b> (%)	Conc	Rec (%)	Units	RPD (%)	Limit	Limits
Extractable TPH C9-C36	16.7	10.6	63.5	11.9	71.2	mg/Kgdrywt	12	50	56-124
o-Terphenyl			92.0		96.0				28-101

Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20238.D

Report Date: 20-Jan-2015 10:07

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20238.D Lab Smp Id: WG157164-2 Client Smp ID: WG157164-LCS

Inj Date : 19-JAN-2015 18:14

Operator : JLP Smp Info : WG157164-2,SI0230 Inst ID: gc10.i

Misc Info: WG157172, WG157164, WG143219-9, SI0230-1

Comment

: \\target_server\gg\chem\gc10.i\GC10IA19.b\tph09b.m Method

Meth Date: 20-Jan-2015 08:57 jprescott Quant Type: ESTD Cal Date : 20-MAY-2014 17:22 Cal File: AHE20127A.D

Als bottle: 13 Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: SW8015M-TPH.sub

QC Sample: LCS

Subtraction File: \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20229.D

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF Vt Ws M	0.00100 0.03000	Dilution Factor Final Volume (L) Weight of Sample (Kg) Moisture (%)
Cpnd Variable		Local Compound Variable

					CONCENTRA	ATIONS	
					ON-COLUMN	FINAL	
Compounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(mg/Kgdrywt)	REVIEW CODE
=======================================	====		======	======	======	======	========
\$ 8 O-Terphenyl	10.866	10.901	-0.035	717331	18.4252	0.614	
S 10 Extractable TPH C9-C36	2.317-	-19.419		11332473	317.767	10.6	



Data File: \target_server\gg\chem\gc10.i\GC10IA19.b\AIA20239.D

Report Date: 20-Jan-2015 10:07

#### Katahdin Analytical Services

Data file : \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20239.D

Lab Smp Id: WG157164-3 Client Smp ID: WG157164-LCSD

Inj Date : 19-JAN-2015 18:49

Operator : JLP Inst ID: gc10.i

Smp Info : WG157164-3,SI0230

Misc Info: WG157172, WG157164, WG143219-9, SI0230-1

Comment :

Method : \target_server\gg\chem\gc10.i\GC10IA19.b\tph09b.m

Meth Date: 20-Jan-2015 08:57 jprescott Quant Type: ESTD Cal Date: 20-MAY-2014 17:22 Cal File: AHE20127A.D

Als bottle: 14 QC Sample: LCSD

Dil Factor: 1.00000

Integrator: HP Genie Compound Sublist: SW8015M-TPH.sub

Subtraction File: \\target_server\gg\chem\gc10.i\GC10IA19.b\AIA20229.D

Target Version: 4.12 Processing Host: V200T2

Concentration Formula: Amt * DF * (Vt/Ws)*(100/(100-M)) * CpndVariable

Name	Value	Description
DF Vt Ws M		Dilution Factor Final Volume (L) Weight of Sample (Kg) Moisture (%)
Cpnd Variable		Local Compound Variable

						CONCENTRA	ATIONS	
						ON-COLUMN	FINAL	
C	ompounds	RT	EXP RT	DLT RT	RESPONSE	(ug/ml)	(mg/Kgdrywt)	REVIEW CODE
=		====	======	======	======	======	======	========
\$	8 O-Terphenyl	10.865	10.901	-0.036	747774	19.2071	0.640	
S	10 Extractable TPH C9-C36	2.317	-19.419		12704642	356.956	11.9	



# **Logbooks and Supporting Documents**

#### KATAHDIN ANALYTICAL SERVICES, INC. ORGANIC EXTRACTIONS LOG - SOIL FUEL OILS

Extraction Method: (check one)	SW846 3540 (SO	X)		SW846 354	46 (MICRO)			SW846 35	50 (SONIC.)	
Analytical Method: (check one)	SW8015M (DRO)	SW8100M (TPH)	MADEP EPH	ME DE	P 4.1.25	FLO PRO	CT ETP	ł	TX 1005	Other:
Spike ID: GC147	2, GOURS	Surrogate ID: 6	cusy		Frac. Surro	gate ID;		Othe	er:	
MeCi2 Lot#: りゃ	רׁוּ	Acetone Lot#:	D6474		n-Pentane	Lot#:		Hex	ane Lot#::	
Filter Paper Lot # (SON)	FC011630	Filter Paper Lot # (	(KD)27 (2,0(	9441	NaSO4 (Gr	anular) Lot# J	19 4904	NaS	O4 (Powder) Lo	t#: 27979003
Vial Lot#: 3633	1D	Balance ID: M	ettler &	J400	Sonicator H	lorns Tuned?	MPP MOT	6 Nitro	gen Water Bath	Temperature: 35°C
Prep Start Time: /C	00	Prep End Time:			Sox/Micro	***************************************			Micro End Time	

Date Extrected	Ext. Init.	Sample ID	Init, Wt (g)	Surr Vol. (mL)	Spike Vol. (mL)	Final Vol Pre- Frac. (mL)	Date Conc. Pre- Frac.	Conc. Init. Pre-Frac.	Tray Location	Frac.	Frac. Surr Vol. (ml.)	Final Vol. Post- Frac. (mL)	Date Conc Post-Frac.	Tray Location	Conc. Init Post-Frac.	Comments
]-19-15.	SAS	W61571U4-1	29.99	Inil	NR	j.i.	1-PT-15	K	E)						>	K305150
	1	, -2	30.00		] pul			1	3							
		3	30.04						3							
		- 7	32.25	1					4							MS 51029678
	]	7 - 5	35,04	1	1	1			EŠ				KF H	1.5		Med 7
													<u> </u>			
								· · ·						·		
فسنشد	200															<del></del>

EX-004 - Revision 2 - 10/01/2012		•
	QAEX272	0000138
· ·		

					'		_	,						Richida	THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S	IMPORTANCE.	100000000
Date Extracted	Ext. Init.	Sample ID	Init. Wt (g)	Surr Vol. (mL)	Spike Vol. (mL)	Final Vol Pre- Frac. (ml.)	Date Conc. Pre- Frac.	Conc. Init. Pre-Frac.	Tray Location	Frac. Init	Frac, Sun Vol. (ml.)	Final Vol. Post- Frac. (ml.)	Date Conc Post-Frac.	Tray Location	Conc. init Post-Frac.	Con	ıments
-19.15	TAS	510137-16	30.27	Inc	μ	14	H995	KF	εf			ļ					
	4	7-26	31-16	1					7						/		
	-	510230-1 6	36 33		Ш				1							<u> </u>	
		S10296-1B	31.88						9								
	-	-36	34.09						EID					/			
		-5 g	30.92						F0642								
_		-7 B	30.17		1				2							nslo	et, bog
		-9 B	31.15						3							WRID	+
	1	-11 B	34.17						4				/				_
		-13 B	32.89						5	1			/			4	
		-17 B	32.56						f				<del>'</del>				
		-18 6	31.44	71		100 m			7						-		
		-20B	36.14			71		$\top \uparrow$	8	_		/				·	
11	Ц	-22 B	32.83			11		11	9		<b>-</b>	/					
ş.			3796	T		11	71	1 .	AID		/	**					
			3273	$\top$	_	1	11		BI		/						
		1.28 6	37.20	11	#	11			2	-/	-+			-			<del> </del>
		_	31.29			11			3	1	$\neg +$		<del></del>		-		
1 1			32.24	-1	1	1,		<b>†</b> †						KF H	9-15		

### Katahdin Analytical Services, Inc.

GC Laboratory Instrument Runlog

Instrument: GC10 (FID)

Mothed MARER EDW	
Method: MADEP EPH DRO - 8015 Mod Standard Standard ID	
(circle) FL PRO (TPH - 8015 Mod ) Standard ID	
1171-0015 Mod	
TNRCC 1005 CT ETPH	Name and Associated Section 1989
MEDEP 4.1.25	

Amount Injected: 1 uL Column ID: 421

	unece	ed: 1 uL	Column ID: 4'21			`		*		
Date	Init.	Result	Sample	Y/I	И	Analytical		Method	Coi	mments
		File	ID ID			Workgroup				
<del>(40)</del>		$ \lambda$	few Colum	n =	44	21				
5-20-14	Ac	AUCZALIS	therape Lin	ert S	PAR	49				
1-20-14	40	AHE20118			146	143719	Dn	009B/	TPHOAB	
		<del>                                     </del>	TB	14	/	<u> </u>	<u> </u>			
1		120	TB	1 1	<u> </u>	<u> </u>	ļ			
	$\dashv \dashv$	122	FO	<u> </u>				<u> </u>		
11		123	PHC50	-   }	<del> </del>	1		<u> </u>		
	$\dashv \dashv$	124	200	17/	<del> </del>	1 7 3,			Dro /TP	<i>H</i>
	11	125	100	+ 4	-	4-2-85		<u> </u>		
	71	126	70	1 1/1	>	-9-A4		<del> </del>		····
1		127	5	1/	<del> </del> _	-4-10-2		<b></b>		·.
	77	128	IND	+#		1-5,H1	7_			
		The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa	26143143-1	1		1-6,12	-601	000		- Warney Constitution of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the l
		130	1 -2	1 7			//~H	69B		
		13/	1 -2	1/2			$\dashv$			
		1323	H3097-20L	V					117 1 /	06/
		[33]	SH 3199-2	1	1				1:2 227	500
		139	5H3Z01-2	y			_			
		135 3	H3202-2	17			$\dashv$			
	++	136 5	5H3203-2	Y			$\dashv$		***	
	- -	137 5	H3204-2	'y			十			·
<u> </u>	- -	138 3	H3256-1	y						
1-14		139	FO	Y					_	··········
.   1		<u> 140 1</u>	OHCSO	Y	L					
			herel 4	nd	_					

### Katahdin Analytical Services, Inc.

GC Laboratory Instrument Runlog

Instrument: GC10 (FID)

Method: MADEP EPH

DRO - 8015 Mod

(circle)

FL PRO

TPH - 8015 Mod

**TNRCC 1005** 

MEDEP 4.1.25

CT ETPH

PHC 50 HZ418 PHC 20 HZ419

(0 #2

Standard

MZYIL

Standard ID

Amount Injected: 1 uL

Column ID: Yと1

			COMMITTE: (C)	<u> </u>					
Date	Init.	Result	Sample	Y/N	i	nalytical	M	ethod	Comments
		File	ID		W	orkgroup			
1-17-15	<u> </u>	AIRZOZOL	310141-10 3590	N	M2-1	56934	TPH	09B	(D) 1:50
			Meclz	N				}	dank Janda
		208		7					
			F0 # Z	7					₹ ⁵ % } =
			PMC ZO	1		<u> </u>			C367
			SIGHI-12 3990						
		212	1 13	1					P 1:100
			(	4					
		214	1-2						
		215	W5156877-4						
		216	\$ -5						
			S10172-12C						_l ,S
		218	123						
		219	1-3				,		
			4 -44 +	4					7
			Mecla	N					colored samples
		222	TB	7				*	
	-	23	FO #2	7					-
\frac{1}{2}	4	V ZZ4	PHC 50	7	γ	<u>-7</u>	1		C36+07P7
	- 6	Nly	liver						
1-19-15	W	A1400225	TB		W 15	717ス	TPUC	1913	
		1 226	TB	٧,					
	$\perp \downarrow \downarrow$	777	FOTIZ	У					
	$-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	778	PUCSO	Y		-			
		229	TB	X					
7		1 230	Wy 156877-1PA	У	<u> </u>	-	1		

### Katahdin Analytical Services, Inc.

### GC Laboratory Instrument Runlog

Instrument: GC10 (FID)

Method: MADEP EPH

(circle) FL PRO

TNRCC 1005

MEDEP 4.1.25

DRO -	2016	. Nod
<u> </u>		/ WIOG

TPH - 8015 Mod

CT ETPH

PN PN

Standard Standard ID
PUC 50 HZ418
PHC Z0 HZ419
CO# Z HZ410

Amount Injected: 1 uL Column ID: 4 > 1

	Г			<u> </u>				
Date	Inít.	Result	Sample	Y/N	Analytical	Method	Comments	
		File	ID		Workgroup			
1-19-15	71	ALA20231	S10172-14RA	Y	W6157172	TPHOB		
	4	232	510141-9 DC				1:100	
		233	-100L				1:50	
		234	J-13DL	1			1400	
		235	1-13DL MOCYZ GC1485	N			heavy Studen	
		236	GC1485	7			Soke	
		237	WUS71641 3560	7		/DROOG		
	1_1	238	2,			1		
		239						
		240	5102301					
			510301-1	4				
		242	TB	7				
		243	FOXZ	7				
		244	PHC ZO	4	-Z	AROO	18	
		245	510301-2 3550	7				
		244.	\$10137-1DL   \$\bullet -ZOC	1)		DR009B	15 @ 11 100/500	
4		1 247	V -20C	2		ì	15 PM 1	
1-2015			1-06201	7				
		24A	1 -3DL	7			1:10 PULLET 100	
		250	-3DL -5 -7	N			1:10 P 1:1/1:2 100/1000	
		251	-7	7			Dr.S	
		262	9	7			P 1.5	
		253	-11 + -13 +	4				
		254	V -131 V	4			1	
		255 N	neclz	N			heavy samply	
<u> </u>	ے ا	Y 256-	176	N	4		3 7 7 7	

# **METALS DATA**



### METALS SAMPLE FLAGGING

FLAG	SPECIFIED MEANING
E	The reported value is estimated because of the presence of interference (as indicated by serial dilution).
N	The pre-digestion spiked sample recovery is not within control limits.
*	The duplicate sample analysis relative percent difference (RPD) is not within control limits.
В	Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
А	The post-digestion spiked sample recovery is not within control limits.
•	Analytical run QC sample (e.g. ICV, CCV, ICB, CCB, ICSA, ICSAB) not within control limits.
U	The analyte was not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.
	Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
J	The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ) (previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).

#### COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Katahdin Analytical Services

SDG Name: SI0230 SOW No. SW846

Client Field ID	Lab Sample ID
IDWGW-3178-011315	SI0230-002
IDWGW-EG332-011315	SI0230-004
IDWGW-EG332-011315	S10230-004P
IDWGW-EG332-011315	SI0230-004S
IDWGW-F0A37-011315	SI0230-003
IDWS-0312-011315	SI0230-001T

Were ICP interelement corrections applied	? Yes
Were ICP background corrections applied	? Yes
If yes - were raw data generated bef	ore
application of background correction	ns? No

#### **Comments:**

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the case narrative. Release of the data contained in this hardcopy data package and in the computer-readable data submitted has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: MUAN MUM Name: Heather Manz

Date: 1-30-15 Title: Analyst 1

**COVER PAGE - IN** 

# 1 INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: IDWS-0312-011315

Matrix: WATER SDG Name: SI0230

Percent Solids: 0.00 Lab Sample ID: SI0230-001T

 $\textbf{Concentration Units:} \ ug/L$ 

							ADJUSTED		
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7440-38-2	ARSENIC, TCLP	25	U		P	1	40	7.0	25
7440-39-3	BARIUM, TCLP	678			P	1	25	1.2	15
7440-43-9	CADMIUM, TCLP	15	U		P	1	25	0.25	15
7440-47-3	CHROMIUM, TCLP	7.1	J		P	1	50	1.8	20
7439-92-1	LEAD, TCLP	20	U		P	1	25	5.5	20
7439-97-6	MERCURY, TCLP	0.10	U		CV	1	0.20	0.013	0.10
7782-49-2	SELENIUM, TCLP	35	U		P	1	50	12.	35
7440-22-4	SILVER, TCLP	20	U		P	1	50	1.4	20

#### 1

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-3178-011315

Matrix: WATERSDG Name:SI0230Percent Solids: 0.00Lab Sample ID:SI0230-002

**Concentration Units :** ug/L

							AL	JUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	28600			P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	5.0	U		P	1	8.0	1.3	5.0
7440-38-2	ARSENIC, TOTAL	7.7	J		P	1	8.0	1.4	5.0
7440-39-3	BARIUM, TOTAL	364			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	1.85	J		P	1	5.0	0.10	0.50
7440-43-9	CADMIUM, TOTAL	0.095	J		P	1	5.0	0.049	3.0
7440-70-2	CALCIUM, TOTAL	6780			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	28.2			P	1	10	0.36	4.0
7440-48-4	COBALT, TOTAL	14.2			P	1	10	0.24	4.0
7440-50-8	COPPER, TOTAL	121			P	1	25	0.63	10
7439-89-6	IRON, TOTAL	10100			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	26.1			P	1	5.0	1.1	4.0
7439-95-4	MAGNESIUM, TOTAL	4730			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	166			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.046	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	21.0			P	1	10	0.28	4.0
7440-09-7	POTASSIUM, TOTAL	2920			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	7.0	U		P	1	10	2.4	7.0
7440-22-4	SILVER, TOTAL	4.0	U		P	1	10	0.27	4.0
7440-23-5	SODIUM, TOTAL	27200			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	5.0	U		P	1	15	1.1	5.0
7440-62-2	VANADIUM, TOTAL	27.9			P	1	10	0.23	4.0
7440-66-6	ZINC, TOTAL	56.4			P	1	20	0.72	10

### 1 INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-F0A37-011315

Matrix: WATER SI0230 **SDG Name:** 

Percent Solids: 0.00 Lab Sample ID: SI0230-003

 $\textbf{Concentration Units:} \ ug/L$ 

							Al	DJUSTED	
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD
7429-90-5	ALUMINUM, TOTAL	68100			P	1	300	15.	100
7440-36-0	ANTIMONY, TOTAL	5.0	U		P	1	8.0	1.3	5.0
7440-38-2	ARSENIC, TOTAL	23.6			P	1	8.0	1.4	5.0
7440-39-3	BARIUM, TOTAL	236			P	1	5.0	0.23	3.0
7440-41-7	BERYLLIUM, TOTAL	6.25			P	1	5.0	0.10	0.50
7440-43-9	CADMIUM, TOTAL	0.081	J		P	1	5.0	0.049	3.0
7440-70-2	CALCIUM, TOTAL	20700			P	1	100	11.	80
7440-47-3	CHROMIUM, TOTAL	90.6			P	1	10	0.36	4.0
7440-48-4	COBALT, TOTAL	34.4			P	1	10	0.24	4.0
7440-50-8	COPPER, TOTAL	98.1			P	1	25	0.63	10
7439-89-6	IRON, TOTAL	36700			P	1	100	5.4	80
7439-92-1	LEAD, TOTAL	90.0			P	1	5.0	1.1	4.0
7439-95-4	MAGNESIUM, TOTAL	11000			P	1	100	7.8	80
7439-96-5	MANGANESE, TOTAL	548			P	1	5.0	1.1	4.0
7439-97-6	MERCURY, TOTAL	0.064	J		CV	1	0.20	0.013	0.10
7440-02-0	NICKEL, TOTAL	53.3			P	1	10	0.28	4.0
7440-09-7	POTASSIUM, TOTAL	5600			P	1	1000	41.	500
7782-49-2	SELENIUM, TOTAL	7.0	U		P	1	10	2.4	7.0
7440-22-4	SILVER, TOTAL	4.0	U		P	1	10	0.27	4.0
7440-23-5	SODIUM, TOTAL	71900			P	1	1000	24.	500
7440-28-0	THALLIUM, TOTAL	5.0	U		P	1	15	1.1	5.0
7440-62-2	VANADIUM, TOTAL	77.8			P	1	10	0.23	4.0
7440-66-6	ZINC, TOTAL	226			P	1	20	0.72	10

### 1 INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315

Matrix: WATER SI0230 SDG Name:

Percent Solids: 0.00 Lab Sample ID: SI0230-004

 $\textbf{Concentration Units:} \ ug/L$ 

							ADJUSTED			
CAS No.	Analyte	Concentration	C	Q	M	DF	LOQ	MDL	LOD	
7429-90-5	ALUMINUM, TOTAL	10100		N	P	1	300	15.	100	
7440-36-0	ANTIMONY, TOTAL	5.0	U	N	P	1	8.0	1.3	5.0	
7440-38-2	ARSENIC, TOTAL	2.8	J		P	1	8.0	1.4	5.0	
7440-39-3	BARIUM, TOTAL	45.9			P	1	5.0	0.23	3.0	
7440-41-7	BERYLLIUM, TOTAL	0.60	J		P	1	5.0	0.10	0.50	
7440-43-9	CADMIUM, TOTAL	0.070	J		P	1	5.0	0.049	3.0	
7440-70-2	CALCIUM, TOTAL	4500		N	P	1	100	11.	80	
7440-47-3	CHROMIUM, TOTAL	13.2			P	1	10	0.36	4.0	
7440-48-4	COBALT, TOTAL	5.35	J		P	1	10	0.24	4.0	
7440-50-8	COPPER, TOTAL	16.9	J		P	1	25	0.63	10	
7439-89-6	IRON, TOTAL	7340		N	P	1	100	5.4	80	
7439-92-1	LEAD, TOTAL	14.5			P	1	5.0	1.1	4.0	
7439-95-4	MAGNESIUM, TOTAL	2420		N	P	1	100	7.8	80	
7439-96-5	MANGANESE, TOTAL	98.6			P	1	5.0	1.1	4.0	
7439-97-6	MERCURY, TOTAL	0.014	J		CV	1	0.20	0.013	0.10	
7440-02-0	NICKEL, TOTAL	11.6			P	1	10	0.28	4.0	
7440-09-7	POTASSIUM, TOTAL	1610			P	1	1000	41.	500	
7782-49-2	SELENIUM, TOTAL	7.0	U		P	1	10	2.4	7.0	
7440-22-4	SILVER, TOTAL	4.0	U		P	1	10	0.27	4.0	
7440-23-5	SODIUM, TOTAL	15800			P	1	1000	24.	500	
7440-28-0	THALLIUM, TOTAL	5.0	U		P	1	15	1.1	5.0	
7440-62-2	VANADIUM, TOTAL	13.3			P	1	10	0.23	4.0	
7440-66-6	ZINC, TOTAL	68.4			P	1	20	0.72	10	

# **QC Summary Section**

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: HIA07A	Jan (	07, 2015	16:56	File: HIA07A	Jan	07, 2015	17:02
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	6.16	102.7	MERCURY	5.0	5.14	102.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: HIA07A	Jan 0	7, 2015	17:26	File: HIA07A	Jan (	07, 2015	17:52
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.33	106.6	MERCURY	5.0	5.24	104.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: HIA14A	Jan 1	14, 2015	13:27	File: HIA14A	Jan	14, 2015	13:34
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	6.00	100.0	MERCURY	5.0	4.89	97.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: HIA14A	Jan 1	14, 2015	13:57	File: HIA14A	Jan	14, 2015	14:24
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.02	100.4	MERCURY	5.0	4.97	99.4

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: HIA14A	Jan 1	14, 2015	14:53	File: HIA14A	Jan	14, 2015	15:17
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	5.0	5.16	103.2	MERCURY	5.0	4.74	94.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

**SAMPLE: CCV** 

File: HIA14A	Jan	Jan 14, 2015				
Analyte	True	Found	%R (1)			
MERCURY	5.0	5.05	101.0			

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: HIA16A	Jan 1	16, 2015	14:02	File: HIA16A	Jan	16, 2015	14:28
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	6.21	103.5	MERCURY	5.0	5.08	101.6

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: IIA08A	Jan	08, 2015	12:07	File: IIA08A	Jan	08, 2015	12:53
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10030.00	100.3	ALUMINUM	12500.0	11890.00	95.1
ARSENIC	400.0	400.00	100.0	ARSENIC	500.0	490.90	98.2
BARIUM	400.0	409.00	102.3	BARIUM	500.0	491.90	98.4
CADMIUM	400.0	412.00	103.0	CADMIUM	500.0	493.10	98.6
CALCIUM	10000.0	10130.00	101.3	CALCIUM	12500.0	12320.00	98.6
CHROMIUM	400.0	412.30	103.1	CHROMIUM	500.0	490.10	98.0
IRON	10000.0	9926.00	99.3	IRON	12500.0	12020.00	96.2
LEAD	400.0	420.40	105.1	LEAD	500.0	496.60	99.3
MAGNESIUM	10000.0	10280.00	102.8	MAGNESIUM	12500.0	12730.00	101.8
SELENIUM	400.0	405.20	101.3	SELENIUM	500.0	487.80	97.6
SILVER	400.0	412.80	103.2	SILVER	500.0	492.40	98.5

(1) Control Limits: Mercury 80-120; Other Metals 90-110

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

**SAMPLE: CCV** 

File: IIA08A	Jan	Jan 08, 2015			
Analyte	True	Found	%R (1)		
ALUMINUM	12500.0	11940.00	95.5		
ARSENIC	500.0	485.70	97.1		
BARIUM	500.0	494.00	98.8		
CADMIUM	500.0	490.20	98.0		
CALCIUM	12500.0	12290.00	98.3		
CHROMIUM	500.0	489.10	97.8		
IRON	12500.0	12030.00	96.2		
LEAD	500.0	502.10	100.4		
MAGNESIUM	12500.0	12770.00	102.2		
SELENIUM	500.0	486.20	97.2		
SILVER	500.0	494.20	98.8		

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: IIA15A	Jan	15, 2015	16:39	File: IIA15A	Jan	15, 2015	17:23
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10240.00	102.4	ALUMINUM	12500.0	12780.00	102.2
ANTIMONY	400.0	407.10	101.8	ANTIMONY	500.0	503.60	100.7
BARIUM	400.0	410.00	102.5	BARIUM	500.0	506.90	101.4
BERYLLIUM	400.0	415.00	103.8	BERYLLIUM	500.0	512.80	102.6
CADMIUM	400.0	409.40	102.3	CADMIUM	500.0	502.70	100.5
CALCIUM	10000.0	10050.00	100.5	CALCIUM	12500.0	12400.00	99.2
CHROMIUM	400.0	408.40	102.1	CHROMIUM	500.0	506.30	101.3
COPPER	400.0	405.90	101.5	COPPER	500.0	508.70	101.7
IRON	10000.0	10070.00	100.7	IRON	12500.0	12700.00	101.6
MAGNESIUM	10000.0	10230.00	102.3	MAGNESIUM	12500.0	12750.00	102.0
MANGANESE	400.0	409.70	102.4	MANGANESE	500.0	504.30	100.9
NICKEL	400.0	414.50	103.6	NICKEL	500.0	507.50	101.5
POTASSIUM	13600.0	13620.00	100.1	POTASSIUM	12500.0	12500.00	100.0
SELENIUM	400.0	405.70	101.4	SELENIUM	500.0	500.70	100.1
SILVER	400.0	408.40	102.1	SILVER	500.0	508.10	101.6

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: IIA15A	Jan	15, 2015	18:24	File: IIA15A	Jan	15, 2015	19:24
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12430.00	99.4	ALUMINUM	12500.0	12670.00	101.4
ANTIMONY	500.0	495.00	99.0	ANTIMONY	500.0	494.90	99.0
BARIUM	500.0	506.40	101.3	BARIUM	500.0	505.90	101.2
BERYLLIUM	500.0	498.10	99.6	BERYLLIUM	500.0	501.40	100.3
CADMIUM	500.0	525.40	105.1	CADMIUM	500.0	535.30	107.1
CALCIUM	12500.0	11720.00	93.8	CALCIUM	12500.0	11330.00	90.6
CHROMIUM	500.0	487.40	97.5	CHROMIUM	500.0	477.90	95.6
COPPER	500.0	484.00	96.8	COPPER	500.0	478.70	95.7
IRON	12500.0	12220.00	97.8	IRON	12500.0	12200.00	97.6
MAGNESIUM	12500.0	13120.00	105.0	MAGNESIUM	12500.0	13320.00	106.6
MANGANESE	500.0	479.40	95.9	MANGANESE	500.0	468.50	93.7
NICKEL	500.0	512.20	102.4	NICKEL	500.0	513.30	102.7
POTASSIUM	12500.0	12050.00	96.4	POTASSIUM	12500.0	12060.00	96.5
SELENIUM	500.0	519.80	104.0	SELENIUM	500.0	534.40	106.9
SILVER	500.0	462.10	92.4	SILVER	500.0	449.10	89.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

**SAMPLE: CCV** 

File: IIA15A	Jan	19:44	
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12590.00	100.7
ANTIMONY	500.0	493.00	98.6
BARIUM	500.0	505.10	101.0
BERYLLIUM	500.0	497.80	99.6
CADMIUM	500.0	539.30	107.9
CALCIUM	12500.0	11130.00	89.0
CHROMIUM	500.0	478.80	95.8
COPPER	500.0	477.40	95.5
IRON	12500.0	12130.00	97.0
MAGNESIUM	12500.0	13360.00	106.9
MANGANESE	500.0	464.70	92.9
NICKEL	500.0	514.30	102.9
POTASSIUM	12500.0	11950.00	95.6
SELENIUM	500.0	542.20	108.4
SILVER	500.0	445.00	89.0●

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICV SAMPLE: CCV

File: IIA22B	Jan 22, 2015		16:59	File: IIA22B	Jan 22, 2015		17:43
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10090.00	100.9	ALUMINUM	12500.0	12520.00	100.2
ARSENIC	400.0	399.70	99.9	ARSENIC	500.0	500.30	100.1
BARIUM	400.0	413.60	103.4	BARIUM	500.0	507.80	101.6
CADMIUM	400.0	409.60	102.4	CADMIUM	500.0	502.50	100.5
CALCIUM	10000.0	10180.00	101.8	CALCIUM	12500.0	12530.00	100.2
CHROMIUM	400.0	414.10	103.5	CHROMIUM	500.0	509.70	101.9
COBALT	400.0	413.80	103.5	COBALT	500.0	510.60	102.1
IRON	10000.0	10140.00	101.4	IRON	12500.0	12720.00	101.8
LEAD	400.0	418.10	104.5	LEAD	500.0	504.00	100.8
MAGNESIUM	10000.0	10230.00	102.3	MAGNESIUM	12500.0	12700.00	101.6
SELENIUM	400.0	411.00	102.8	SELENIUM	500.0	498.40	99.7
SILVER	400.0	410.60	102.6	SILVER	500.0	503.50	100.7
SODIUM	10000.0	10150.00	101.5	SODIUM	12500.0	12590.00	100.7
THALLIUM	400.0	427.90	107.0	THALLIUM	500.0	518.40	103.7
VANADIUM	400.0	413.00	103.3	VANADIUM	500.0	500.20	100.0
ZINC	400.0	411.90	103.0	ZINC	500.0	504.90	101.0

### 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: IIA22B	ile: IIA22B Jan 22, 2015		18:44	File: IIA22B	Jan	19:45	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12470.00	99.8	ALUMINUM	12500.0	12550.00	100.4
ARSENIC	500.0	502.10	100.4	ARSENIC	500.0	501.40	100.3
BARIUM	500.0	507.60	101.5	BARIUM	500.0	510.40	102.1
CADMIUM	500.0	503.80	100.8	CADMIUM	500.0	503.40	100.7
CALCIUM	12500.0	12520.00	100.2	CALCIUM	12500.0	12510.00	100.1
CHROMIUM	500.0	510.90	102.2	CHROMIUM	500.0	519.00	103.8
COBALT	500.0	513.10	102.6	COBALT	500.0	515.60	103.1
IRON	12500.0	12700.00	101.6	IRON	12500.0	12790.00	102.3
LEAD	500.0	505.60	101.1	LEAD	500.0	504.90	101.0
MAGNESIUM	12500.0	12650.00	101.2	MAGNESIUM	12500.0	12640.00	101.1
SELENIUM	500.0	500.20	100.0	SELENIUM	500.0	504.50	100.9
SILVER	500.0	505.20	101.0	SILVER	500.0	509.40	101.9
SODIUM	12500.0	12600.00	100.8	SODIUM	12500.0	12650.00	101.2
THALLIUM	500.0	520.50	104.1	THALLIUM	500.0	522.40	104.5
VANADIUM	500.0	503.60	100.7	VANADIUM	500.0	511.50	102.3
ZINC	500.0	506.60	101.3	ZINC	500.0	509.20	101.8

(1) Control Limits: Mercury 80-120; Other Metals 90-110

### 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCV SAMPLE: CCV

File: IIA22B	:: IIA22B Jan 22, 2015		20:45	File: IIA22B	Jan	21:44	
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12550.00	100.4	ALUMINUM	12500.0	12590.00	100.7
ARSENIC	500.0	485.10	97.0	ARSENIC	500.0	477.90	95.6
BARIUM	500.0	506.70	101.3	BARIUM	500.0	507.10	101.4
CADMIUM	500.0	515.00	103.0	CADMIUM	500.0	522.40	104.5
CALCIUM	12500.0	12930.00	103.4	CALCIUM	12500.0	13200.00	105.6
CHROMIUM	500.0	486.80	97.4	CHROMIUM	500.0	480.30	96.1
COBALT	500.0	490.70	98.1	COBALT	500.0	482.00	96.4
IRON	12500.0	12170.00	97.4	IRON	12500.0	11960.00	95.7
LEAD	500.0	520.20	104.0	LEAD	500.0	530.40	106.1
MAGNESIUM	12500.0	12800.00	102.4	MAGNESIUM	12500.0	12890.00	103.1
SELENIUM	500.0	464.50	92.9	SELENIUM	500.0	450.50	90.1
SILVER	500.0	508.90	101.8	SILVER	500.0	510.50	102.1
SODIUM	12500.0	12770.00	102.2	SODIUM	12500.0	12750.00	102.0
THALLIUM	500.0	488.50	97.7	THALLIUM	500.0	475.70	95.1
VANADIUM	500.0	506.30	101.3	VANADIUM	500.0	509.90	102.0
ZINC	500.0	486.10	97.2	ZINC	500.0	479.50	95.9

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: HIA07A	Jan 07, 2015		17:00
Analyte	TRUE	FOUND	% R
MERCURY	0.2	0.22	110.0

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: HIA14A	Jan	14, 2015	13:32	
Analyte	TRUE	FOUND	% R	
MERCURY	0.2	0.21	105.0	

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: HIA16A	Jan 16, 2015		14:06
Analyte	TRUE	FOUND	% R
MERCURY	0.2	0.18	90.0

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: IIA08A	Jan	Jan 08, 2015		
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	306.00	102.0	
ARSENIC	8.0	7.87	98.4	
BARIUM	5.0	5.29	105.8	
CADMIUM	5.0	4.99	99.8	
CALCIUM	100.0	98.65	98.7	
CHROMIUM	10.0	10.22	102.2	
IRON	100.0	94.42	94.4	
LEAD	5.0	5.39	107.8	
MAGNESIUM	100.0	106.40	106.4	
SELENIUM	10.0	9.32	93.2	
SILVER	10.0	10.89	108.9	

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: IIA15A	Jan	15, 2015	16:51
Analyte	TRUE	FOUND	% R
ALUMINUM	300.0	318.60	106.2
ANTIMONY	8.0	8.37	104.6
BARIUM	5.0	5.48	109.6
BERYLLIUM	5.0	5.19	103.8
CADMIUM	5.0	5.14	102.8
CALCIUM	100.0	103.10	103.1
CHROMIUM	10.0	10.28	102.8
COPPER	25.0	26.98	107.9
IRON	100.0	102.50	102.5
MAGNESIUM	100.0	106.70	106.7
MANGANESE	5.0	4.64	92.8
NICKEL	10.0	10.60	106.0
POTASSIUM	1000.0	1037.00	103.7
SELENIUM	10.0	8.54	85.4
SILVER	10.0	10.78	107.8

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

File: IIA22B	Jan	Jan 22, 2015		
Analyte	TRUE	FOUND	% R	
ALUMINUM	300.0	319.20	106.4	
ARSENIC	8.0	8.73	109.1	
BARIUM	5.0	4.84	96.8	
CADMIUM	5.0	4.96	99.2	
CALCIUM	100.0	100.70	100.7	
CHROMIUM	10.0	10.16	101.6	
COBALT	10.0	10.45	104.5	
IRON	100.0	101.50	101.5	
LEAD	5.0	4.73	94.6	
MAGNESIUM	100.0	109.70	109.7	
SELENIUM	10.0	10.29	102.9	
SILVER	10.0	10.62	106.2	
SODIUM	1000.0	1052.00	105.2	
THALLIUM	15.0	17.17	114.5	
VANADIUM	10.0	9.98	99.8	
ZINC	20.0	20.53	102.6	

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB		<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB	
File: HIA07A	Jan 07, 2015	16:58	File: HIA07A	Jan 07, 2015	17:04	File: HIA07A	Jan 07, 2015	17:28
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
MERCURY	0.033	U	MERCURY	0.033	U	MERCURY	0.033	U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: CCB

File: HIA07A Jan 07, 2015 17:54

Analyte Result C

MERCURY 0.039 J

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB		<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB	
File: HIA14A	Jan 14, 2015	13:29	File: HIA14A	Jan 14, 2015	13:36	File: HIA14A	Jan 14, 2015	13:59
Analyte	Result	С	Analyte	Result	C	Analyte	Result	C
MERCURY	0.033	U	MERCURY	0.033	U	MERCURY	0.033	U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB	
File: HIA14A	Jan 14, 2015	14:27	File: HIA14A	Jan 14, 2015	14:55	File: HIA14A	Jan 14, 2015	15:19
Analyte	Result	C	Analyte	Result	С	Analyte	Result	С
MERCURY	0.033	U	MERCURY	0.033	U	MERCURY	0.033	U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

**SAMPLE: CCB** 

File: HIA14A Jan 14, 2015 15:39

Analyte	Result C
MERCURY	0.033 U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB	SAMPLE:	CCI

File: HIA16A	Jan 16, 2015	14:04	File: HIA16A	Jan 16, 2015	14:30
--------------	--------------	-------	--------------	--------------	-------

Analyte	Result	C	Analyte	Result	C
MERCURY	0.033	U	MERCURY	0.033	U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB		<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB	
File: IIA08A	Jan 08, 2015	12:14	File: IIA08A	Jan 08, 2015	12:58	File: IIA08A	Jan 08, 2015	13:57
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	17.000	U	ALUMINUM	17.000	U	ALUMINUM	17.000	U
ARSENIC	1.500	U	ARSENIC	2.351	J	ARSENIC	1.500	U
BARIUM	0.310	U	BARIUM	0.310	U	BARIUM	0.310	U
CADMIUM	0.074	U	CADMIUM	0.125	J	CADMIUM	0.074	U
CALCIUM	8.700	U	CALCIUM	8.700	U	CALCIUM	8.700	U
CHROMIUM	0.410	U	CHROMIUM	0.410	U	CHROMIUM	0.410	U
IRON	4.000	U	IRON	4.000	U	IRON	4.000	U
LEAD	1.000	U	LEAD	1.000	U	LEAD	2.543	J
MAGNESIUM	7.700	U	MAGNESIUM	18.940	J	MAGNESIUM	7.700	U
SELENIUM	2.600	U	SELENIUM	2.600	U	SELENIUM	2.600	U
SILVER	0.540	U	SILVER	0.540	U	SILVER	0.540	U

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB		<b>SAMPLE:</b>	CCB		SAMPLE: CCB	
File: IIA15A	Jan 15, 2015	16:46	File: IIA15A	Jan 15, 2015	17:28	File: IIA15A Jan 15, 2015 18	8:29
Analyte	Result	C	Analyte	Result	C	Analyte Result (	С
ALUMINUM	17.000	U	ALUMINUM	17.000	U	ALUMINUM 17.000 U	IJ
ANTIMONY	1.600	U	ANTIMONY	1.600	U	ANTIMONY 1.600 U	IJ
BARIUM	0.310	U	BARIUM	0.310	U	BARIUM 0.564 J	Г
BERYLLIUM	0.095	U	BERYLLIUM	-0.103	U	BERYLLIUM 0.166 J	Г
CADMIUM	0.074	U	CADMIUM	0.110	J	CADMIUM 0.074 U	IJ
CALCIUM	8.700	U	CALCIUM	8.700	U	CALCIUM 8.700 U	IJ
CHROMIUM	0.410	U	CHROMIUM	0.410	U	CHROMIUM 0.410 U	IJ
COPPER	0.800	U	COPPER	0.800	U	COPPER 0.800 U	IJ
IRON	4.000	U	IRON	4.000	U	IRON 4.000 U	IJ
MAGNESIUM	7.700	U	MAGNESIUM	8.256	J	MAGNESIUM 7.700 U	IJ
MANGANESE	0.560	U	MANGANESE	0.560	U	MANGANESE 0.560 U	IJ
NICKEL	0.600	U	NICKEL	0.600	U	NICKEL 0.600 U	IJ
POTASSIUM	64.000	U	POTASSIUM	64.000	U	POTASSIUM 64.000 U	IJ
SELENIUM	2.600	U	SELENIUM	3.042	J	SELENIUM 2.600 U	IJ
SILVER	0.540	U	SILVER	0.540	U	SILVER 0.540 U	IJ

Lab Name: Katahdin Analytical Services SDG Name: SI0230

File: IIA15A

Concentration Units: ug/L

Jan 15, 2015 19:49

4.258 J

7.700 U

0.560 U

0.600 U

64.000 U

2.600 U

0.540 U

<b>SAMPLE:</b>	CCB	SAMPLE:	CCF

Jan 15, 2015 19:29

5.263 J

7.700 U

0.560 U

0.600 U

64.000 U

2.600 U

0.540 U

File: IIA15A

**IRON** 

MAGNESIUM

MANGANESE

**POTASSIUM** 

**SELENIUM** 

**SILVER** 

**NICKEL** 

lyte	Result	C	Analyte	Result	C
JMINUM	17.000	U	ALUMINUM	17.000	ι
ΓΙΜΟΝΥ	1.600	U	ANTIMONY	1.600	U
RIUM	0.601	J	BARIUM	0.605	J
RYLLIUM	0.185	J	BERYLLIUM	0.095	Į
DMIUM	0.083	J	CADMIUM	0.178	J
LCIUM	8.700	U	CALCIUM	8.700	Į
ROMIUM	0.410	U	CHROMIUM	0.410	J
PPER	0.800	U	COPPER	0.800	J

**IRON** 

MAGNESIUM

**MANGANESE** 

**POTASSIUM** 

**SELENIUM** 

SILVER

**NICKEL** 

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICB		<b>SAMPLE:</b>	CCB		SAMPLE: CCB	
File: IIA22B	Jan 22, 2015	17:06	File: IIA22B	Jan 22, 2015	17:48	File: IIA22B Jan 22, 2015 18:	:49
Analyte	Result	C	Analyte	Result	C	Analyte Result C	
ALUMINUM	17.000	U	ALUMINUM	17.000	U	ALUMINUM 17.000 U	
ARSENIC	1.500	U	ARSENIC	3.207	J	ARSENIC 3.078 J	
BARIUM	0.310	U	BARIUM	0.310	U	BARIUM 0.310 U	
CADMIUM	0.074	U	CADMIUM	0.074	U	CADMIUM 0.120 J	
CALCIUM	-9.463	U	CALCIUM	8.700	U	CALCIUM 8.700 U	
CHROMIUM	0.410	U	CHROMIUM	0.410	U	CHROMIUM 0.410 U	
COBALT	0.330	U	COBALT	0.330	U	COBALT 0.330 U	
IRON	4.000	U	IRON	4.984	J	IRON 4.000 U	
LEAD	1.000	U	LEAD	1.000	U	LEAD 1.000 U	
MAGNESIUM	7.700	U	MAGNESIUM	8.834	J	MAGNESIUM 7.700 U	
SELENIUM	2.600	U	SELENIUM	2.600	U	SELENIUM 3.439 J	
SILVER	0.540	U	SILVER	0.540	U	SILVER 0.540 U	
SODIUM	33.000	U	SODIUM	33.000	U	SODIUM 33.000 U	
THALLIUM	1.100	U	THALLIUM	1.100	U	THALLIUM 1.100 U	
VANADIUM	0.410	U	VANADIUM	0.410	U	VANADIUM 0.410 U	
ZINC	0.450	U	ZINC	0.450	U	ZINC 0.450 U	

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB		<b>SAMPLE:</b>	CCB	
File: IIA22B	Jan 22, 2015	19:50	File: IIA22B	Jan 22, 2015	20:50	File: IIA22B	Jan 22, 2015	21:49
Analyte	Result	C	Analyte	Result	C	Analyte	Result	C
ALUMINUM	17.000	U	ALUMINUM	17.000	U	ALUMINUM	17.000	U
ARSENIC	1.500	U	ARSENIC	1.899	J	ARSENIC	1.854	J
BARIUM	0.310	U	BARIUM	0.315	J	BARIUM	0.446	J
CADMIUM	0.074	J	CADMIUM	0.148	J	CADMIUM	0.113	J
CALCIUM	8.977	J	CALCIUM	13.160	J	CALCIUM	9.689	J
CHROMIUM	0.410	U	CHROMIUM	0.410	U	CHROMIUM	0.410	U
COBALT	0.330	U	COBALT	0.330	U	COBALT	0.330	U
IRON	7.086	J	IRON	4.000	U	IRON	9.250	J
LEAD	1.000	U	LEAD	1.000	U	LEAD	1.000	U
MAGNESIUM	8.093	J	MAGNESIUM	7.700	U	MAGNESIUM	7.700	U
SELENIUM	2.600	U	SELENIUM	2.600	U	SELENIUM	3.368	J
SILVER	0.540	U	SILVER	0.540	U	SILVER	0.540	U
SODIUM	35.160	J	SODIUM	39.770	J	SODIUM	96.860	J
THALLIUM	1.368	J	THALLIUM	2.189	J	THALLIUM	1.100	U
VANADIUM	0.410	U	VANADIUM	0.410	U	VANADIUM	0.410	U
ZINC	0.450	U	ZINC	0.450	U	ZINC	0.450	U

Lab Name: Katahdin Analytical Services Sample ID: PBT1222A

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA07ICW2

Analyte	RESULT	С	
ARSENIC	25	U	
BARIUM	70.4	В	
CADMIUM	15	U	
CHROMIUM	20	U	
LEAD	6.2	J	
MERCURY	0.10	U	
SELENIUM	35	U	
SILVER	1.9	J	

Lab Name: Katahdin Analytical Services Sample ID: PBWIA07HGW1

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA07HGW1

Analyte	RESULT	C	
MERCURY	0.10	U	

**Lab Name: Katahdin Analytical Services** Sample ID: PBWIA07ICW2

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA07ICW2

Analyte	RESULT	С	
ARSENIC	5.0	U	
BARIUM	3.0	U	
CADMIUM	3.0	U	
CHROMIUM	4.0	U	
LEAD	4.0	U	
SELENIUM	7.0	U	
SILVER	4.0	U	

**Lab Name: Katahdin Analytical Services** Sample ID: PBWIA14HGW2

Matrix: WATER SDG Name: SI0230

**QC Batch ID:** IA14HGW2

Analyte	RESULT	C	
MERCURY	0.10	U	

Lab Name: Katahdin Analytical Services Sample ID: PBWIA14ICW2

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA14ICW2

Analyte	RESULT	C	
ALUMINUM	100	U	
ANTIMONY	5.0	U	
ARSENIC	5.0	U	
BARIUM	0.27	J	
BERYLLIUM	0.50	U	
CADMIUM	3.0	U	
CALCIUM	80	U	
CHROMIUM	4.0	U	
COBALT	4.0	U	
COPPER	10	U	
IRON	80	U	
LEAD	4.0	U	
MAGNESIUM	80	U	
MANGANESE	4.0	U	
NICKEL	4.0	U	
POTASSIUM	500	U	
SELENIUM	7.0	U	
SILVER	4.0	U	
SODIUM	88	J	
THALLIUM	5.0	U	
VANADIUM	4.0	U	
ZINC	1.4	J	

Lab Name: Katahdin Analytical Services Sample ID: PBWIA16HGW1

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA16HGW1

Analyte	RESULT	C	
MERCURY	0.10	U	

**Lab Name: Katahdin Analytical Services** Sample ID: PBWIA16ICW1

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA16ICW1

Analyte	RESULT	C	
ARSENIC	5.0	U	
BARIUM	0.76	J	
CADMIUM	3.0	U	
CHROMIUM	4.0	U	
LEAD	4.0	U	
SELENIUM	7.0	U	
SILVER	4.0	U	

### ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SI0230

<b>SAMPLE:</b>	ICSA	SAMPLE:	ICSAB
DIAIVII LILI.	10011	Situit EE.	ICDIAD

File: IIA08A Jan 08, 2015		12:41 File: IIA08A		Jan 08, 2015		12:46		
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R	
ALUMINUM	500000	477100	95.4	ALUMINUM	500000	481800	96.4	
ARSENIC	0	4		ARSENIC	100	109	109.0	
BARIUM	0	0		BARIUM	500	523	104.6	
CADMIUM	0	2		CADMIUM	1000	963	96.3	
CALCIUM	500000	448100	89.6	CALCIUM	500000	464200	92.8	
CHROMIUM	0	0		CHROMIUM	500	495	99.0	
IRON	200000	175600	87.8	IRON	200000	177100	88.5	
LEAD	0	0		LEAD	50	47	94.0	
MAGNESIUM	500000	458300	91.7	MAGNESIUM	500000	464300	92.9	
SELENIUM	0	5		SELENIUM	50	53	106.0	
SILVER	0	1		SILVER	200	223	111.5	

4

#### ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICSA SAMPLE: ICSAB

File: IIA15A	Jar	n 15, 2015	17:12
alyte	TRUE	FOUND	% R
ALUMINUM	500000	514100	102.8
ANTIMONY	0	3	
BARIUM	0	0	
BERYLLIUM	0	0	
CADMIUM	0	-1	
CALCIUM	500000	457900	91.6
CHROMIUM	0	0	
COPPER	0	-3	
IRON	200000	183800	91.9
MAGNESIUM	500000	461800	92.4
MANGANESE	0	-1	
NICKEL	0	1	
POTASSIUM	0	260	
SELENIUM	0	6	
SILVER	0	3	

4

#### ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SI0230

Concentration Units: ug/L

SAMPLE: ICSA SAMPLE: ICSAB

le: IIA22B	Jar	n 22, 2015	17:32	File: IIA22B	File: IIA22B Jan	
nalyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND
LUMINUM	500000	493300	98.7	ALUMINUM	500000	504600
RSENIC	0	3		ARSENIC	100	102
ARIUM	0	0		BARIUM	500	532
ADMIUM	0	-2		CADMIUM	1000	960
ALCIUM	500000	455100	91.0	CALCIUM	500000	460900
HROMIUM	0	-2		CHROMIUM	500	511
DBALT	0	0		COBALT	500	484
ON	200000	181100	90.5	IRON	200000	185600
AD	0	-2		LEAD	50	44
AGNESIUM	500000	456000	91.2	MAGNESIUM	500000	464800
LENIUM	0	4		SELENIUM	50	52
LVER	0	4		SILVER	200	227
DDIUM	0	86		SODIUM	20000	21820
IALLIUM	0	0		THALLIUM	100	100
ANADIUM	0	-1		VANADIUM	500	512
INC	0	1		ZINC	1000	963

#### 5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315S

Matrix: WATER SDG Name: SI0230

Percent Solids: 0.00 Lab Sample ID: SI0230-004P

 $\textbf{Concentration Units:} \ ug/L$ 

	Spiked	Sample	Spike			Control Lin	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	$\mathbf{M}$
ALUMINUM, TOTAL	27600	10100	2000	877.5	N	80	120	P
ANTIMONY, TOTAL	48.7	5.0 U	100	48.7	N	80	120	P
ARSENIC, TOTAL	101	2.8 J	100	98.6		80	120	P
BARIUM, TOTAL	2180	45.9	2000	106.5		80	120	P
BERYLLIUM, TOTAL	54.5	0.60 J	50	107.9		80	120	P
CADMIUM, TOTAL	263	0.070 J	250	105.1		80	120	P
CALCIUM, TOTAL	7580	4500	2500	123.3	N	80	120	P
CHROMIUM, TOTAL	224	13.2	200	105.5		80	120	P
COBALT, TOTAL	530	5.35 J	500	104.8		80	120	P
COPPER, TOTAL	271	16.9 J	250	101.5		80	120	P
IRON, TOTAL	11400	7340	1000	410.0	N	80	120	P
LEAD, TOTAL	120	14.5	100	105.8		80	120	P
MAGNESIUM, TOTAL	8380	2420	5000	119.2		80	120	P
MANGANESE, TOTAL	596	98.6	500	99.4		80	120	P
NICKEL, TOTAL	550	11.6	500	107.7		80	120	P
POTASSIUM, TOTAL	11200	1610	10000	95.4		80	120	P
SELENIUM, TOTAL	106	7.0 U	100	106.4		80	120	P
SILVER, TOTAL	52.6	4.0 U	50	105.2		80	120	P
SODIUM, TOTAL	23000	15800	7500	96.7		80	120	P
THALLIUM, TOTAL	104	5.0 U	100	104.0		80	120	P
VANADIUM, TOTAL	560	13.3	500	109.2		80	120	P
ZINC, TOTAL	573	68.4	500	101.0		80	120	P

#### 5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315S

Matrix: WATER SDG Name: SI0230

Percent Solids: 0.00 Lab Sample ID: SI0230-004S

 $\textbf{Concentration Units:} \ ug/L$ 

	Spiked	Sample	Spike			Control Lin	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	M
ALUMINUM, TOTAL	30900	10100	2000	1040.5	N	80	120	P
ANTIMONY, TOTAL	57.7	5.0 U	100	57.7	N	80	120	P
ARSENIC, TOTAL	99.5	2.8 J	100	96.7		80	120	P
BARIUM, TOTAL	2160	45.9	2000	105.7		80	120	P
BERYLLIUM, TOTAL	54.0	0.60 J	50	106.9		80	120	P
CADMIUM, TOTAL	261	0.070 J	250	104.3		80	120	P
CALCIUM, TOTAL	7660	4500	2500	126.3	N	80	120	P
CHROMIUM, TOTAL	223	13.2	200	105.1		80	120	P
COBALT, TOTAL	524	5.35 J	500	103.7		80	120	P
COPPER, TOTAL	267	16.9 J	250	100.1		80	120	P
IRON, TOTAL	12000	7340	1000	466.0	N	80	120	P
LEAD, TOTAL	121	14.5	100	106.3		80	120	P
MAGNESIUM, TOTAL	8550	2420	5000	122.6	N	80	120	P
MANGANESE, TOTAL	596	98.6	500	99.5		80	120	P
NICKEL, TOTAL	546	11.6	500	107.0		80	120	P
POTASSIUM, TOTAL	11300	1610	10000	96.8		80	120	P
SELENIUM, TOTAL	108	7.0 U	100	107.8		80	120	P
SILVER, TOTAL	51.6	4.0 U	50	103.3		80	120	P
SODIUM, TOTAL	23400	15800	7500	101.2		80	120	P
THALLIUM, TOTAL	102	5.0 U	100	102.0		80	120	P
VANADIUM, TOTAL	553	13.3	500	108.0		80	120	P
ZINC, TOTAL	567	68.4	500	99.7		80	120	P

#### 5B POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315S

Matrix: WATER SDG Name: SI0230

Percent Solids: 0.00 Lab Sample ID: SI0230-004A

Concentration Units: ug/L

	Spiked	Sample	Spike		Control Lin	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R Q		High	M
ALUMINUM, TOTAL	20000	10100	10500	94.0	75	125	P
ANTIMONY, TOTAL	462	1.3 U	500	92.4	75	125	P
ARSENIC, TOTAL	462	2.8 J	500	91.8	75	125	P
BARIUM, TOTAL	530	45.9	500	96.9	75	125	P
BERYLLIUM, TOTAL	482	0.60 J	500	96.2	75	125	P
CADMIUM, TOTAL	507	0.070 J	500	101.3	75	125	P
CALCIUM, TOTAL	9180	4500	5500	85.1	75	125	P
CHROMIUM, TOTAL	471	13.2	500	91.5	75	125	P
COBALT, TOTAL	479	5.35 J	500	94.8	75	125	P
COPPER, TOTAL	471	16.9 J	500	90.8	75	125	P
IRON, TOTAL	12300	7340	5500	90.2	75	125	P
LEAD, TOTAL	498	14.5	500	96.7	75	125	P
MAGNESIUM, TOTAL	7970	2420	5500	100.9	75	125	P
MANGANESE, TOTAL	538	98.6	500	87.8	75	125	P
NICKEL, TOTAL	501	11.6	500	97.8	75	125	P
POTASSIUM, TOTAL	10700	1610	10000	91.1	75	125	P
SELENIUM, TOTAL	505	2.4 U	500	101.1	75	125	P
SILVER, TOTAL	420	0.27 U	500	83.9	75	125	P
SODIUM, TOTAL	21000	15800	5500	95.1	75	125	P
THALLIUM, TOTAL	479	1.1 U	500	95.7	75	125	P
VANADIUM, TOTAL	502	13.3	500	97.8	75	125	P
ZINC, TOTAL	525	68.4	500	91.3	75	125	P

#### 5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315

Matrix: WATER SDG Name: SI0230

Percent Solids: 0.00 Lab Sample ID: SI0230-004

 $\textbf{Concentration Units:} \ ug/L$ 

Analyte	<b>Control Limits</b>	Spike Result	C Spike Dup. Result	C RPD	Q M
ALUMINUM, TOTAL		30900	27600	11.1	P
ANTIMONY, TOTAL		57.7	48.7	17.0	P
ARSENIC, TOTAL		99.5	101	1.9	P
BARIUM, TOTAL		2160	2180	0.7	P
BERYLLIUM, TOTAL		54.0	54.5	0.9	P
CADMIUM, TOTAL		261	263	0.8	P
CALCIUM, TOTAL		7660	7580	1.0	P
CHROMIUM, TOTAL		223	224	0.4	P
COBALT, TOTAL		524	530	1.1	P
COPPER, TOTAL		267	271	1.3	P
IRON, TOTAL		12000	11400	4.8	P
LEAD, TOTAL		121	120	0.4	P
MAGNESIUM, TOTAL		8550	8380	2.0	P
MANGANESE, TOTAL		596	596	0.1	P
NICKEL, TOTAL		546	550	0.6	P
POTASSIUM, TOTAL		11300	11200	1.2	P
SELENIUM, TOTAL		108	106	1.3	P
SILVER, TOTAL		51.6	52.6	1.9	P
SODIUM, TOTAL		23400	23000	1.5	P
THALLIUM, TOTAL		102	104	1.9	P
VANADIUM, TOTAL		553	560	1.1	P
ZINC, TOTAL		567	573	1.1	P

#### 7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA07HGW1

Matrix: WATER SDG Name: SI0230

**QC Batch ID:** IA07HGW1

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
MERCURY	5.00	5.06	101.0	80	120

#### 7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA07ICW2

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA07ICW2

Analyte	TRUE	<b>FOUND</b> 96.4	% <b>R</b> 96.4	LIMITS (%)	
ARSENIC	100			80	120
BARIUM	2000	2040	102.0	80	120
CADMIUM	250	246	98.5	80	120
CHROMIUM	200	204	101.8	80	120
LEAD	100	101	100.8	80	120
SELENIUM	100	100	100.2	80	120
SILVER	50.0	51.4	102.7	80	120

#### 7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA14HGW2

Matrix: WATER SDG Name: SI0230

**QC Batch ID:** IA14HGW2

Analyte	TRUE	FOUND	% R	LIMITS (%)	
MERCURY	5.00	4.79	95.8	80	120

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA14ICW2

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA14ICW2

21 11 11 11 11 11 11 11												
Analyte	TRUE FOUND %		% R	LIMIT	S (%)							
ALUMINUM	2000	2210	110.3	80	120							
ANTIMONY	100	100	100.4	80	120							
ARSENIC	100	101	101.0	80	120							
BARIUM	2000	2170	108.5	80	120							
BERYLLIUM	50.0	53.9	107.8	80	120							
CADMIUM	250	266	106.3	80	120							
CALCIUM	2500	2390	95.4	80	120							
CHROMIUM	200	212	106.1	80	120							
COBALT	500	556	111.2	80	120							
COPPER	250	262	104.7	80	120							
IRON	1000	1060	105.7	80	120							
LEAD	100	102	101.8	80	120							
MAGNESIUM	5000	5230	104.6	80	120							
MANGANESE	500	516	103.1	80	120							
NICKEL	500	555	111.0	80	120							
POTASSIUM	10000	9740	97.4	80	120							
SELENIUM	100	108	108.1	80	120							
SILVER	50.0	49.3	98.7	80	120							
SODIUM	7500	7840	104.5	80	120							
THALLIUM	100	114	113.9	80	120							
VANADIUM	500	548	109.5	80	120							
ZINC	500	550	109.9	80	120							

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA16HGW1

Matrix: WATER SDG Name: SI0230

**QC Batch ID:** IA16HGW1

 $\textbf{Concentration Units:} \ ug/L$ 

Analyte	TRUE	FOUND	% R	LIMITS	S (%)
MERCURY	5.00	4.99	99.8	80	120

#### 7 LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services Sample ID: LCSWIA16ICW1

Matrix: WATER SDG Name: SI0230

QC Batch ID: IA16ICW1

 $\textbf{Concentration Units:} \ ug/L$ 

Analyte	TRUE	FOUND	% R	LIMITS	(%)
ARSENIC	100	97.1	97.1	80	120
BARIUM	2000	2150	107.4	80	120
CADMIUM	250	260	103.8	80	120
CHROMIUM	200	211	105.6	80	120
LEAD	100	106	105.8	80	120
SELENIUM	100	95.7	95.7	80	120
SILVER	50.0	52.7	105.3	80	120

Lab Name: Katahdin Analytical Services Client Field ID: IDWGW-EG332-011315L

Matrix: WATER SDG Name: SI0230

**Lab Sample ID:** SI0230-004L

		0					
Analyte	Sample Result	C	<b>Dilution Result</b>	C	% Difference	Q	M
ALUMINUM, TOTAL	10100		10200		1.0		P
ANTIMONY, TOTAL	1.3	U	8.1	J			P
ARSENIC, TOTAL	2.8	J	7.0	U	100.0		P
BARIUM, TOTAL	45.9		47.7		3.9		P
BERYLLIUM, TOTAL	0.60	J	0.50	U	100.0		P
CADMIUM, TOTAL	0.070	J	0.25	U	100.0		P
CALCIUM, TOTAL	4500		4520		0.4		P
CHROMIUM, TOTAL	13.2		13	J	1.5		P
COBALT, TOTAL	5.35	J	4.8	J	10.3		P
COPPER, TOTAL	16.9	J	16	J	5.3		P
IRON, TOTAL	7340		7370		0.4		P
LEAD, TOTAL	14.5		12	J	17.2		P
MAGNESIUM, TOTAL	2420		2540		5.0		P
MANGANESE, TOTAL	98.6		102		3.4		P
NICKEL, TOTAL	11.6		10	J	13.8		P
POTASSIUM, TOTAL	1610		1500	J	6.8		P
SELENIUM, TOTAL	2.4	U	12.	U			P
SILVER, TOTAL	0.27	U	1.4	U			P
SODIUM, TOTAL	15800		16300		3.2		P
THALLIUM, TOTAL	1.1	U	6.1	J			P
VANADIUM, TOTAL	13.3		12.7	J	4.5		P
ZINC, TOTAL	68.4		60.1	J	12.1		P

### 10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical Services Instrument Code: H

**Instrument Name:** CETAC M6100 **Date:** 1/30/2013

	Concentration Chits. ug/L						
Analyte	CRDL	IDL	$\mathbf{M}$				
MERCURY	0.20	0.033	CV				

# 10 INSTRUMENT DETECTION LIMITS

Lab Name: Katahdin Analytical ServicesInstrument Code: IInstrument Name: THERMO ICAP 6500Date: 5/21/2012

Analyte	CRDL	IDL	M
ALUMINUM	300	17.	P
ANTIMONY	8.0	1.6	P
ARSENIC	8.0	1.5	P
BARIUM	5.0	0.31	P
BERYLLIUM	5.0	0.095	P
CADMIUM	5.0	0.074	P
CALCIUM	100	8.7	P
CHROMIUM	10	0.41	P
COBALT	10	0.33	P
COPPER	25	0.80	P
IRON	100	4.0	P
LEAD	5.0	1.0	P
MAGNESIUM	100	7.7	P
MANGANESE	5.0	0.56	P
NICKEL	10	0.60	P
POTASSIUM	1000	64.	P
SELENIUM	10	2.6	P
SILVER	10	0.54	P
SODIUM	1000	33.	P
THALLIUM	15	1.1	P
VANADIUM	10	0.41	P
ZINC	20	0.45	P

# 10 LIMITS of DETECTION

Lab Name: Katahdin Analytical Services Instrument Code: H

Instrument Name: CETAC M6100 Date: 2/9/2011

Analyte	LOD	Units	M	EPA Prep./Anal. Method
MERCURY	0.10	ug/L	CV	SW846 7470A / SW846 7470A

10 LIMITS of DETECTION

Lab Name: Katahdin Analytical ServicesInstrument Code: IInstrument Name: THERMO ICAP 6500Date: 1/19/2011

Analyte	LOD	Units	M	EPA Prep./Anal. Method
ALUMINUM	100.	ug/L	P	SW846 3010A / SW846 6010C
ANTIMONY	5.0	ug/L	P	SW846 3010A / SW846 6010C
ARSENIC	5.0	ug/L	P	SW846 3010A / SW846 6010C
BARIUM	3.0	ug/L	P	SW846 3010A / SW846 6010C
BERYLLIUM	0.50	ug/L	P	SW846 3010A / SW846 6010C
CADMIUM	3.0	ug/L	P	SW846 3010A / SW846 6010C
CALCIUM	80.	ug/L	P	SW846 3010A / SW846 6010C
CHROMIUM	4.0	ug/L	P	SW846 3010A / SW846 6010C
COBALT	4.0	ug/L	P	SW846 3010A / SW846 6010C
COPPER	10.	ug/L	P	SW846 3010A / SW846 6010C
IRON	80.	ug/L	P	SW846 3010A / SW846 6010C
LEAD	4.0	ug/L	P	SW846 3010A / SW846 6010C
MAGNESIUM	80.	ug/L	P	SW846 3010A / SW846 6010C
MANGANESE	4.0	ug/L	P	SW846 3010A / SW846 6010C
NICKEL	4.0	ug/L	P	SW846 3010A / SW846 6010C
POTASSIUM	500.	ug/L	P	SW846 3010A / SW846 6010C
SELENIUM	7.0	ug/L	P	SW846 3010A / SW846 6010C
SILVER	4.0	ug/L	P	SW846 3010A / SW846 6010C
SODIUM	500.	ug/L	P	SW846 3010A / SW846 6010C
THALLIUM	5.0	ug/L	P	SW846 3010A / SW846 6010C
VANADIUM	4.0	ug/L	P	SW846 3010A / SW846 6010C
ZINC	10.	ug/L	P	SW846 3010A / SW846 6010C

# 10 METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical Services Instrument Code: H

**Instrument Name:** CETAC M6100 **Date:** 2/9/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
MERCURY	0.013	ug/L	CV	SW846 7470A / SW846 7470A

# 10 METHOD DETECTION LIMITS

Lab Name: Katahdin Analytical ServicesInstrument Code: IInstrument Name: THERMO ICAP 6500Date: 1/19/2011

Analyte	MDL	Units	M	EPA Prep./Anal. Method
ALUMINUM	15.	ug/L	P	SW846 3010A / SW846 6010C
ANTIMONY	1.3	ug/L	P	SW846 3010A / SW846 6010C
ARSENIC	1.4	ug/L	P	SW846 3010A / SW846 6010C
BARIUM	0.23	ug/L	P	SW846 3010A / SW846 6010C
BERYLLIUM	0.10	ug/L	P	SW846 3010A / SW846 6010C
CADMIUM	0.049	ug/L	P	SW846 3010A / SW846 6010C
CALCIUM	11.	ug/L	P	SW846 3010A / SW846 6010C
CHROMIUM	0.36	ug/L	P	SW846 3010A / SW846 6010C
COBALT	0.24	ug/L	P	SW846 3010A / SW846 6010C
COPPER	0.63	ug/L	P	SW846 3010A / SW846 6010C
IRON	5.4	ug/L	P	SW846 3010A / SW846 6010C
LEAD	1.1	ug/L	P	SW846 3010A / SW846 6010C
MAGNESIUM	7.8	ug/L	P	SW846 3010A / SW846 6010C
MANGANESE	1.1	ug/L	P	SW846 3010A / SW846 6010C
NICKEL	0.28	ug/L	P	SW846 3010A / SW846 6010C
POTASSIUM	41.	ug/L	P	SW846 3010A / SW846 6010C
SELENIUM	2.4	ug/L	P	SW846 3010A / SW846 6010C
SILVER	0.27	ug/L	P	SW846 3010A / SW846 6010C
SODIUM	24.	ug/L	P	SW846 3010A / SW846 6010C
THALLIUM	1.1	ug/L	P	SW846 3010A / SW846 6010C
VANADIUM	0.23	ug/L	P	SW846 3010A / SW846 6010C
ZINC	0.72	ug/L	P	SW846 3010A / SW846 6010C

11
ICP INTERELEMENT CORRECTION FACTORS

**Lab Name: Katahdin Analytical Services** 

**SDG Name:** SI0230

**Instrument Name:** THERMO ICAP 6500

**Instrument ID:** I

**Date:** 1/8/2015

	Wavelength				Intereleme	nt Correction Fa	actors for:							
Analyte	(nm)	Al	Ca	Fe	Mg	As	Cr	Co	Cu	Mn	Mo	Ni	Ti	$\mathbf{V}$
ALUMINUM	396.15	0.0	0.0003680	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0300000	0.0	0.0	0.0
ANTIMONY	206.83	0.0000250	0.0	0.0000520	0.0	-0.0001350	0.0078600	0.0	0.0	0.0	-0.0018800	-0.0009470	0.0	-0.0017400
ARSENIC	189.04	0.0000120	0.0	-0.0001310	0.0	0.0	0.0006100	0.0	0.0	0.0	0.0020700	0.0	0.0	0.0
BARIUM	455.40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BERYLLIUM	313.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0007160	0.0000820
BORON	208.96	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0296000	0.0	0.0	0.0
CADMIUM	226.50	0.0	0.0	0.0000630	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0000800	0.0000260	0.0
CALCIUM	315.89	0.0	0.0	0.0	0.0	0.0	0.0008850	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CHROMIUM	267.72	0.0	0.0	0.0000070	0.0	0.0	0.0	0.0	0.0	0.0001110	0.0	0.0	0.0	0.0000720
COBALT	228.62	0.0	0.0	0.0	0.0	0.0	-0.0000420	0.0	0.0	0.0	0.0	0.0000640	0.0027000	0.0
COPPER	327.40	0.0000110	0.0	-0.0000060	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0005550	0.0003110
GOLD	242.79	0.0	0.0	0.0001410	0.0	0.0	0.0	0.0	0.0	-0.0019000	0.0	0.0	0.0	0.0
IRON	259.94	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LEAD	220.35	-0.0001240	0.0	0.0000190	0.0	0.0	-0.0005800	0.0000540	0.0001360	0.0	-0.0005810	0.0002080	0.0000970	0.0
LITHIUM	670.78	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MAGNESIUM	202.58	0.0	0.0	0.0000370	0.0	0.0	0.0	0.2003000	0.0	0.0	0.0277000	0.0	0.0002000	0.0
MANGANESE	257.61	-0.0000010	0.0	0.0000150	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MOLYBDENUM	202.03	0.0	0.0	0.0	0.0	0.0	0.0001080	0.0	0.0	0.0000070	0.0	0.0	0.0	-0.0001920
NICKEL	231.60	0.0	0.0	-0.0000380	0.0	0.0	0.0	0.0001270	0.0	0.0	0.0008690	0.0	0.0	0.0
POTASSIUM	766.49	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SELENIUM	196.09	0.0000230	0.0	-0.0000020	0.0	-0.0000500	0.0	0.0000900	0.0	0.0004850	0.0	0.0	0.0	-0.0002080
SILICON	251.61	0.0	0.0	-0.0000080	0.0	0.0	0.0	0.0	0.0	0.0	0.0097100	0.0	0.0009940	0.0
SILVER	328.07	0.0	0.0	-0.0002370	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0002840	0.0
SODIUM	589.59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
STRONTIUM	421.55	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
THALLIUM	190.86	-0.0000020	0.0	0.0000020	0.0	0.0	0.0	0.0018400	0.0000120	-0.0021900	-0.0000380	0.0	-0.0010500	-0.0093600
TIN	189.99	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TITANIUM	334.90	0.0	0.0	0.0	0.0	0.0	0.0001290	0.0	0.0	0.0	0.0010500	0.0	0.0	0.0
VANADIUM	292.40	0.0	0.0	0.0000210	0.0	0.0	-0.0041100	0.0	0.0	-0.0003220	-0.0062800	0.0	0.0010900	0.0
ZINC	206.20	0.0	0.0	0.0	0.0	0.0	-0.0011400	0.0	0.0	0.0	0.0	0.0	0.0	0.0

#### 12 ICP LINEAR RANGES

Lab Name: Katahdin Analytical ServicesInstrument Code: IInstrument Name: THERMO ICAP 6500Date: 10/28/2014

Analyte	<b>Integration Time (sec)</b>	Linear Range	M	
ALUMINUM	5.00	500000	P	
ANTIMONY	45.00	20000	P	
ARSENIC	45.00	20000	P	
BARIUM	5.00	20000	P	
BERYLLIUM	5.00	20000	P	
CADMIUM	45.00	20000	P	
CALCIUM	5.00	500000	P	
CHROMIUM	10.00	20000	P	
COBALT	45.00	20000	P	
COPPER	10.00	20000	P	
IRON	5.00	250000	P	
LEAD	45.00	20000	P	
MAGNESIUM	45.00	200000	P	
MANGANESE	5.00	20000	P	
NICKEL	10.00	20000	P	
POTASSIUM	5.00	300000	P	
SELENIUM	45.00	20000	P	
SILVER	10.00	2000	P	
SODIUM	5.00	200000	P	
THALLIUM	45.00	20000	P	
VANADIUM	10.00	20000	P	
ZINC	45.00	20000	P	

Lab Name: Katahdin Analytical Services QC Batch ID: IA07HGW1

Matrix: WATER SDG Name: SI0230

Method: CV Prep Date: 01/07/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWIA07HGW1	LCSWIA07HGW1	0.025	0.025	
PBT1222A	PBT1222A	0.025	0.025	
PBWIA07HGW1	PBWIA07HGW1	0.025	0.025	

Lab Name: Katahdin Analytical Services QC Batch ID: IA07ICW2

Matrix: WATER SDG Name: SI0230

**Method:** P **Prep Date:** 01/07/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	<b>Bottle ID</b>
LCSWIA07ICW2	LCSWIA07ICW2	0.05	0.05	
PBT1222A	PBT1222A	0.01	0.05	
PBWIA07ICW2	PBWIA07ICW2	0.05	0.05	

Lab Name: Katahdin Analytical Services QC Batch ID: IA14HGW2

Matrix: WATER SDG Name: SI0230

Method: CV Prep Date: 01/14/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWIA14HGW2	LCSWIA14HGW2	0.025	0.025	
PBWIA14HGW2	PBWIA14HGW2	0.025	0.025	
IDWGW-3178-011315	SI0230-002	0.025	0.025	D
IDWGW-F0A37-011315	SI0230-003	0.025	0.025	D
IDWGW-EG332-011315	SI0230-004	0.025	0.025	D

Lab Name: Katahdin Analytical Services QC Batch ID: IA14ICW2

Matrix: WATER SDG Name: SI0230

**Method:** P **Prep Date:** 01/14/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWIA14ICW2	LCSWIA14ICW2	0.05	0.05	
PBWIA14ICW2	PBWIA14ICW2	0.05	0.05	
IDWGW-3178-011315	SI0230-002	0.05	0.05	D
IDWGW-F0A37-011315	SI0230-003	0.05	0.05	D
IDWGW-EG332-011315	SI0230-004	0.05	0.05	D
IDWGW-EG332-011315P	SI0230-004P	0.05	0.05	D
IDWGW-EG332-011315S	SI0230-004S	0.05	0.05	D

**Lab Name: Katahdin Analytical Services QC Batch ID:** IA16HGW1

Matrix: WATER SDG Name: SI0230

**Method:** CV **Prep Date:** 01/16/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID
LCSWIA16HGW1	LCSWIA16HGW1	0.025	0.025	
PBWIA16HGW1	PBWIA16HGW1	0.025	0.025	
IDWS-0312-011315	SI0230-001T	0.025	0.025	F

Lab Name: Katahdin Analytical Services QC Batch ID: IA16ICW1

Matrix: WATER SDG Name: SI0230

**Method:** P **Prep Date:** 01/16/2015

Client ID	Lab Sample ID	Initial (L)	Final (L)	<b>Bottle ID</b>
LCSWIA16ICW1	LCSWIA16ICW1	0.05	0.05	
PBWIA16ICW1	PBWIA16ICW1	0.05	0.05	
IDWS-0312-011315	SI0230-001T	0.01	0.05	F

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 **File Name:** HIA07A

**Date:** 1/7/2015 **Method:** CV

Lab Sample ID	Client ID D.F.	Time	Elements	
Calibration Blank	1	16:43	Hg	
Standard #1 (0.2 ppb	1	16:45	Hg	
Standard #2 (0.5 ppb	1	16:48	Hg	
Standard #3 (1.0 ppb	1	16:50	Hg	
Standard #4 (5.0 ppb	1	16:52	Hg	
Standard #5 (10.0 pp	1	16:54	Hg	
ICV	1	16:56	HG	
ICB	1	16:58	HG	
PQL	1	17:00	HG	
CCV	1	17:02	HG	
CCB	1	17:04	HG	
LCSWIA07HGW1	1	17:07	HG	
PBWIA07HGW1	1	17:09	HG	
ZZZZZZ	1	17:11		
ZZZZZZ	1	17:13		
ZZZZZZ	1	17:15		
ZZZZZZ	1	17:18		
ZZZZZZ	1	17:20		
ZZZZZZ	1	17:22		
ZZZZZZ	1	17:24		
CCV	1	17:26	HG	
CCB	1	17:28	HG	
ZZZZZZ	1	17:30		
ZZZZZZ	1	17:32		
ZZZZZZ	5	17:35		
777777	1	17:37		
ZZZZZZ	1	17:39		

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 **File Name:** HIA07A

**Date:** 1/7/2015 **Method:** CV

Lab Sample ID	Client ID D	D.F.	Time	Elements
ZZZZZZ		1	17:41	
ZZZZZZ		1	17:43	
ZZZZZZ		1	17:45	
PBT1222A		1	17:47	HG
ZZZZZZ		1	17:49	
CCV		1	17:52	HG
CCB		1	17:54	HG

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 **File Name:** HIA14A

**Date:** 1/14/2015 **Method:** CV

Lab Sample ID	Client ID D.F.	Time	Elements
Calibration Blank	1	13:15	Hg
Standard #1 (0.2 ppb	1	13:17	Hg
Standard #2 (0.5 ppb	1	13:19	Hg
Standard #3 (1.0 ppb	1	13:21	Hg
Standard #4 (5.0 ppb	1	13:23	Hg
Standard #5 (10.0 pp	1	13:25	Hg
ICV	1	13:27	HG
ICB	1	13:29	HG
PQL	1	13:32	HG
CCV	1	13:34	HG
CCB	1	13:36	HG
ZZZZZZ	1	13:38	
ZZZZZZ	1	13:40	
ZZZZZZ	1	13:42	
ZZZZZZ	1	13:44	
ZZZZZZ	1	13:46	
ZZZZZZ	1	13:48	
ZZZZZZ	1	13:51	
ZZZZZZ	1	13:53	
ZZZZZZ	1	13:55	
CCV	1	13:57	HG
CCB	1	13:59	HG
ZZZZZZ	1	14:01	
ZZZZZZ	1	14:03	
ZZZZZZ	1	14:05	
ZZZZZZ	1	14:10	
ZZZZZZ	1	14:12	

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 **File Name:** HIA14A

**Date:** 1/14/2015 **Method:** CV

Lab Sample ID	Client ID	D.F.	Time	Elements
ZZZZZZ		1	14:14	
ZZZZZZ		5	14:16	
ZZZZZZ		1	14:18	
ZZZZZZ		1	14:20	
ZZZZZZ		1	14:22	
CCV		1	14:24	HG
ССВ		1	14:27	HG
ZZZZZZ		1	14:29	
ZZZZZZ		1	14:31	
ZZZZZZ		1	14:34	
ZZZZZZ		1	14:36	
ZZZZZZ		1	14:38	
ZZZZZZ		1	14:41	
ZZZZZZ		1	14:44	
ZZZZZZ		1	14:46	
ZZZZZZ		1	14:49	
ZZZZZZ		1	14:51	
CCV		1	14:53	HG
ССВ		1	14:55	HG
ZZZZZZ		1	14:57	
ZZZZZZ		1	14:59	
LCSWIA14HGW2		1	15:01	HG
PBWIA14HGW2		1	15:03	HG
<u> </u>		1	15:06	
ZZZZZZ		5	15:09	
ZZZZZZ		1	15:11	
ZZZZZZ		1	15:13	

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 **File Name:** HIA14A

**Date:** 1/14/2015 **Method:** CV

Lab Sample ID	Client ID	D.F.	Time	Elements
ZZZZZZ		1	15:15	
CCV		1	15:17	HG
ССВ		1	15:19	HG
SI0230-002	IDWGW-3178-011315	1	15:21	HG
SI0230-003	IDWGW-F0A37-011315	1	15:24	HG
SI0230-004	IDWGW-EG332-011315	1	15:26	HG
ZZZZZZ		1	15:28	
ZZZZZZ		1	15:30	
ZZZZZZ		5	15:32	
ZZZZZZ		5	15:34	
CCV		1	15:36	HG
ССВ		1	15:39	HG

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** CETAC M6100 File Name: HIA16A

**Date:** 1/16/2015 **Method:** CV

Lab Sample ID	Client ID	D.F.	Time	Elements
Calibration Blank		1	13:50	Hg
Standard #1 (0.2 ppb		1	13:52	Hg
Standard #2 (0.5 ppb		1	13:54	Hg
Standard #3 (1.0 ppb		1	13:56	Hg
Standard #4 (5.0 ppb		1	13:58	Hg
Standard #5 (10.0 pp		1	14:00	Hg
ICV		1	14:02	HG
ICB		1	14:04	HG
PQL		1	14:06	HG
LCSWIA16HGW1		1	14:09	HG
PBWIA16HGW1		1	14:11	HG
ZZZZZZ		1	14:13	
ZZZZZZ		1	14:15	
ZZZZZZ		1	14:17	
ZZZZZZ		1	14:19	
ZZZZZZ		1	14:21	
ZZZZZZ		1	14:23	
SI0230-001T	IDWS-0312-011315T	1	14:25	HG
CCV		1	14:28	HG
ССВ		1	14:30	HG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA08A

**Date:** 1/8/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time					Elements		
Blank		1	11:57	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
Std 1		1	12:02	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ICV		1	12:07	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ICB		1	12:14	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
PQL		1	12:19	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ZZZZZZ		1	12:27							
ZZZZZZ		1	12:32							
ICSA		1	12:41	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ICSAB		1	12:46	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
CCV		1	12:53	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ССВ		1	12:58	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ZZZZZZ		1	13:03							
PBWIA07ICW2		1	13:08		AS BA	CD CR	PB		SE	AG
LCSWIA07ICW2		1	13:13		AS BA	CD CR	PB		SE	AG
PBT1222A		1	13:18		AS BA	CD CR	PB		SE	AG
ZZZZZZ		1	13:23							
ZZZZZZ		1	13:28							
ZZZZZZ		1	13:33							
ZZZZZZ		1	13:38							
ZZZZZZ		1	13:43							
ZZZZZZ		1	13:47							
CCV		1	13:52	AL	AS BA	CD CA CR	FE PB	MG	SE	AG
ССВ		1	13:57	AL	AS BA	CD CA CR	FE PB	MG	SE	AG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA15A

**Date:** 1/15/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time						Elements	
Blank		1	16:29	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
Std 1		1	16:34	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
ICV		1	16:39	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
ICB		1	16:46	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
PQL		1	16:51	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
ZZZZZZ		1	16:58							
ZZZZZZ		1	17:03							
ICSA		1	17:12	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
ICSAB		1	17:17	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
CCV		1	17:23	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
ССВ		1	17:28	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
ZZZZZZ		10	17:34							
ZZZZZZ		5	17:39							
ZZZZZZ		2	17:44							
ZZZZZZ		1	17:49							
ZZZZZZ		1	17:54							
ZZZZZZ		1	17:59							
ZZZZZZ		1	18:04							
ZZZZZZ		1	18:09							
ZZZZZZ		1	18:14							
ZZZZZZ		1	18:19							
CCV		1	18:24	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
CCB		1	18:29	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
PBWIA14ICW2		1	18:34	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
LCSWIA14ICW2		1	18:39	AL SB	BA BE	CD CA CR	CU	FE	MG MN	NI K SE AG
ZZZZZZ		1	18:44							
ZZZZZZ		1	18:49							

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA15A

**Date:** 1/15/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time						Elements	
ZZZZZZ		1	18:54							
SI0230-002	IDWGW-3178-011315	1	18:59	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
SI0230-003	IDWGW-F0A37-011315	1	19:04	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
SI0230-004	IDWGW-EG332-011315	1	19:09	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
SI0230-004L	IDWGW-EG332-011315L	5	19:14	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
SI0230-004A	IDWGW-EG332-011315A	1	19:19	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
CCV		1	19:24	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
ССВ		1	19:29	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
SI0230-004P	IDWGW-EG332-011315P	1	19:34	AL SB	BA BE	CD CR	CU	FE	MGMN	NI K SE
SI0230-004S	IDWGW-EG332-011315S	1	19:39	AL SB	BA BE	CD CR	CU	FE	MGMN	NI K SE
CCV		1	19:44	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG
ССВ		1	19:49	AL SB	BA BE	CD CA CR	CU	FE	MGMN	NI K SE AG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA22B

**Date:** 1/22/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time					Elements				
Blank		1	16:49	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
Std 1		1	16:54	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ICV		1	16:59	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ICB		1	17:06	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
PQL		1	17:11	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ZZZZZZ		1	17:18									
ZZZZZZ		1	17:23									
ICSA		1	17:32	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ICSAB		1	17:36	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
CCV		1	17:43	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ССВ		1	17:48	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ZZZZZZ		1	17:53									
ZZZZZZ		1	17:58									
ZZZZZZ		1	18:03									
ZZZZZZ		1	18:08									
ZZZZZZ		1	18:13									
ZZZZZZ		1	18:18									
ZZZZZZ		1	18:24									
ZZZZZZ		1	18:29									
ZZZZZZ		1	18:34									
ZZZZZZ		1	18:39									
CCV		1	18:44	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
CCB		1	18:49	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ZZZZZZ		1	18:54									
ZZZZZZ		1	18:59									
ZZZZZZ		2	19:04									
ZZZZZZ		5	19:09									

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA22B

**Date:** 1/22/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time					Elements				
ZZZZZZ		1	19:14									
777777		2	19:19									
ZZZZZZ		5	19:24									
PBWIA14ICW2		1	19:30		AS	CO	РВ			NA	TL	V ZN
LCSWIA14ICW2		1	19:35		AS	СО	РВ			NA	TL	V ZN
SI0230-002	IDWGW-3178-011315	1	19:40		AS	CO	РВ			NA	TL	V ZN
CCV		1	19:45	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
CCB		1	19:50	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
SI0230-003	IDWGW-F0A37-011315	1	19:55		AS	СО	РВ			NA	TL	V ZN
SI0230-004	IDWGW-EG332-011315	1	20:00		AS	СО	РВ			NA	TL	V ZN
SI0230-004L	IDWGW-EG332-011315L	5	20:05		AS	СО	РВ			NA	TL	V ZN
SI0230-004A	IDWGW-EG332-011315A	1	20:10		AS	СО	РВ			NA	TL	V ZN
SI0230-004S	IDWGW-EG332-011315S	1	20:15		AS	CA CO	РВ			AG NA	TL	V ZN
SI0230-004P	IDWGW-EG332-011315P	1	20:20		AS	CA CO	РВ			AG NA	TL	V ZN
ZZZZZZ		1	20:25									
ZZZZZZ		5	20:30									
PBWIA16ICW1		1	20:35		AS BA	CD CR	РВ		SE	AG		
LCSWIA16ICW1		1	20:40		AS BA	CD CR	РВ		SE	AG		
CCV		1	20:45	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
CCB		1	20:50	AL	AS BA	CD CA CR CO	FE PB	MG	SE	AG NA	TL	V ZN
ZZZZZZ		1	20:55									
<u> </u>		1	21:00									
ZZZZZZ		1	21:05									
<u> </u>		1	21:10									
ZZZZZZ		1	21:15									
ZZZZZZ		1	21:20									
ZZZZZZ		1	21:25									

#### ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services SDG Name: SI0230

**Instrument ID:** THERMO ICAP 6500 **File Name:** IIA22B

**Date:** 1/22/2015 **Method:** P

Lab Sample ID	Client ID	D.F.	Time						Elements				
ZZZZZZ		1	21:29										
SI0230-001T	IDWS-0312-011315T	1	21:34		AS BA	CD	CR	РВ		SE	AG		
ZZZZZZ		1	21:39										
CCV		1	21:44	AL	AS BA	CD CA	A CR CO	FE PB	MG	SE	AG NA	TL	V ZN
CCB		1	21:49	AL	AS BA	CD CA	A CR CO	FE PB	MG	SE	AG NA	TL	V ZN

### **Raw Data Section**

# KATAHDIN ANALYTICAL SERVICES, INC. METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: Cetac N	<u>иб100 (Н)</u> <b>ANA</b>	LYST: GES	DATE: Of	<u>07 - 15</u>
FILE NAME: HI	A07A	METHOD: CVA	A	REVIEWED
		24:	5. 1	Ea 01-08-11
Analyte: Mercury			70	KATAHDIN ANALYTIC
Analyte. Meletry	- uD2			METALS SECTION
Shulz Mr	71903	CL		
ANCIC		Oti	her (List):	
STANDARDS USE	D:			
Standard Name	Standard ID	Prep Date	<b>Expiration Date</b>	Standard Conc.
CalBlank/ICB/CCB	Nift	81-07-15	01.08.15	0.00 ug/L
Standard #1 / PQL				0.20 ug/L
Standard #2				0.50 ug/L
Standard #3				1.00 ug/L
Standard #4 / CCV				5.00 ug/L
Standard #5				10.00 ug/L
ICV	V		J.	6.00 myil
Additional Commer	nts and Notes:	•		
	<del>'''                                  </del>			
		315		
		70.0		
	ű.	3 0.0113		***************************************
	con a cell in dat Au d'institute Venur des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des Manifest des M			

### INSTRUMENT RUNLOG

**Instrument: CETAC M6100** 

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
Calibration Blank	1.0000	HIA07A	1/7/2015	16:43	GEJ
Standard #1 (0.2 ppb)	1.0000	HIA07A	1/7/2015	16:45	GEJ
Standard #2 (0.5 ppb)	1.0000	HIA07A	1/7/2015	16:48	GEJ
Standard #3 (1.0 ppb)	1.0000	HIA07A	1/7/2015	16:50	GEJ
Standard #4 (5.0 ppb)	1.0000	HIA07A	1/7/2015	16:52	GEJ
Standard #5 (10.0 ppb)	1.0000	HIA07A	1/7/2015	16:54	GEJ
ICV	1.0000	HIA07A	1/7/2015	16:56	GEJ
ICB	1.0000	HIA07A	1/7/2015	16:58	GEJ
PQL	1.0000	HIA07A	1/7/2015	17:00	GEJ
CCV	1.0000	HIA07A	1/7/2015	17:02	GEJ
CCB	1.0000	HIA07A	1/7/2015	17:04	GEJ
LCSWIA07HGW1	1.0000	HIA07A	1/7/2015	17:07	GEJ
PBWIA07HGW1	1.0000	HIA07A	1/7/2015	17:09	GEJ
LCSWIA07HGW2	1.0000	HIA07A	1/7/2015	17:11	GEJ
PBWIA07HGW2	1.0000	HIA07A	1/7/2015	17:13	GEJ
SI0018-001T	1.0000	HIA07A	1/7/2015	17:15	GEJ
SI0027-001T	1.0000	HIA07A	1/7/2015	17:18	GEJ
SI0027-002T	1.0000	HIA07A	1/7/2015	17:20	GEJ
SI0027-003T	1.0000	HIA07A	1/7/2015	17:22	GEJ
SI0027-004T	1.0000	HIA07A	1/7/2015	17:24	GEJ
CCV	1.0000	HIA07A	1/7/2015	17:26	GEJ
CCB	1.0000	HIA07A	1/7/2015	17:28	GEJ
SI0027-005T	1.0000	HIA07A	1/7/2015	17:30	GEJ
SI0027-006T	1.0000	HIA07A	1/7/2015	17:32	GEJ
SI0027-006TL	5.0000	HIA07A	1/7/2015	17:35	GEJ
SI0027-006TA	1.0000	HIA07A	1/7/2015	17:37	GEJ
SI0027-006TP	1.0000	HIA07A	1/7/2015	17:39	GEJ
SI0027-006TS	1.0000	HIA07A	1/7/2015	17:41	GEJ
TH0786-015T	1.0000	HIA07A	1/7/2015	17:43	GEJ
PBT1221A	1.0000	HIA07A	1/7/2015	17:45	GEJ
PBT1222A	1.0000	HIA07A	1/7/2015	17:47	GEJ
TH0472-001	1.0000	HIA07A	1/7/2015	17:49	GEJ
CCV	1.0000	HIA07A	1/7/2015	17:52	GEJ
CCB	1.0000	HIA07A	1/7/2015	17:54	GEJ

Report Generated By CETAC QuickTrace

Analyst: metals

Worksheet file: C:\Program Files\QuickTrace\Worksheets\HIA07A.wsz

**Date Started:** 1/7/2015 4:40:48 PM

Comment:

### Results

Sample	Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags DF
	on Blank Replicates	-11.9	112.7	4.7	STD 52	01/07/15 04:43:48 pm 4	0.000	39	141.68	1.00
	d #1 (0.2 ppb) Replicates	512.0	488.0	456.4	STD 461.	01/07/15 04:45:54 pm 5	0.200	480	5.37	1.00
	d #2 (0.5 ppb) Replicates	1209.2	1248.0	1127.6	STD 1082	01/07/15 04:48:00 pm 6	0.500	1167	6.45	1.00
	d #3 (1.0 ppb) Replicates	2517.8	2386.0	2286.4	STD 2187.	01/07/15 04:50:07 pm 2	1.000	2344	6.03	1.00
	d #4 (5.0 ppb) Replicates	13120.8	12719.7	12132.7	STD 11714.	01/07/15 04:52:15 pm 7	5.000	12422	5.01	1.00
	d #5 (10.0 ppb Replicates	) 25565.0	25470.3	25026.8	STD 23825.	01/07/15 04:54:22 pm 8	10.000	24972	3.20	1.00
Calibrati Equat R2: SEE: Flags:	tion: A = 0.99		00.440 <b>C</b>		uAbsorbance	0 2	4 6 ncentration (ug/	8 L)	10	
	Replicates % Recovery	16174.0 102.67	15885.3	15197.8	ICV 14134.	01/07/15 04:56:31 pm 5	6.160	15348	5.91	1.00
ICB F	Replicates	-7.7	14.2	35.2	ICB -3.	01/07/15 04:58:36 pm 3	0.026	10	203.80	1.00
1/8/2015	9:56:24 AM					HIA07A.wsz				Pag

Samp	le Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags	DF
PQL	Replicates % Recovery	497.9 110.25	531.5	512.5	CRDL 441.	01/07/15 05:00:42 pm 4	0.221	496	7.83		1.00
ccv	Replicates % Recovery	13477.1 102.80	13236.7	12647.6	IPR 11824.	01/07/15 05:02:49 pm 6	5.140	12796	5.75		1.00
ССВ	Replicates	-40.1	-71.0	14.8	CCB -56.	01/07/15 05:04:55 pm 4	0.007	-38	98.20		1.00
LCSW	IA07HGW1 Replicates % Recovery	12996.8 101.09	12796.6	12395.7	LCS 12143.	01/07/15 05:07:29 pm 7	5.055	12583	3.06		1.00
PBWIA	A07HGW1 Replicates	-16.0	-42.6	-61.6	PBK -60.	01/07/15 05:09:36 pm 3	0.004	-45	47.12		1.00
LCSW	IA07HGW2 Replicates % Recovery	13498.5 103.48	13270.1	12730.1	LCS 12027.	01/07/15 05:11:42 pm 8	5.174	12882	5.08		1.00
PBWIA	07HGW2 Replicates	-62.7	-3.6	28.4	PBK 1.:	01/07/15 05:13:50 pm 5	0.019	-9	421.24		1.00
SI0018	-001T Replicates	68.5	60.9	19.3	UNK -0.	01/07/15 05:15:57 pm 7	0.037	37	89.72	The second section is a second section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the secti	1.00
SI0027	-001T Replicates	-9.9	1.0	-12.5	UNK -21.0	01/07/15 05:18:04 pm 0	0.018	-11	85.42		1.00
SI0027	-002T Replicates	10.0	-17.8	29.0	UNK -6.6	01/07/15 05:20:11 pm 6	0.024	4	559.36		1.00
SI0027	-003T Replicates	65.4	12.5	28.8	UNK -10.3	01/07/15 05:22:18 pm 3	0.032	24	132.26		1.00
S10027	-004T Replicates	-51.9	-28.5	6.7	UNK -0.5	01/07/15 05:24:26 pm 5	0.015	-19	145.21		1.00

Sample Name				Type Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
CCV Replicates % Recovery	14014.7 106.64	13608.2	13033.0	CCV 01/07/15 05:26:34 pm 12453.5	5.332	13277	5.13	1.00
CCB Replicates	-3.4	-0.5	11.2	CCB 01/07/15 05:28:39 pm -2.1	0.023	1	515.39	1.00
SI0027-005T Replicates	34.3	53.7	45.3	UNK 01/07/15 05:30:47 pm -2.2	0.035	33	75.09	1.00
SI0027-006T Replicates	21.7	-31.8	22.4	UNK 01/07/15 05:32:54 pm 11.9	0.025	6	423.22	1.00
SI0027-006TL Replicates	42.0	40.3	-14.0	UNK 01/07/15 05:35:01 pm 34.0	0.162	26	104.01	5.00
SI0027-006TA Replicates	2586.1	2558.3	2433.1	UNK 01/07/15 05:37:09 pm 2364.5	1.016	2485	4.21	1.00
SI0027-006TP Replicates	3643.3	3672.8	3477.1	UNK 01/07/15 05:39:17 pm 3367.8	1.438	3540	4.06	1.00
SI0027-006TS Replicates	3051.6	3159.3	2952.6	UNK 01/07/15 05:41:25 pm 2994.5	1.238	3039	2.95	1.00
TH0786-015T Replicates	449.5	423.7	423.7	UNK 01/07/15 05:43:33 pm 488.2	0.201	446	6.83	1.00
PBT1221A Replicates	-39.7	-21.2	-91.4	UNK 01/07/15 05:45:40 pm -80.4	-0.001	-58	57.04	1.00
PBT1222A Replicates	-62.4	-65.1	-64.8	UNK 01/07/15 05:47:48 pm -73.4	-0.004	-66	7.25	1.00
TH0472-001 Replicates	-20.9	31.8	-3.0	UNK 01/07/15 05:49:57 pm -40.9	0.019	-8	374.23	1.00

Samp	le Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags DF	
ccv	Replicates % Recovery	13645.5 104.89	13405.4	12998.5	CCV 12180	01/07/15 05:52:04 pm 0.5	5.244	13057	4.92	1.00	)
CCB	Replicates	12.0	100.6	58.4	CCB 1	01/07/15 05:54:10 pm I.1	0.039	43	106.26	1.00	)

# KATAHDIN ANALYTICAL SERVICES, INC. METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: Cetac M6100 (H)	ANALYST: GET	DATE: 01-14-15
FILE NAME: HIAIHA	METHOD: CVAA	REVIEWED
	245. <u>I</u>	8201-10-15
Analyte: Mercury	747 <u>0</u>	KATAHDIN ANALYTICAI
Sollz: MRMZ6	CLP	METALS SECTION
Sacle. Mil	Other (Lis	t):

## STANDARDS USED:

Standard Name	Standard ID	Prep Date	Expiration Date	Standard Conc.
CalBlank/ICB/CCB	AIA	01:4-15	02.08.15	0.00 ug/L
Standard #1 / PQL		1		0.20 ug/L
Standard #2				0.50 ug/L
Standard #3				1.00 ug/L
Standard #4 / CCV				5.00 ug/L
Standard #5				10.00 ug/L
ICV	4		<b>V</b>	6.00 Ng 1L
V				
		:		

Additional Comment	anu i vico.	
	A	
****	RR-RR-R 64-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		The state of the s
	6415	***************************************
	C. C.	
		-AANSAM.
		1920144000000000000000000000000000000000
	1 1000	White days a state of the state

INSTRUMENT RUNLOG

Instrument: CETAC M6100

AMPLE ID	DF	FILE	DATE	TIME	ANALYST
Calibration Blank	1.0000	HIA14A	1/14/2015	13:15	GEJ
standard #1 (0.2 ppb)	1.0000	HIA14A	1/14/2015	13:17	GEJ
standard #2 (0.5 ppb)	1.0000	HIA14A	1/14/2015	13:19	GEJ
standard #3 (1.0 ppb)	1.0000	HIA14A	1/14/2015	13:21	GEJ
standard #4 (5.0 ppb)	1.0000	HIA14A	1/14/2015	13:23	GEJ
tandard #5 (10.0 ppb)	1.0000	HIA14A	1/14/2015	13:25	GEJ
CV	1.0000	HIA14A	1/14/2015	13:27	GEJ
CB	1.0000	HIA14A	1/14/2015	13:29	GEJ
QL	1.0000	HIA14A	1/14/2015	13:32	GEJ
CV	1.0000	HIA14A	1/14/2015	13:34	GEJ
СВ	1.0000	HIA14A	1/14/2015	13:36	GEJ
CSWIA13HGW2	1.0000	HIA14A	1/14/2015	13:38	GEJ
BWIA13HGW2	1.0000	HIA14A	1/14/2015	13:40	GEJ
I0145-001T	1.0000	HIA14A	1/14/2015	13:42	GEJ
BT1223A	1.0000	HIA14A	1/14/2015	13:44	GEJ
BT1224A	1.0000	HIA14A	1/14/2015	13:46	GEJ
10096-001	1.0000	HIA14A	1/14/2015	13:48	GEJ
10096-002	1.0000	HIA14A	1/14/2015	13:51	GEJ
10096-003	1.0000	HIA14A	1/14/2015	13:53	GEJ
0096-004	1.0000	HIA14A	1/14/2015	13:55	GEJ
CV	1.0000	HIA14A	1/14/2015	13:57	GEJ
СВ	1.0000	HIA14A	1/14/2015	13:59	GEJ
10137-003	1.0000	HIA14A	1/14/2015	14:01	GEJ
I0137-004	1.0000	HIA14A	1/14/2015	14:03	GEJ
10137-005	1.0000	HIA14A	1/14/2015	14:05	GEJ
I0137-008	1.0000	HIA14A	1/14/2015	14:10	GEJ
I0171-003T	1.0000	HIA14A	1/14/2015	14:12	GEJ
10171-013	1.0000	HIA14A	1/14/2015	14:14	GEJ
I0171-013L	5.0000	HIA14A	1/14/2015	14:16	GEJ
I0171-013A	1.0000	HIA14A	1/14/2015	14:18	GEJ
0171-013P	1.0000	HIA14A	1/14/2015	14:20	GEJ
10171-013S	1.0000	HIA14A	1/14/2015	14:22	GEJ
CV	1.0000	HIA14A	1/14/2015	14:24	GEJ
СВ	1.0000	HIA14A	1/14/2015	14:27	GEJ
CSWIA13HGW1	1.0000	HIA14A	1/14/2015	14:29	GEJ
BWIA13HGW1	1.0000	HIA14A	1/14/2015	14:31	GEJ
0129-002	1.0000	HIA14A	1/14/2015	14:34	GEJ
10168-001	1.0000	HIA14A	1/14/2015	14:36	GEJ
10168-003	1.0000	HIA14A	1/14/2015	14:38	GEJ
0189-001	1.0000	HIA14A	1/14/2015	14:41	GEJ
10189-002	1.0000	HIA14A	1/14/2015	14:44	GEJ
10189-003	1.0000	HIA14A	1/14/2015	14:46	GEJ
I0189-004	1.0000	HIA14A	1/14/2015	14:49	GEJ
I0189-005	1.0000	HIA14A	1/14/2015	14:51	GEJ

	DF		DATE	TIME	ANALYST
CCV	1.0000	HIA14A			GEJ
CCB	1.0000	HIA14A	1/14/2015	14:55	GEJ
LCSWIA14HGW1	1.0000	HIA14A	1/14/2015	14:57	GEJ
PBWIA14HGW1	1.0000	HIA14A	1/14/2015	14:59	GEJ
LCSWIA14HGW2	1.0000	HIA14A	1/14/2015	15:01	GEJ
PBWIA14HGW2	1.0000	HIA14A	1/14/2015	15:03	GEJ
SI0226-001	1.0000	HIA14A	1/14/2015	15:06	GEJ
SI0226-001L	5.0000	HIA14A	1/14/2015	15:09	GEJ
SI0226-001A	1.0000	HIA14A	1/14/2015	15:11	GEJ
SI0226-001P	1.0000	HIA14A	1/14/2015	15:13	GEJ
SI0226-001S	1.0000	HIA14A	1/14/2015	15:15	GEJ
CCV	1.0000	HIA14A	1/14/2015	15:17	GEJ
ССВ	1.0000	HIA14A	1/14/2015	15:19	GEJ
SI0230-002	1.0000	HIA14A	1/14/2015	15:21	GEJ
10230-003	1.0000	HIA14A	1/14/2015	15:24	GEJ
SI0230-004	1.0000	HIA14A	1/14/2015	15:26	GEJ
510188-002	1.0000	HIA14A	1/14/2015	15:28	GEJ
SI0188-003	1.0000	HIA14A	1/14/2015	15:30	GEJ
310189-001	5.0000	HIA14A	1/14/2015	15:32	GEJ
SI0189-002	5.0000	HIA14A	1/14/2015	15:34	GEJ
CCV	1.0000	HIA14A	1/14/2015	15:36	GEJ
CCB	1.0000	HIA14A	1/14/2015	15:39	GEJ

Report Generated By CETAC QuickTrace

Analyst: metals

Worksheet file: C:\Program Files\QuickTrace\Worksheets\HIA14A.wsz

Date Started: 1/14/2015 1:12:49 PM

Comment:

Results

Sample Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
Calibration Blank Replicates	-0.6	2.7	-10.0	STD -34	01/14/15 01:15:07 pm .8	0.000	-11	159.07	1.00
Standard #1 (0.2 ppl Replicates	b) 452.2	462.9	449.0	STD 471	01/14/15 01:17:12 pm .7	0.200	459	2.26	1.00
Standard #2 (0.5 ppl Replicates	b) 1149.7	1098.0	1101.7	STD 1089	01/14/15 01:19:19 pm .0	0.500	1110	2.46	1.00
Standard #3 (1.0 ppt Replicates	b) 2286.8	2314.6	2295.3	STD 2194	01/14/15 01:21:25 pm .4	1.000	2273	2.35	1.00
Standard #4 (5.0 ppt Replicates	b) 11256.2	11386.0	11501.1	STD 11568	01/14/15 01:23:33 pm .5	5.000	11428	1.20	1.00
Standard #5 (10.0 pp Replicates	pb) 22898.9	23025.7	23221.4	STD 23219	01/14/15 01:25:41 pm .0	10.000	23091	0.68	1.00
R2: 0.	= -33.463 + 23 99998 9.3528	08.419C		ιιΔhsorthance	20,000- 15,000- 5,000- 0 2 Cor	4 6 ncentration (ug/	8/L)	10	
ICV Replicates % Recovery	13614.4 100.06	13758.9	13925.9	ICV 14003	01/14/15 01:27:49 pm .2	6.004	13826	1.26	1.00
ICB Replicates	-63.2	-25.2	-24.7	ICB -50	01/14/15 01:29:55 pm 5	-0.003	-41	46.83	1.00
1/14/2015 3:40:42 P	PΜ				HIA14A.wsz				Page

Sampi	le Name				Type Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
PQL	Replicates % Recovery	440.5 103.03	413.8	477.0	CRDL 01/14/15 01:32:00 pm 437.6	0.206	442	5.90	1.00
ccv	Replicates % Recovery	11171.0 97.90	11197.6	11305.0	IPR 01/14/15 01:34:08 pm 11392.6	n 4.895	11267	0.91	1.00
ССВ	Replicates	-46.2	-28.8	-40.5	CCB 01/14/15 01:36:13 pm -43.8	-0.003	-40	19.40	1.00
LCSW	/IA13HGW2 Replicates % Recovery	10905.2 96.51	11039.8	11169.5	LCS 01/14/15 01:38:19 pm 11309.8	1 4.826	11106	1.56	1.00
PBWI	AHGW2	-28.2	-67.1	61.0	PBK 01/14/15 01:40:26 pm 29.5	0.014	-1	799.64	1.00
SI0145	5-001T Replicates	-17.5	7.0	-24.4	UNK 01/14/15 01:42:33 pm 13.8	0.012	-5	350.39	1.00
PBT12	223A Replicates	32.0	-25.0	26.4	UNK 01/14/15 01:44:40 pm -0.3	0.018	8	317.16	1.00
PBT12	224A Replicates	-20.8	14.7	-13.3	UNK 01/14/15 01:46:48 pm -18.1	0.010	-9	174.49	1.00
S10096	6-001 Replicates	7.5	-49.6	4.4	UNK 01/14/15 01:48:55 pm 47.1	0.016	2	688.69	1.00
S10096	6-002 Replicates	57.3	4.3	10.6	UNK 01/14/15 01:51:02 pm 27.9	0.025	25	94.83	1.00
S10096	6-003 Replicates	-38.3	21.7	-40.4	UNK 01/14/15 01:53:09 pm 48.9	0.014	-2	206.69	1.00
S10096	6-004 Replicates	-67.6	20.7	10.7	UNK 01/14/15 01:55:17 pm -15.3	0.009	-13	306.65	1.00

Sampl	le Name				Type Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
ccv	Replicates % Recovery	11410.3 100.36	11512.6	11617.8	CCV 01/14/15 01:57:24 pm 11660.1	5.018	11550	0.97	1.00
CCB	Replicates	5.3	-6.4	-37.3	CCB 01/14/15 01:59:30 pm -6.4	0.010	-11	162.91	1.00
SI0137	7-003 Replicates	23.7	-6.9	16.0	UNK 01/14/15 02:01:38 pm 57.3	0.024	23	118.05	1.00
SI0137	7-004 Replicates	38.6	-8.2	10.8	UNK 01/14/15 02:03:45 pm 0.8	0.019	11	192.94	1.00
SI0137	7-005 Replicates	31.6	38.6	-27.6	UNK 01/14/15 02:05:52 pm 26.9	0.022	17	174.54	1.00
SI0137	7-008 Replicates	109.1	28.6	43.0	UNK 01/14/15 02:10:00 pm 150.1	0.050	83	68.91	1.00
SI017	1-003T Replicates	113.9	108.4	69.8	UNK 01/14/15 02:12:08 pm 98.3	0.057	98	20.14	1.00
SI017	1-013 Replicates	73.9	41.4	-26.8	UNK 01/14/15 02:14:17 pm 12.0	0.025	25	170.49	1.00
SI017	1-013L Replicates	-22.3	40.9	44.8	UNK 01/14/15 02:16:24 pm -11.1	0.101	13	265.63	5.00
SI017	1-013A Replicates	2232.1	2250.5	2269.9	UNK 01/14/15 02:18:32 pm 2319.4	0.997	2268	1.66	1.00
SI017	1-013P Replicates	2371.4	2376.7	2422.3	UNK 01/14/15 02:20:40 pm 2428.2	1.054	2400	1.24	1.00
SI017	1-013S Replicates	2277.0	2232.0	2262.9	UNK 01/14/15 02:22:48 pm 2267.2	0.993	2260	0.86	1.00

Page 3

Sample Name				Type Date/Time	Conc (ug/L)	μAbs	%RSD Flags	DF
CCV Replicate % Recov		2 11367.7	11531.4	CCV 01/14/15 02:24:56 pm 11595.2	4.975	11451	1.17	1.00
CCB Replicate	es -38.:	3 -22.1	-62.8	CCB 01/14/15 02:27:01 pm -73.8	-0.007	-49	47.51	1.00
LCSWIA13HGW Replicate % Recov	es 11142.	1 11235.3	11455.3	LCS 01/14/15 02:29:10 pm 11424.0	4.916	11314	1.33	1.00
PBWIA13HGW1 Replicate		3 -60.0	-39.6	PBK 01/14/15 02:31:18 pm -10.1	0.003	-26	112.24	1.00
SI0129-002 Replicate	es 9.	3 2.0	-3.2	UNK 01/14/15 02:34:37 pm -24.7	0.013	-4	365.81	1.00
SI0168-001 Replicate	es 53.	4 48.1	48.6	UNK 01/14/15 02:36:45 pm 0.6	n 0.031	38	65.88	1.00
SI0168-003 Replicate	es 23.0) -46.3	-47.2	UNK 01/14/15 02:38:54 pm -40.7	n 0.002	-28	122.14	1.00
SI0189-001 Replicate	es 72447.	3 72719.6	73412.1	UNK 01/14/15 02:41:03 pm 73489.9	n 31.650	73017	0.70 O	1.00
SI0189-002 Replicate	es 38255.:	3 38524.2	38931.7	UNK 01/14/15 02:44:43 pm 38974.9	n 16.770	38672	0.89 O	1.00
SI0189-003 Replicate	es 1830.:	5 1837.7	1875.4	UNK 01/14/15 02:46:51 pm 1906.7	ס.821	1863	1.90	1.00
SI0189-004 Replicate	es 1071.	9 1100.5	1090.1	UNK 01/14/15 02:49:00 pm 1119.3	0.489	1095	1.81	1.00
SI0189-005 Replicate	es 865.	1 879.9	856.8	UNK 01/14/15 02:51:09 pm 924.4	n 0.396	882	3.42	1.00

Sample Name				Type Date/Time	Conc (ug/L)	μAbs	%RSD FI	ags DF
CCV Replicates % Recove		11826.3	11980.5	CCV 01/14/15 02:53:1 12072.5	6 pm 5.159	11875	1.66	1.00
CCB Replicates	s 56,0	-0.9	9.6	CCB 01/14/15 02:55:2 6.5	22 pm 0.022	18	145.18	1.00
LCSWIA14HGW1 Replicates % Recove	s 10829.8	10951.9	11028.7	LCS 01/14/15 02:57:3 11110.9	31 pm 4.771	10980	1.09	1.00
PBWIA14HGW1 Replicates	s -8.6	-75.4	-8.7	PBK 01/14/15 02:59:4 -92.0	40 pm -0.006	-46	94.98	1.00
LCSWIA14HGW2 Replicates % Recove	s 10713.3	10934.2	11146.5	LCS 01/14/15 03:01:4 11333.0	18 pm 4.793	11032	2.43	1.00
PBWIA14HGW2 Replicates	s -86.0	-125.7	-95.4	PBK 01/14/15 03:03:5 -53.7	57 pm -0.025	-90	32.86	1.00
SI0226-001 Replicates	s 127.4	11.8	15.3	UNK 01/14/15 03:06:5 58.0	52 pm 0.037	53	101.28	1.00
SI0226-001L Replicates	s 31.1	19.5	-25.1	UNK 01/14/15 03:09:0	00 pm 0.046	-12	390.30	5.00
SI0226-001A Replicates	s 1544.5	1501.3	1576.8	UNK 01/14/15 03:11:0 1571.8	0.685	1549	2.23	1.00
SI0226-001P Replicates	s 1853.0	1935.2	1853.6	UNK 01/14/15 03:13: ¹ 1969.1	19 pm 0.839	1903	3.09	1.00
SI0226-001S Replicates	s 2034.0	2042.3	2046.2	UNK 01/14/15 03:15:2 2062.0	28 pm 0.901	2046	0.57	1.00
CCV Replicates % Recove		10853.0	10972.7	CCV 01/14/15 03:17:00 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15 01/14/15	36 pm 4,740	10908	0.90	1.00

Sampl	e Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags	DF
ССВ	Replicates	43.6	-25.2	-3.7	CCB 20	01/14/15 03:19:41 pm .5	0.018	9	337.70	PERSON COLUMN ANN ANN ANN ANN ANN ANN ANN ANN ANN A	1.00
SI0230	0-002 Replicates	63.2	23.9	49.7	UNK 156	01/14/15 03:21:51 pm .2	0.046	73	78.72		1.00
SI0230	0-003 Replicates	97.3	80.2	67.7	UNK 215	01/14/15 03:24:00 pm .5	0.064	115	59.03		1.00
SI0230	0-004 Replicates	39.3	-13.0	-24.9	UNK -4	01/14/15 03:26:10 pm .2	0.014	-1	015.77		1.00
SI0188	3-002 Replicates	81.3	81.4	73.7	UNK 78	01/14/15 03:28:19 pm .9	0.049	79	4.56		1.00
SI0188	3-003 Replicates	45.0	17.4	20.0	UNK 85	01/14/15 03:30:29 pm .7	0.033	42	75.35		1.00
SI0189	9-001 Replicates	15852.4	15816.2	15909.9	UNK 15880	01/14/15 03:32:40 pm .4	34.440	15865	0.25	and the second s	5.00
SI0189	9-002 Replicates	8129.9	8147.0	8235.2	UNK 8258	01/14/15 03:34:49 pm .0	17.820	8193	0.78		5.00
CCV	Replicates % Recovery	11498.4 101.03	11531.8	11676.3	CCV 11804	01/14/15 03:36:57 pm .9	5.052	11628	1.21		1.00
ССВ	Replicates	-2.2	-11.6	-5.9	CCB 40	01/14/15 03:39:02 pm .8	0.017	5	455.65		1.00

KATAHDIN ANALYTICAL SERVICES, INC. METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: Cetac M	<u>и6100 (Н)</u> ANA L	YST:	DATE: O)-	10-15
FILE NAME: HT	AIGA	METHOD: CVA	A	
		245	5	REVIEWED
Analyte: Mercury				HMM 1-20-15
Analyte. Wielcury		747		VIAHDIN ANALYTICA
,	,	CL	P	METALS SECTION
5, Cl2: MR14	16	Otl	ner (List):	·
STANDARDS USE	D:			
Standard Name	Standard ID	Prep Date	Expiration Date	Standard Conc.
CalBlank/ICB/CCB	N/A	01-16-15	02.08-15	0.00 ug/L
Standard #1 / PQL]		0.20 ug/L
Standard #2				0.50 ug/L
Standard #3				1.00 ug/L
Standard #4 / CCV				5.00 ug/L
Standard #5				10.00 ug/L
ICV	₩.	Į į	J	6.00-912
Ç				
		31-1b-16		
		A CONTRACTOR OF THE PROPERTY O		
Additional Commer		9		
·······································	NAMES AND ASSESSMENT OF THE SECOND OF THE SE			
		***····		

	74-74-74-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
		10/5	***************************************	
		, 0		
			The state of the s	A++104 A
				
	Construction of the PMANA distribution of the Construction of the		WHEN THE PARTY OF	

INSTRUMENT RUNLOG

Instrument: CETAC M6100

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
Calibration Blank	1.0000	HIA16A	1/16/2015	13:50	EAM
Standard #1 (0.2 ppb)	1.0000	HIA16A	1/16/2015	13:52	EAM
Standard #2 (0.5 ppb)	1.0000	HIA16A	1/16/2015	13:54	EAM
Standard #3 (1.0 ppb)	1.0000	HIA16A	1/16/2015	13:56	EAM
Standard #4 (5.0 ppb)	1.0000	HIA16A	1/16/2015	13:58	EAM
Standard #5 (10.0 ppb)	1.0000	HIA16A	1/16/2015	14:00	EAM
iCV	1.0000	HIA16A	1/16/2015	14:02	EAM
ICB	1.0000	HIA16A	1/16/2015	14:04	EAM
PQL	1.0000	HIA16A	1/16/2015	14:06	EAM
LCSWIA16HGW1	1.0000	HIA16A	1/16/2015	14:09	EAM
PBWIA16HGW1	1.0000	HIA16A	1/16/2015	14:11	EAM
PBT1225A	1.0000	HIA16A	1/16/2015	14:13	EAM
S10227-001T	1.0000	HIA16A	1/16/2015	14:15	EAM
SI0227-002T	1.0000	HIA16A	1/16/2015	14:17	EAM
S10227-003T	1.0000	HIA16A	1/16/2015	14:19	EAM
SI0227-004T	1.0000	HIA16A	1/16/2015	14:21	EAM
810210-002	1.0000	HIA16A	1/16/2015	14:23	EAM
SI0230-001T	1.0000	HIA16A	1/16/2015	14:25	EAM
CCV	1.0000	HIA16A	1/16/2015	14:28	EAM
CCB	1.0000	HIA16A	1/16/2015	14:30	EAM
SI0172-006T	1.0000	HIA16A	1/16/2015	14:32	EAM
SI0172-008T	1.0000	HIA16A	1/16/2015	14:34	EAM
SI0172-010T	1.0000	HIA16A	1/16/2015	14:36	EAM
SI0172-012T	1.0000	HIA16A	1/16/2015	14:38	EAM
SI0199-002T	1.0000	HIA16A	1/16/2015	14:40	EAM
SI0199-008	1.0000	HIA16A	1/16/2015	14:42	EAM
CCV	1.0000	HIA16A	1/16/2015	14:45	EAM
CCB	1.0000	HIA16A	1/16/2015	14:47	EAM
DL1	1.0000	HIA16A	1/16/2015	14:49	EAM
DL2	1.0000	HIA16A	1/16/2015	14:51	EAM
DL3	1.0000	HIA16A	1/16/2015	14:53	EAM
DL4	1.0000	HIA16A	1/16/2015	14:55	EAM
DL5	1.0000	HIA16A	1/16/2015	14:57	EAM
DL6	1.0000	HIA16A	1/16/2015	15:00	EAM
DL7	1.0000	HIA16A	1/16/2015	15:02	EAM
CCV	1.0000	HIA16A	1/16/2015	15:04	EAM
CCB	1.0000	HIA16A	1/16/2015	15:06	EAM

Report Generated By CETAC QuickTrace

Analyst: metals

Worksheet file: C:\Program Files\QuickTrace\Worksheets\HIA16A.wsz

Date Started: 1/16/2015 1:43:53 PM

Comment:

Results

Sample Name				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags	DF
Calibration Blank Replicates	-33.7	3.5	-11.1	STD 22	01/16/15 01:50:01 pm .0	0.000	-5	490.85	ACTIVITIES NO CONTRACTOR OF THE CONTRACTOR OF TH	1.00
Standard #1 (0.2 ppb) Replicates	348.7	414.1	374.8	STD 386	01/16/15 01:52:07 pm .1	0.200	381	7.11		1.00
Standard #2 (0.5 ppb) Replicates	1072.2	1108.8	1110.3	STD 1107.	01/16/15 01:54:13 pm 5	0.500	1100	1.67		1.00
Standard #3 (1.0 ppb) Replicates	1982.4	2025.9	2144.7	STD 2173.	01/16/15 01:56:20 pm 4	1.000	2082	4.42		1.00
Standard #4 (5.0 ppb) Replicates	10509.0	10712.3	10924.3	STD 11153.	01/16/15 01:58:27 pm 8	5.000	10825	2.56		1.00
Standard #5 (10.0 ppb) Replicates	20287.3	20685.0	21422.3	STD 21785.	01/16/15 02:00:35 pm 8	10.000	21045	3.24		1.00
Calibration Equation: A = 2' R2: 0.999 SEE: 137.8' Flags:		3.524C		uAbsorbance	0 2	4 6 ncentration (ug/	8/L)	10		
CV Replicates % Recovery	12388.3 103.54	12909.6	13464.8	ICV 13847.	01/16/15 02:02:43 pm 1	6.213	13152	4.85		1.00
CB Replicates	-30.1	-32.0	32.8	ICB 57.	01/16/15 02:04:49 pm 7	-0.007	7	636.64		1.00
1/16/2015 3:07:55 PM					HIA16A.wsz					Pa

Sample N	lame				Туре	Date/Time	Conc (ug/L)	μAbs	%RSD	Flags DF	
	eplicates Recovery	365.2 90.63	407.8	417.2	CRDL 430	01/16/15 02:06:55 pm .0	0.181	405	6.93	1.00	Granden and Ch
	6HGW1 eplicates Recovery	10208.2 99.85	10408.8	10689.8	LCS 10988	01/16/15 02:09:01 pm .8	4.993	10574	3.21	1.00	
PBWIA16I	HGW1 eplicates	18.8	-80.1	-11.0	РВК 2	01/16/15 02:11:07 pm .4	-0.019	-17	248.80	1.00	
PBT1225/	A eplicates	18.1	-11.7	6.8	UNK -18	01/16/15 02:13:14 pm .0	-0.011	-1	363.50	1.00	eminimalinami
SI0227-00 Re)1T eplicates	74.9	58.9	72.1	UNK 86	01/16/15 02:15:22 pm .8	0.024	73	15.62	1.00	
SI0227-00 Re	02T eplicates	141.5	113.8	117.4	UNK 124	01/16/15 02:17:29 pm .8	0.048	124	9.89	1.00	Municiparum
SI0227-00 Re	03T eplicates	87.0	18.8	34.8	UNK 57	01/16/15 02:19:36 pm .8	0.013	50	59.79	1.00	reconstruction of the second
SI0227-00 Re	04T eplicates	49.5	85.9	30.4	UNK 133	01/16/15 02:21:43 pm .1	0.025	75	60.48	1.00	<u> </u>
SI0210-00 Re	02 eplicates	734.5	752.6	714.1	UNK 689	01/16/15 02:23:50 pm .1	0.332	723	3.78	1.00	***************************************
SI0230-00 Re	01T eplicates	22.6	23.3	19.6	UNK 12	01/16/15 02:25:58 pm .0	-0.001	19	26.74	1.00	
	eplicates Recovery	10492.0 101.55	10592.1	10829.1	CCV 11101	01/16/15 02:28:06 pm 0	5.078	10754	2.52	1.00	
CCB Re	eplicates	32.2	10.8	13.5	CCB 29	01/16/15 02:30:11 pm 7	0.000	22	50.75	1.00	

KATAHDIN ANALYTICAL SERVICES METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: I (Thermo iCAP 6500)	ANALYST: 🚣 ANALYSIS DA	TE: 01-08-15
FILE NAME: IIA 08A	METHOD: ICP	
	 200.7 6010C DoD	HEVIEWED HUM FOLS RATAHDIN ANALYTICAL METALS SECTION

The pHs of all samples that were tested by direct analysis in this analytical run were checked just prior to analysis and confirmed to be <2. The time of preservation of these samples was checked in the "Measured Turbidity and Preservation of Incoming Samples" logbook to verify that they had been preserved at least 16 hours prior to analysis. These verifications were performed by (initals) on (date).

STANDARDS USED:

Standard Name	Standard ID	Prep. Date	Expiration Date	Standard Conc.
Cal. Blk/ICB/CCB	MWITZOB	11-20-19	11-20-11	0 ug/L
Standard 1	MW15256	12-19-17	02-14-15	Varies by Element
ICV	MW15263	12-23-14	03-23-15	Varies by Element
PQL	AU15260	12-19-14	03-05-15	Varies by Element
LRS1	mw15238	12-12-14		Varies by Element
LRS2	mu 15264	12-12-3-14	03-05-15	Varies by Element
ICSA	MW15214	11-23-14	07-23-15	Varies by Element
ICSAB	MW15265	12-24-14	02-15-15	Varies by Element
CCV	MW 15257	12-19-14	02-14-15	Varies by Element
Internal Standard	MW 15261	12-19-17	03-19-15	5.0 mg/L Yttrium

·			
	, - \ ^c	5	
	MILL		
		·	
	-		
		, and a second s	· · · · · · · · · · · · · · · · · · ·
/			
(

INSTRUMENT RUNLOG

Instrument: ICAP 6500

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
Blank	1.000	IIA08A	1/8/2015	11:57	EAM
Std 1	1.000	IIA08A	1/8/2015	12:02	EAM
ICV	1.000	llA08A	1/8/2015	12:07	EAM
ICB	1.000	IIA08A	1/8/2015	12:14	EAM
PQL	1.000	IIA08A	1/8/2015	12:19	EAM
LRS1	1.000	IIA08A	1/8/2015	12:27	EAM
LRS2	1.000	IIA08A	1/8/2015	12:32	EAM
CSA	1.000	IIA08A	1/8/2015	12:41	EAM
CSAB	1.000	IIA08A	1/8/2015	12:46	EAM
CCV	1.000	IIA08A	1/8/2015	12:53	EAM
CCB	1.000	IIA08A	1/8/2015	12:58	EAM
H0811-005	1.000	IIA08A	1/8/2015	13:03	EAM
PBWIA07ICW2	1.000	IIA08A	1/8/2015	13:08	EAM
CSWIA07ICW2	1.000	IIA08A	1/8/2015	13:13	EAM
PBT1222A	1.000	IIA08A	1/8/2015	13:18	EAM
SI0027-001T	1.000	IIA08A	1/8/2015	13:23	EAM
SI0027-002T	1.000	IIA08A	1/8/2015	13:28	EAM
10027-003T	1.000	IIA08A	1/8/2015	13:33	EAM
I0027-004T	1.000	IIA08A	1/8/2015	13:38	EAM
I0027-005T	1.000	IIA08A	1/8/2015	13:43	EAM
I0027-006T	1.000	IIA08A	1/8/2015	13:47	EAM
CCV	1.000	IIA08A	1/8/2015	13:52	EAM
CCB	1.000	IIA08A	1/8/2015	13:57	EAM
10027-006TL	5.000	IIA08A	1/8/2015	14:02	EAM
I0027-006TA	1.000	IIA08A	1/8/2015	14:08	EAM
10027-006TS	1.000	IIA08A	1/8/2015	14:12	EAM
10027-006TP	1.000	IIA08A	1/8/2015	14:17	EAM
10048-001	1.000	IIA08A	1/8/2015	14:22	EAM
10048-002	1.000	IIA08A	1/8/2015	14:27	EAM
BWIA07ICW1	1.000	IIA08A	1/8/2015	14:32	EAM
CSWIA07ICW1	1.000	IIA08A	1/8/2015	14:37	EAM
10041-001	1.000	IIA08A	1/8/2015	14:42	EAM
510041-002	1.000	IIA08A	1/8/2015	14:47	EAM
CCV	1.000	IIA08A	1/8/2015	14:52	EAM
CCB	1.000	IIA08A	1/8/2015	14:57	EAM
10041-003	1.000	IIA08A	1/8/2015	15:02	EAM
10041-004	1.000	HA08A	1/8/2015	15:07	EAM
I0041-004L	5.000	IIA08A	1/8/2015	15:13	EAM
I0041-004S	1.000	IIA08A	1/8/2015	15:18	EAM
SI0041-004P	1.000	IIA08A	1/8/2015	15:23	EAM
510058-001	5.000	IIA08A	1/8/2015	15:28	EAM
SI0058-002	25.00	IIA08A	1/8/2015	15:33	EAM
510059-001	5.000	IIA08A	1/8/2015	15:37	EAM
310063-001	1.000	IIA08A	1/8/2015	15:43	EAM

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
SI0058-002	5.000	IIA08A	1/8/2015	15:48	EAM
CCV	1.000	IIA08A	1/8/2015	15:53	EAM
CCB	1.000	IIA08A	1/8/2015	15:58	EAM
RINSE	1.000	IIA08A	1/8/2015	16:03	EAM
SI0027-006T	10.00	IIA08A	1/8/2015	16:08	EAM
SI0027-006TL	50.00	IIA08A	1/8/2015	16:13	EAM
SI0027-006TA	10.00	IIA08A	1/8/2015	16:18	EAM
SI0027-006TS	10.00	IIA08A	1/8/2015	16:24	EAM
SI0027-006TP	10.00	IIA08A	1/8/2015	16:29	EAM
RINSE	1.000	IIA08A	1/8/2015	16:34	EAM
PQL	1.000	IIA08A	1/8/2015	16:39	EAM
ICSA	1.000	IIA08A	1/8/2015	16:44	EAM
ICSAB	1.000	IIA08A	1/8/2015	16:49	EAM
CCV	1.000	IIA08A	1/8/2015	16:54	EAM
CCB	1.000	IIA08A	1/8/2015	16:59	EAM
AS10	1.000	IIA08A	1/8/2015	17:04	EAM
RINSE	1.000	IIA08A	1/8/2015	17:09	EAM
CA500	1.000	IIA08A	1/8/2015	17:14	EAM
RINSE	1.000	IIA08A	1/8/2015	17:19	EAM
CO10	1.000	IIA08A	1/8/2015	17:24	EAM
RINSE	1.000	IIA08A	1/8/2015	17:29	EAM
CR10	1.000	IIA08A	1/8/2015	17:35	EAM
RINSE	1.000	IIA08A	1/8/2015	17:40	EAM
CU10	1.000	IIA08A	1/8/2015	17:45	EAM
RINSE	1.000	IIA08A	1/8/2015	17:50	EAM
CCV	1.000	IIA08A	1/8/2015	17:55	EAM
CCB	1.000	IIA08A	1/8/2015	18:00	EAM
MG500	1.000	IIA08A	1/8/2015	18:05	EAM
RINSE	1.000	IIA08A	1/8/2015	18:09	EAM
MN10	1.000	IIA08A	1/8/2015	18:15	EAM
RINSE	1.000	IIA08A	1/8/2015	18:20	EAM
MO5	1.000	IIA08A	1/8/2015	18:25	EAM
RINSE	1.000	IIA08A	1/8/2015	18:30	EAM
NI10	1.000	IIA08A	1/8/2015	18:35	EAM
RINSE	1.000	IIA08A	1/8/2015	18:40	EAM
SN10	1.000	IIA08A	1/8/2015	18:45	EAM
RINSE	1.000	IIA08A	1/8/2015	18:50	EAM
CCV	1.000	IIA08A	1/8/2015	18:56	EAM
CCB	1.000	IIA08A	1/8/2015	19:01	EAM
SR10	1.000	IIA08A	1/8/2015	19:06	EAM
RINSE	1.000	IIA08A	1/8/2015	19:11	EAM
TI10	1.000	IIA08A	1/8/2015	19:16	EAM
RINSE	1.000	IIA08A	1/8/2015	19:21	EAM
V10	1.000	IIA08A	1/8/2015	19:26	EAM
RINSE	1.000	IIA08A	1/8/2015	19:32	EAM
ZN10	1.000	IIA08A	1/8/2015	19:37	EAM
RINSE	1.000	IIA08A	1/8/2015	19:42	EAM

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
CCV	1.000	IIA08A	1/8/2015	19:47	EAM
CCB	1.000	IIA08A	1/8/2015	19:52	EAM
PQL	1.000	IIA08A	1/8/2015	19:57	EAM
ICSA	1.000	IIA08A	1/8/2015	20:02	EAM
ICSAB	1.000	IIA08A	1/8/2015	20:07	EAM
CCV	1.000	IIA08A	1/8/2015	20:12	EAM
CCB	1.000	IIA08A	1/8/2015	20:17	EAM

Intensity Report

Author:

Published: 1/9/2015 9:51:12AM

Notes:

Blank

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

1/8/2015 11:57:50AM Standard Acquire Date: Sample Type: %RSD **Elem Flags** Units Stddev Intensity Ratio -0.00002500 Cts/S 0.00002000 7.476 Ag3280 A -9.125Al3961_R Cts/S 68.28 -3.620-0.00024200.0001650 As1891_A 0.00003100 Cts/S 0.000005000 17.70 0.3511 Au2427 A -0.0005320 Cts/S 0.00006200 11.67 -6.100B 2089 A 0.0001220 Cts/S 0.00004100 33.40 1.405 Ba4554 R 0.001433 Cts/S 0.0005820 40.64 21.48 Cts/S Be3130 R -0.0004620 0.0002580 55.82 -6.965Cts/S Ca3158 R -0.0009730 0.0002650 27.22 -14.60 Cd2265 A -0.0001420 Cts/S 0.00003500 24.78 -1.627Co2286 A 0.0005960 Cts/S 0.00002400 4.051 6.840 Cr2677_A 0.00001800 Cts/S 0.00003000 15.85 6.555 Cts/S 25.53 -44.28 Cu3273_A -0.0001210 0.00003100 Cts/S 0.0002160 Fe2599 R 0.0006300 34.27 9.485 K 7664 R Cts/S 29.51 8.806 0.0005870 0.0001730 Cts/S Li6707 R -0.0009230 0.001005 108.9 -13.94Mg2025 A -0.0005540 Cts/S 0.00004800 8.609 -6.356Mn2576_R -0.00009900 Cts/S 0.0002450 247.9 -1.465Mo2020 A 0.0001410 Cts/S 0.000002000 1.620 1.623 Na5895 R -0.003689 Cts/S 0.0001420 3.862 -55.41 Ni2316 A -0.0001230 Cts/S 0.000008000 6.708 -1.416Pb2203 A -0.0003550 Cts/S 0.00007400 20.74 -4.0714.243 Sb2068 A 0.0001850 Cts/S 0.000008000 2.121 Se1960 A 0.00009500 Cts/S 0.00001500 15.42 1.095 Si2516 R 0.0003730 Cts/S 0.0001000 26.92 5.588 Sn1899 A 0.00007700 Cts/S 0.00005000 7.149 0.8797 Sr4215_R -0.001391 Cts/S 0.0006200 44.60 -20.94 -0.00008200 0.00001500 -29.88 Ti3349_A Cts/S 18.85 TI1908 A -0.0001330 Cts/S 0.000003000 1.927 -1.526-0.00003100 V 2924 A Cts/S 0.00001000 30.64 -11.45 42.00 Zn2062 A 0.00004300 Cts/S 0.00001800 0.4905 Cts/S 1.0011 Y 3600 R 15,021 150.37 15,021 Y 2243 A 11,475 Cts/S 9.1076 0.079370 11,475 Y_3600_A 365,980 Cts/S 3,849.2 1.0518 365,980

Std 1

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

1/8/2015 12:02:56PM Sample Type: Acquire Date: Standard Units %RSD **Intensity Ratio** Elem Flags Avg Stddev 0.09941 Cts/S 0.001208 1.215 34,660 Ag3280 A Al3961_R 0.8878 Cts/S 0.005503 0.6199 12,910 As1891_A 0.02437 Cts/S 0.00003000 0.1230 272.0 Au2427_A 0.4474 Cts/S 0.01007 2.252 4,993 B 2089 A 0.09214 Cts/S 0.00006200 0.06751 1,028 Ba4554 R 2.501 Cts/S 0.01404 0.5613 36,380 Be3130 R 3.844 Cts/S 0.03597 0.9358 55,910 Ca3158 R 1.309 Cts/S 0.009270 0.7081 19,040 Cd2265 A 1.675 Cts/S 0.0008680 0.05180 18,690 Co2286_A 0.3993 Cts/S 0.0007620 0.1907 4,455 Cr2677_A 0.06118 Cts/S 0.0007990 1.306 21,330 Cu3273 A 0.06443 Cts/S 0.0008330 1.293 22,460 Fe2599 R 1.545 Cts/S 0.01133 0.7334 22,470

Published: 1/9/2015 9:51:12AM Page 1 of 66

Std 1

K6010-2011 Method Name: Method Revision: 1,614

EAM Analyst Name:

1/8/2015 12:02:56PM Sample Type: Standard Acquire Date:

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
K_7664_R		1.098	Cts/S	0.005865	0.5342	15,970
Li6707_R		0.6539	Cts/S	0.003418	0.5227	9,510
Mg2025_A		0.4058	Cts/S	0.0006770	0.1668	4,528
Mn2576_R		0.3278	Cts/S	0.001053	0.3212	4,768
Mo2020_A		0.1741	Cts/S	0.0009470	0.5437	1,943
Na5895_R		2.623	Cts/S	0.005912	0.2254	38,150
Ni2316_A		0.2461	Cts/S	0.0002350	0.09534	2,746
Pb2203_A		0.1136	Cts/S	0.0002280	0.2007	1,267
Sb2068_A		0.03167	Cts/S	0.00004200	0.1320	353.4
Se1960_A		0.01640	Cts/S	0.00008700	0.5316	183.0
Si2516_R		0.3935	Cts/S	0.001280	0.3253	5,723
Sn1899_A		0.04049	Cts/S	0.00009200	0.2270	451.8
Sr4215_R		3.327	Cts/S	0.01546	0.4646	48,390
Ti3349_A		0.1268	Cts/S	0.001836	1.449	44,190
TI1908_A		0.03627	Cts/S	0.00005900	0.1638	404.7
V_2924_A		0.06399	Cts/S	0.0006650	1.039	22,310
Zn2062_A		0.2628	Cts/S	0.0007900	0.3006	2,932
Y_3600_R		14,544	Cts/S	41.577	0.28587	14,544
Y_2243_A		11,158	Cts/S	6.9408	0.062204	11,158
Y_3600_A		348,680	Cts/S	3,698.6	1.0607	348,680

ICV

Method Name: K6010-2011 Method Revision: 1,614

EAM Analyst Name:

Acquire Date: 1/8/2015 12:07:50PM Sample Type: QC Elem Flags Avq Units Stddev %RSD

, .oqu o = a.co.						
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		412.8	ug/L	0.6886	0.1668	14,570
Al3961_R		10,030	ug/L	54.10	0.5393	5,308
As1891_A		400.0	ug/L	1.648	0.4119	111.1
Au2427_A		392.1	ug/L	8.889	2.267	1,991
B_2089_A		410.9	ug/L	0.8150	0.1984	431.5
Ba4554_R		409.0	ug/L	3.981	0.9733	15,260
Be3130_R		410.2	ug/L	2.851	0.6949	23,500
Ca3158 R		10,130	ug/L	77.56	0.7657	7,898
Cd2265_A		412.0	ug/L	2.087	0.5066	7,846
Co2286_A		412.6	ug/L	2.279	0.5523	1,877
Cr2677_A		412.3	ug/L	1.061	0.2573	8,962
Cu3273_A		408.3	ug/L	0.5820	0.1426	9,316
Fe2599_R		9,926	ug/L	56.49	0.5691	9,151
K_7664_R		13,550	ug/L	163.6	1.207	8,875
 Li6707_R		407.5	ug/L	8.856	2.173	3,964
Mg2025_A		10,280	ug/L	50.10	0.4872	1,895
Mn2576 R		410.4	ug/L	3.041	0.7411	2,005
Mo2020_A		418.1	ug/L	0.6463	0.1546	828.7
Na5895_R		10,110	ug/L	115.1	1.139	15,770
Ni2316_A		418.9	ug/L	2.000	0.4773	1,171
Pb2203_A		420.4	ug/L	3.672	0.8736	540.7
Sb2068_A		407.2	ug/L	2.470	0.6067	147.9
Se1960_A		405.2	ug/L	1.262	0.3116	76.23
Si2516_R		9,988	ug/L	59.77	0.5984	2,347
Sn1899_A		403.3	ug/L	2.732	0.6774	186.2
Sr4215_R		414.2	ug/L	4.777	1.153	20,530
Ti3349_A		411.1	ug/L	0.2312	0.05624	18,490
TI1908_A	W	426.2	ug/L	3.994	0.9371	175.0
V_2924_A		416.0	ug/L	1.074	0.2581	9,447
Zn2062_A		410.8	ug/L	2.967	0.7221	1,228
Y 3600 R		14,907	Cts/S	17.765	0.11918	14,907

Published: 1/9/2015 9:51:12AM Page 2 of 66 **ICV**

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:07:50PM Sample Type: QC

Flags Intensity Ratio Elem Units Stddev %RSD <u>Avg</u> Y 2243 A Cts/S 11.371 25.580 0.22496 11,371 Y_3600_A 355,150 Cts/S 230.83 0.064994 355,150

ICB

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

1/8/2015 12:14:48PM QC Acquire Date: Sample Type: Elem **Flags** Avg Units Stddev %RSD Intensity Ratio Ag3280 A 0.3594 0.1375 ug/L 38.26 4.025 Al3961_R -6.196ug/L 10.36 167.3 -6.851 As1891 A -0.9479 ug/L 1.012 106.8 0.08872 Au2427 A 0.08473 ug/L 0.3939 464.9 -5.700 B_2089_A 0.6555 ug/L 0.3225 49.20 2.160 Ba4554_R 0.1872 ug/L 0.1237 66.07 28.22 Be3130_R 0.02526 ug/L 0.01645 65.13 -5.435 74.93 Ca3158 R -2.411 ug/L 1.806 -16.31Cd2265 A -0.006832 814.8 ug/L 0.05567 -1.771Co2286 A 0.03365 ug/L 0.1456 432.8 7.038 Cr2677 A 0.1653 ug/L 0.1051 63.57 10.15 Cu3273 A -0.4776 ug/L 0.2295 48.06 -55.06 Fe2599 R -3.809 ug/L 0.9869 25.91 5.851 K 7664 R 4.495 ug/L 70.43 1,567 11.28 Li6707_R -2.604 0.5497 21.11 -38.93 ug/L Mg2025_A -0.6481 ug/L 1.732 267.2 -6.502 Mn2576 R 0.1271 ug/L 0.1386 109.1 -0.8418 Mo2020 A 2.309 0.3144 13.62 6.268 ug/L 4.614 203.2 -47.63 Na5895 R ug/L 9.375 323.9 Ni2316_A 0.08640 ug/L 0.2799 -1.172Pb2203_A 0.4402 265.8 0.1656 ug/L -3.87747.66 Sb2068_A -1.968ug/L 0.9380 1.413 Se1960 A 0.7183 ug/L 1.231 171.3 1.236 Si2516_R 5.326 ug/L 2.128 39.96 6.767 Sn1899 A 0.1655 ug/L 0.1229 74.26 0.9622 Sr4215_R -0.06578 ug/L 0.03292 50.04 -23.88 Ti3349_A 0.2799 ug/L 0.1141 40.75 -16.59 TI1908 A -0.6528 ug/L 0.1251 19.16 -1.812 V 2924 A -0.02855 ug/L 0.1661 581.7 -12.34 Zn2062 A 0.01140 ug/L 0.1307 1,147 0.5281 Y 3600 R 14.829 Cts/S 226.38 1.5266 14.829 Y 2243 A 11.543 Cts/S 32.884 0.28489 11.543 362,260 Cts/S 638.42 0.17623 362,260 Y_3600_A

PQL

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:19:56PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		10.89	ug/L	0.1793	1.646	386.2
Al3961_R		306.0	ug/L	10.88	3.555	157.2
As1891_A		7.867	ug/L	0.7501	9.534	2.572
Au2427_A		96.09	ug/L	3.720	3.872	490.2
B_2089_A		49.97	ug/L	0.5146	1.030	53.32
Ba4554_R		5.293	ug/L	0.3489	6.591	217.0
Be3130_R		4.958	ug/L	0.06220	1.254	274.9
Ca3158_R		98.65	ug/L	4.077	4.133	62.10
Cd2265_A		4.992	ug/L	0.06438	1.290	94.91
Co2286_A		10.13	ug/L	0.08422	0.8310	53.62

Published: 1/9/2015 9:51:12AM Page 3 of 66

PQL

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:19:56PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Cr2677_A		10.22	ug/L	0.1566	1.533	233.7
Cu3273_A		25.73	ug/L	0.2500	0.9714	560.1
Fe2599_R		94.42	ug/L	0.1887	0.1999	95.68
K_7664_R		994.1	ug/L	31.58	3.176	654.5
Li6707_R		100.2	ug/L	1.761	1.758	957.5
Mg2025_A		106.4	ug/L	1.027	0.9647	13.85
Mn2576_R		5.472	ug/L	0.02759	0.5041	25.09
Mo2020_A		10.58	ug/L	0.1168	1.104	22.88
Na5895_R		1,047	ug/L	2.466	0.2356	1,573
Ni2316_A		10.58	ug/L	0.1405	1.328	28.67
Pb2203_A		5.390	ug/L	0.7009	13.00	2.965
Sb2068_A	F	5.555	ug/L	0.9802	17.65	3.830
Se1960_A		9.322	ug/L	0.8603	9.229	2.858
Si2516_R		203.8	ug/L	3.866	1.897	52.97
Sn1899_A		103.6	ug/L	0.2813	0.2716	49.24
Sr4215_R		10.42	ug/L	0.2314	2.220	492.9
Ti3349_A		15.03	ug/L	0.02216	0.1474	663.5
TI1908_A		15.91	ug/L	0.1417	0.8905	5.184
V_2924_A		10.19	ug/L	0.1052	1.032	226.0
Zn2062_A		19.94	ug/L	0.2526	1.267	61.03
Y_3600_R		14,802	Cts/S	141.44	0.95554	14,802
Y_2243_A		11,550	Cts/S	5.9129	0.051192	11,550
Y_3600_A		363,670	Cts/S	2,561.7	0.70441	363,670

LRS1

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:27:01PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	W	2,109	ug/L	1.671	0.07924	74,220
Al3961_R		29.13	ug/L	11.63	39.93	96.50
As1891_A		20,890	ug/L	62.57	0.2995	5,565
Au2427_A	W	21,650	ug/L	4.021	0.01858	105,600
B_2089_A		21,020	ug/L	33.84	0.1610	20,680
Ba4554_R		20,100	ug/L	492.7	2.451	763,800
Be3130_R		19,740	ug/L	180.2	0.9129	1,154,000
Ca3158_R		-0.2135	ug/L	2.073	971.1	-1.074
Cd2265_A		19,400	ug/L	15.35	0.07910	354,600
Co2286_A		20,660	ug/L	18.68	0.09041	89,990
Cr2677_A		19,700	ug/L	22.08	0.1121	424,900
Cu3273_A		21,010	ug/L	272.3	1.296	478,200
Fe2599_R		-12.43	ug/L	2.462	19.81	-2.097
K_7664_R		9.701	ug/L	19.30	198.9	15.43
Li6707_R		19,870	ug/L	204.0	1.027	197,800
Mg2025_A		-1,373	ug/L	10.92	0.7952	514.6
Mn2576_R		20,230	ug/L	165.9	0.8203	100,800
Mo2020_A		5,227	ug/L	21.76	0.4164	9,934
Na5895_R		37.55	ug/L	1.603	4.268	3.885
Ni2316_A		20,920	ug/L	18.83	0.09001	56,290
Pb2203_A		21,030	ug/L	1.521	0.007234	26,250
Sb2068_A	W	21,100	ug/L	55.76	0.2643	7,256
Se1960_A	W	21,680	ug/L	64.57	0.2978	3,862
Si2516_R		138.4	ug/L	6.465	4.670	55.60
Sn1899_A		20,370	ug/L	3.648	0.01791	8,996
Sr4215_R		20,260	ug/L	501.5	2.475	1,025,000
Ti3349_A		19,900	ug/L	145.5	0.7310	889,700
TI1908_A		20,620	ug/L	15.81	0.07667	8,205

Published: 1/9/2015 9:51:12AM Page 4 of 66

LRS1

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:27:01PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
V_2924_A		20,200	ug/L	145.6	0.7209	458,100
Zn2062_A		19,430	ug/L	39.64	0.2040	55,780
Y_3600_R		15,204	Cts/S	71.934	0.47313	15,204
Y_2243_A		10,926	Cts/S	16.920	0.15487	10,926
Y_3600_A		352,760	Cts/S	286.80	0.081302	352,760

LRS2

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:32:26PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.939	ug/L	0.5453	28.12	-1,719
Al3961_R		486,300	ug/L	1,625	0.3341	256,500
As1891_A		25.38	ug/L	1.116	4.397	0.5699
Au2427_A		8.726	ug/L	0.1397	1.600	183.4
B_2089_A		13.27	ug/L	0.7379	5.563	13.86
Ba4554_R		20.40	ug/L	0.6309	3.093	779.2
Be3130_R		6.009	ug/L	0.3939	6.555	335.6
Ca3158_R	W	470,200	ug/L	14,700	3.125	366,200
Cd2265_A		4.274	ug/L	0.2268	5.306	321.8
Co2286_A		2.094	ug/L	0.4880	23.31	14.63
Cr2677_A		2.376	ug/L	0.7673	32.30	86.20
Cu3273_A		2.899	ug/L	0.8276	28.55	100.2
Fe2599_R	W	231,800	ug/L	886.4	0.3825	212,900
K_7664_R		286,000	ug/L	1,599	0.5589	186,600
Li6707_R		17.03	ug/L	2.316	13.60	152.0
Mg2025_A		192,600	ug/L	783.8	0.4069	31,690
Mn2576_R		13.14	ug/L	0.7103	5.404	75.62
Mo2020_A		18.47	ug/L	3.887	21.05	34.28
Na5895_R	W	187,600	ug/L	435.8	0.2323	292,900
Ni2316_A		4.942	ug/L	0.1645	3.327	-11.19
Pb2203_A		4.066	ug/L	2.192	53.90	-64.44
Sb2068_A		7.520	ug/L	1.447	19.24	12.18
Se1960_A		22.45	ug/L	10.74	47.84	6.511
Si2516_R		49,140	ug/L	98.69	0.2008	11,490
Sn1899_A		8.415	ug/L	1.635	19.43	4.259
Sr4215_R		13.03	ug/L	0.6922	5.314	623.8
Ti3349_A		27.07	ug/L	1.092	4.035	1,079
TI1908_A		2.136	ug/L	1.086	50.83	-0.8578
V_2924_A		4.599	ug/L	0.5804	12.62	185.4
Zn2062_A		9.310	ug/L	0.001405	0.01509	25.45
Y_3600_R		14,865	Cts/S	34.042	0.22901	14,865
Y_2243_A		10,218	Cts/S	15.543	0.15211	10,218
Y_3600_A		322,070	Cts/S	3,106.8	0.96463	322,070

ICSA

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:41:44PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.476	ug/L	0.04277	2.897	-1,311
Al3961_R		477,100	ug/L	1,531	0.3209	251,300
As1891_A		3.844	ug/L	2.149	55.89	-3.002
Au2427_A		-1.084	ug/L	0.9985	92.15	102.8
B_2089_A		5.898	ug/L	0.5113	8.668	6.729
Ba4554_R		-0.1235	ug/L	0.1160	93.91	16.69
Be3130_R		0.06113	ug/L	0.06139	100.4	-3.510

Published: 1/9/2015 9:51:12AM Page 5 of 66

ICSA

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:41:44PM Sample Type: QC

Acquire Date.	1/0/201	5 12.+1.++1 IV	•	Sample Type.			
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Ca3158_R		448,100	ug/L	2,734	0.6100	348,600	
Cd2265_A		2.019	ug/L	0.1093	5.412	223.4	
Co2286_A		-0.2878	ug/L	0.3399	118.1	4.774	
Cr2677_A		-0.2082	ug/L	0.3032	145.6	27.25	
Cu3273_A		-2.852	ug/L	0.2837	9.950	-13.88	
Fe2599_R		175,600	ug/L	1,489	0.8481	161,000	
K_7664_R		232.8	ug/L	36.47	15.66	160.4	
Li6707_R		6.344	ug/L	1.235	19.46	47.98	
Mg2025_A		458,300	ug/L	105.1	0.02293	75,710	
Mn2576_R		-0.8925	ug/L	0.9797	109.8	3.310	
Mo2020_A		2.381	ug/L	0.1753	7.362	5.701	
Na5895_R		109.0	ug/L	3.714	3.406	115.3	
Ni2316_A		1.047	ug/L	0.3603	34.41	-15.65	
Pb2203_A		0.2744	ug/L	2.373	865.0	-69.02	
Sb2068_A		0.01117	ug/L	1.636	14,640	8.779	
Se1960_A		4.867	ug/L	3.608	74.14	3.578	
Si2516_R		-0.7694	ug/L	13.88	1,804	5.024	
Sn1899_A		3.830	ug/L	0.04033	1.053	2.374	
Sr4215_R	W	4.859	ug/L	0.1495	3.076	219.5	
Ti3349_A		3.384	ug/L	0.06406	1.893	112.6	
TI1908_A		-0.2928	ug/L	0.6883	235.1	-1.767	
V_2924_A		-0.2839	ug/L	0.06175	21.75	61.31	
Zn2062_A		1.500	ug/L	0.1771	11.80	4.488	
Y_3600_R		14,846	Cts/S	22.762	0.15332	14,846	
Y_2243_A		10,258	Cts/S	1.5707	0.015311	10,258	
Y_3600_A		324,000	Cts/S	750.03	0.23149	324,000	

ICSAB

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:46:41PM

Alialyst Name.	L/ \(\v)				
Acquire Date:	1/8/2015 12:46:41PM			Sample Type:	QC
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	222.8	ug/L	1.135	0.5095	5,811
Al3961_R	481,800	ug/L	13,420	2.786	251,300
As1891_A	108.8	ug/L	0.3122	0.2869	23.31
Au2427_A	532.3	ug/L	7.508	1.410	2,525
B_2089_A	507.7	ug/L	0.3620	0.07130	476.0
Ba4554_R	523.3	ug/L	3.683	0.7038	19,250
Be3130_R	505.7	ug/L	4.849	0.9589	28,580
Ca3158_R	464,200	ug/L	6,249	1.346	357,600
Cd2265_A	962.9	ug/L	0.01233	0.001280	16,570
Co2286_A	475.4	ug/L	0.6409	0.1348	1,934
Cr2677_A	494.9	ug/L	0.7989	0.1614	9,777
Cu3273_A	533.2	ug/L	0.1872	0.03511	11,130
Fe2599_R	177,100	ug/L	2,447	1.382	160,900
K_7664_R	21,460	ug/L	226.2	1.054	13,860
Li6707_R	562.7	ug/L	2.211	0.3930	5,403
Mg2025_A	464,300	ug/L	166.4	0.03584	76,080
Mn2576_R	484.9	ug/L	4.582	0.9450	2,344
Mo2020_A	491.0	ug/L	4.017	0.8181	870.3
Na5895_R	21,720	ug/L	149.5	0.6882	33,490
Ni2316_A	951.1	ug/L	0.3978	0.04183	2,365
Pb2203_A	47.05	ug/L	0.6382	1.357	-14.96
Sb2068_A	631.4	ug/L	3.106	0.4919	210.8
Se1960_A	52.62	ug/L	0.6749	1.283	11.51
Si2516_R	1,986	ug/L	34.64	1.744	465.3
Sn1899_A	468.4	ug/L	0.5232	0.1117	193.3
_		-			

Published: 1/9/2015 9:51:12AM Page 6 of 66

ICSAB

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:46:41PM Sample Type: QC

		' ',							
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio			
Sr4215_R		525.0	ug/L	4.241	0.8078	25,670			
Ti3349_A		497.5	ug/L	1.904	0.3827	20,290			
TI1908_A		93.45	ug/L	1.546	1.654	31.30			
V_2924_A		505.3	ug/L	2.026	0.4009	10,480			
Zn2062_A		939.3	ug/L	0.02274	0.002421	2,512			
Y_3600_R		14,704	Cts/S	238.58	1.6226	14,704			
Y_2243_A		10,172	Cts/S	6.4106	0.063022	10,172			
Y_3600_A		322,010	Cts/S	314.38	0.097631	322,010			

CCV

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

1/8/2015 12:53:32PM QC Acquire Date: Sample Type: **Elem** Units Stddev %RSD Intensity Ratio **Flags** Avg Ag3280_A 492.4 3.569 0.7249 17,970 ug/L Al3961_R 86.96 0.7315 11,890 ug/L 6,511 136.9 As1891_A 490.9 ug/L 2.215 0.4513 2,509 Au2427 A 491.5 ug/L 11.11 2.260 B 2089 A 499.2 ug/L 0.3591 0.07195 526.0 Ba4554 R 491.9 ug/L 2.988 0.6075 18,990 Be3130 R 484.5 ug/L 3.603 0.7436 28,730 Ca3158 R 12,320 60.17 0.4886 9,941 ug/L Cd2265_A 493.1 0.3574 0.07248 9,433 ug/L 0.002959 Co2286 A 498.6 ug/L 0.0005940 2,277 Cr2677_A 490.1 ug/L 2.620 0.5347 11,010 0.7807 495.3 3.867 11,690 Cu3273_A ug/L 12,020 102.3 0.8509 11,470 Fe2599 R ug/L 12,100 K_7664_R 40.72 0.3365 8,203 ug/L Li6707_R 496.1 ug/L 4.187 0.8440 4,997 Mg2025_A 12,730 ug/L 10.61 0.08332 2,357 Mn2576 R 486.5 ug/L 3.343 0.6871 2,460 Mo2020 A 498.7 ug/L 3.195 0.6406 992.6 Na5895_R 12,450 ug/L 34.87 0.2802 20,120 Ni2316_A 502.9 ug/L 0.7516 0.1495 1,413 Pb2203_A 496.6 ug/L 0.6877 0.1385 642.3 Sb2068 A 497.9 ug/L 0.02638 0.005299 181.2 Se1960 A 487.8 ug/L 4.278 0.8771 91.96 Si2516 R 12,080 ug/L 106.6 0.8828 2,936 Sn1899 A 494.4 ug/L 1.087 0.2199 229.1 Sr4215 R 495.7 ug/L 4.446 0.8968 25.430 483.5 ug/L 4.406 22,480 Ti3349 A 0.9114 505.7 0.8564 208.9 TI1908_A 0.1694 ug/L V_2924_A 484.3 11,370 ug/L 2.936 0.6062 0.6454 Zn2062_A 486.3 ug/L 0.1327 1,460 Y_3600_R 15,427 Cts/S 87.447 0.56686 15,427 Y 2243 A 11,422 Cts/S 7.7195 0.067583 11,422 367,130 Y_3600_A 367,130 Cts/S 2,486.0 0.67714

CCB

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 12:58:28PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1557	ug/L	0.3084	198.1	-3.488
Al3961_R		1.704	ug/L	11.03	647.5	-2.776
As1891_A		2.351	ug/L	1.058	44.99	1.020
Au2427_A		0.6636	ug/L	0.01209	1.821	-2.725

Published: 1/9/2015 9:51:12AM Page 7 of 66

CCB

Method Name: K6010-2011 1,614 Method Revision:

EAM Analyst Name:

1/8/2015 12:58:28PM Sample Type: QC Acquire Date:

- 1					
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
B_2089_A	4.861	ug/L	0.3052	6.279	6.576
Ba4554_R	-0.2670	ug/L	0.1991	74.59	11.92
Be3130_R	-0.07553	ug/L	0.02560	33.89	-11.80
Ca3158_R	-1.858	ug/L	0.3548	19.10	-16.69
Cd2265_A	0.1250	ug/L	0.008623	6.897	0.7794
Co2286_A	-0.1524	ug/L	0.1731	113.6	6.214
Cr2677_A	0.007799	ug/L	0.06110	783.5	6.985
Cu3273_A	-0.07807	ug/L	0.2824	361.7	-47.89
Fe2599_R	-0.4525	ug/L	0.7938	175.4	9.397
K_7664_R	11.69	ug/L	20.77	177.7	17.12
Li6707_R	-0.3392	ug/L	1.021	301.1	-17.83
Mg2025_A	18.94	ug/L	5.927	31.30	-2.866
Mn2576_R	0.6492	ug/L	0.2511	38.68	1.775
Mo2020_A	4.243	ug/L	0.4880	11.50	10.18
Na5895_R	12.01	ug/L	2.591	21.56	-37.86
Ni2316_A	0.1949	ug/L	0.06815	34.97	-0.8626
Pb2203_A	0.05644	ug/L	0.4856	860.4	-4.035
Sb2068_A	-2.065	ug/L	0.1287	6.230	1.379
Se1960_A	2.598	ug/L	1.951	75.11	1.595
Si2516_R	3.707	ug/L	11.07	298.6	6.736
Sn1899_A	0.1596	ug/L	0.3285	205.8	0.9622
Sr4215_R	0.2599	ug/L	0.05672	21.82	-8.207
Ti3349_A	1.185	ug/L	0.09754	8.233	26.23
TI1908_A	0.05763	ug/L	1.360	2,360	-1.516
V_2924_A	0.007407	ug/L	0.2136	2,884	-12.26
Zn2062_A	0.03460	ug/L	0.1331	384.7	0.6006
Y_3600_R	15,595	Cts/S	88.665	0.56854	15,595
Y_2243_A	11,575	Cts/S	21.568	0.18633	11,575
Y_3600_A	379,090	Cts/S	4,184.2	1.1038	379,090

TH0811-005

Cr2677_A

Method Name: K6010-2011 Method Revision: 1,614

EAM Analyst Name: 1/8/2015 1:03:37PM Acquire Date:

0.5423

ug/L

Unknown Sample Type: Elem **Flags** Avg Units Stddev %RSD **Intensity Ratio** Ag3280 A 0.08754 ug/L 0.2051 234.3 -6.700 Al3961 R 77.30 ug/L 26.05 33.69 44.29 As1891 A 19.57 ug/L 1.405 7.178 5.259 Au2427 A 0.2434 ug/L 0.9261 380.4 -8.513 B 2089 A 54.66 ug/L 0.03743 0.06848 52.20 Ba4554 R 31.21 0.5275 1.690 1,191 ug/L Be3130_R -0.06167 0.01134 18.39 -10.58 ug/L W Ca3158_R 34,110 0.1909 26,780 ug/L 65.11 0.004981 0.006366 127.8 -1.195 Cd2265_A ug/L 7.551 Co2286_A 0.3257 ug/L 0.1692 51.96

Cu3273_A 1.178 ug/L 0.6672 56.65 -14.84 Fe2599_R 175.0 ug/L 2.712 1.549 171.6 K_7664_R 4,262 ug/L 5.311 0.1246 2,813 Li6707_R 5.043 ug/L 0.04344 0.8613 35.66 Mg2025 A 10,820 ug/L 13.61 0.1258 1,801 Mn2576 R 483.1 0.6074 0.1257 2,372 ug/L Mo2020 A 10.06 0.1410 1.402 ug/L 19.61 Na5895 R F 547,500 862,100 ug/L 6,598 1.205 0.08465 2.800 Ni2316_A 3.023 ug/L 6.443 Pb2203_A 0.1991 0.4462 224.1 -3.456 ug/L Sb2068_A -1.964 0.3180 16.19 1.265 ug/L

0.08019

14.79

Page 8 of 66 Published: 1/9/2015 9:51:12AM

17.81

TH0811-005

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:03:37PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Se1960_A		0.6850	ug/L	1.542	225.2	1.145
Si2516_R		5,874	ug/L	15.13	0.2576	1,390
Sn1899_A		0.04722	ug/L	0.2882	610.3	0.8147
Sr4215_R		247.1	ug/L	0.7581	0.3068	12,310
Ti3349_A		2.389	ug/L	0.2171	9.090	72.80
TI1908_A		0.7394	ug/L	0.1664	22.50	-1.509
V_2924_A		1.962	ug/L	0.1893	9.648	26.72
Zn2062_A		26.08	ug/L	0.05114	0.1961	71.56
Y_3600_R		14,990	Cts/S	30.073	0.20063	14,990
Y_2243_A		10,369	Cts/S	7.5399	0.072714	10,369
Y_3600_A		327,090	Cts/S	2,964.2	0.90621	327,090

PBWIA07ICW2

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:08:28PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2496	ug/L	0.02838	11.37	0.02500
Al3961_R		-1.610	ug/L	11.21	696.1	-4.646
As1891_A		0.1211	ug/L	0.6980	576.5	0.3936
Au2427_A		0.3465	ug/L	0.6201	179.0	-4.413
B_2089_A		3.857	ug/L	0.05471	1.418	5.505
Ba4554_R		-0.2127	ug/L	0.05614	26.39	14.10
Be3130_R		0.02799	ug/L	0.02821	100.8	-5.556
Ca3158_R		9.362	ug/L	2.873	30.68	-7.550
Cd2265_A		0.03559	ug/L	0.009174	25.78	-0.9633
Co2286_A		-0.2565	ug/L	0.09564	37.29	5.785
Cr2677_A		0.09102	ug/L	0.1809	198.7	8.941
Cu3273_A		-0.002183	ug/L	0.1434	6,570	-46.14
Fe2599_R		-0.7572	ug/L	2.291	302.5	9.133
K_7664_R		28.69	ug/L	19.27	67.17	28.87
Li6707_R		0.9044	ug/L	0.5550	61.37	-5.168
Mg2025_A		17.66	ug/L	0.8488	4.808	-3.157
Mn2576_R		0.8181	ug/L	0.2309	28.23	2.652
Mo2020_A		1.240	ug/L	0.2786	22.47	4.179
Na5895_R		230.2	ug/L	21.11	9.172	320.7
Ni2316_A		0.2758	ug/L	0.2157	78.21	-0.6457
Pb2203_A		0.1589	ug/L	0.8341	524.8	-3.938
Sb2068_A		-2.885	ug/L	0.6807	23.59	1.095
Se1960_A		0.7596	ug/L	1.359	179.0	1.261
Si2516_R		11.91	ug/L	23.77	199.6	8.766
Sn1899_A		-0.2778	ug/L	0.4931	177.5	0.7660
Sr4215_R		0.07302	ug/L	0.2818	385.9	-17.98
Ti3349_A		0.2034	ug/L	0.1180	58.03	-21.16
TI1908_A		0.2386	ug/L	0.06325	26.51	-1.454
V_2924_A		-0.1442	ug/L	0.1453	100.8	-15.63
Zn2062_A		0.7684	ug/L	0.03382	4.402	2.865
Y_3600_R		15,645	Cts/S	38.630	0.24692	15,645
Y_2243_A		11,702	Cts/S	28.666	0.24496	11,702
Y_3600_A		380,410	Cts/S	661.65	0.17393	380,410

LCSWIA07ICW2

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:13:35PM Sample Type: Unknown

 Elem
 Flags
 Avg
 Units
 Stddev
 %RSD
 Intensity Ratio

 Ag3280_A
 51.35
 ug/L
 0.2818
 0.5488
 1,870

Published: 1/9/2015 9:51:12AM Page 9 of 66

LCSWIA07ICW2

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:13:35PM Sample Type: Unknown

Elem Flags Avg Units Stddev %RSD Intensity Ratio Al3961_R 2,007 ug/L 6.306 0.3142 1,112 As1891_A 96.38 ug/L 1.481 1.537 27.40 Au2427_A 0.5490 ug/L 0.4721 85.99 7.519 B_2089_A 488.5 ug/L 1.370 0.2806 506.4 Ba4554_R 2.039 ug/L 16.05 0.7868 79,740 Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,461 ug/L 1.592 0.6416 2,018 Cd2265_A 246.3 ug/L 1.069 0.2075 2,370 Cr2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr2677_A 203.7 ug/L 1.0433 0.5571 6.069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L	Acquire Date:	1/0/2015 1.13.3	SPIVI		Sample Type:	UTKHOWIT
As1891_A 96.38 ug/L 1.481 1.537 27.40 Au2427_A 0.5490 ug/L 0.4721 85.99 -7.519 B_2089_A 488.5 ug/L 1.370 0.2806 506.4 Ba4554_R 2,039 ug/L 16.05 0.7868 79,740 Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,481 ug/L 15.92 0.6416 2,018 Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr267_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 5.431 0.	Elem	Flags Av	g Units	Stddev	%RSD	Intensity Ratio
Au2427_A 0.5490 ug/L 0.4721 85.99 -7.519 B_2089_A 488.5 ug/L 1.370 0.2806 506.4 Ba4554_R 2,039 ug/L 16.05 0.7868 79,740 Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,481 ug/L 0.3966 0.1610 4,737 C02286_A 246.3 ug/L 0.3966 0.1610 4,737 C02286_A 515.4 ug/L 1.069 0.2075 2,370 C02286_A 515.4 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li670_R 496.9 ug/L 16.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431	Al3961_R	2,00	7 ug/L	6.306	0.3142	1,112
B_2089_A 488.5 ug/L 1.370 0.2806 506.4 Ba4554_R 2,039 ug/L 16.05 0.7868 79,740 Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,481 ug/L 15.92 0.6416 2,018 Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr2677_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 0.8069 0.	As1891_A	96.3	8 ug/L	1.481	1.537	27.40
Ba4554_R 2,039 ug/L 16.05 0.7868 79,740 Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,481 ug/L 15.92 0.6416 2,018 Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr267_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,669 Fe2599_R 991.7 ug/L 7,603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8	Au2427_A	0.549	0 ug/L	0.4721	85.99	-7.519
Be3130_R 51.02 ug/L 0.03111 0.06098 3,044 Ca3158_R 2,481 ug/L 15.92 0.6416 2,018 Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr2677_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.9343 0	B_2089_A	488.	5 ug/L	1.370	0.2806	506.4
Ca3158_R 2,481 ug/L 15.92 0.6416 2,018 Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr2677_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li670_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.5442 0.103	Ba4554_R	2,03	9 ug/L	16.05	0.7868	79,740
Cd2265_A 246.3 ug/L 0.3966 0.1610 4,737 Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr267_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.42	Be3130_R	51.0	2 ug/L	0.03111	0.06098	3,044
Co2286_A 515.4 ug/L 1.069 0.2075 2,370 Cr2677_A 203.7 ug/L 0.2002 0.9831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K,7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 3.067 0.6043 2,601 Mo202_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706	Ca3158_R	2,48	1 ug/L	15.92	0.6416	2,018
Cr2677_A 203.7 ug/L 0.2002 0.09831 4,596 Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe259_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mm2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 0.4320 0.08706	Cd2265_A	246.	3 ug/L	0.3966	0.1610	4,737
Cu3273_A 257.2 ug/L 1.433 0.5571 6,069 Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 0.4320 0.08706	Co2286_A	515.	4 ug/L	1.069	0.2075	2,370
Fe2599_R 991.7 ug/L 7.603 0.7667 968.0 K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 0.4320 0.0870	Cr2677_A	203.	7 ug/L	0.2002	0.09831	4,596
K_7664_R 9,650 ug/L 16.08 0.1666 6,633 Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 <t< td=""><td>Cu3273_A</td><td>257.</td><td>2 ug/L</td><td>1.433</td><td>0.5571</td><td>6,069</td></t<>	Cu3273_A	257.	2 ug/L	1.433	0.5571	6,069
Li6707_R 496.9 ug/L 6.254 1.259 5,074 Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr215_R 498.5 ug/L 0.4751 0.09864 22,450 T11908_A 102.9 ug/L 0.6242 0.6	Fe2599_R	991.	7 ug/L	7.603	0.7667	968.0
Mg2025_A 5,054 ug/L 5.431 0.1075 949.5 Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 0.4751 0.08964 22,450 T11908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0	K_7664_R	9,65	0 ug/L	16.08	0.1666	6,633
Mn2576_R 507.6 ug/L 3.067 0.6043 2,601 Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 TI1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268	Li6707_R	496.	9 ug/L	6.254	1.259	5,074
Mo2020_A 97.96 ug/L 0.8069 0.8237 197.5 Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 TI1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 <t< td=""><td>Mg2025_A</td><td>5,05</td><td>4 ug/L</td><td>5.431</td><td>0.1075</td><td>949.5</td></t<>	Mg2025_A	5,05	4 ug/L	5.431	0.1075	949.5
Na5895_R 7,548 ug/L 32.97 0.4368 12,340 Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 <td>Mn2576_R</td> <td>507.</td> <td>6 ug/L</td> <td>3.067</td> <td>0.6043</td> <td>2,601</td>	Mn2576_R	507.	6 ug/L	3.067	0.6043	2,601
Ni2316_A 524.8 ug/L 0.5442 0.1037 1,485 Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 TI1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_2843_A 11,499 Cts/S 11.187 0.097282 11,499	Mo2020_A	97.9	6 ug/L	0.8069	0.8237	197.5
Pb2203_A 100.8 ug/L 0.9393 0.9316 128.2 Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 TI1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Na5895_R	7,54	8 ug/L	32.97	0.4368	12,340
Sb2068_A 98.25 ug/L 1.400 1.425 36.18 Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Ni2316_A	524.	8 ug/L	0.5442	0.1037	1,485
Se1960_A 100.2 ug/L 4.882 4.871 19.92 Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Tl1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Pb2203_A	100.	8 ug/L	0.9393	0.9316	128.2
Si2516_R 951.5 ug/L 8.975 0.9433 240.0 Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Tl1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Sb2068_A	98.2	5 ug/L	1.400	1.425	36.18
Sn1899_A 496.2 ug/L 0.4320 0.08706 231.5 Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499					4.871	
Sr4215_R 498.5 ug/L 3.437 0.6895 25,930 Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499		951.	5 ug/L	8.975	0.9433	240.0
Ti3349_A 481.6 ug/L 0.4751 0.09864 22,450 Ti1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Sn1899_A	496.	2 ug/L	0.4320	0.08706	231.5
Tl1908_A 102.9 ug/L 0.6242 0.6068 39.70 V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499				3.437	0.6895	25,930
V_2924_A 512.2 ug/L 1.268 0.2476 12,150 Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Ti3349_A	481.	6 ug/L	0.4751	0.09864	22,450
Zn2062_A 499.6 ug/L 0.6056 0.1212 1,511 Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499		102.	9 ug/L	0.6242	0.6068	39.70
Y_3600_R 15,637 Cts/S 212.06 1.3561 15,637 Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	V_2924_A	512.	2 ug/L	1.268	0.2476	12,150
Y_2243_A 11,499 Cts/S 11.187 0.097282 11,499	Zn2062_A	499.	6 ug/L	0.6056	0.1212	1,511
				212.06		
Y_3600_A 368,370 Cts/S 1,309.7 0.35556 368,370		11,49	9 Cts/S	11.187	0.097282	11,499
	Y_3600_A	368,37	0 Cts/S	1,309.7	0.35556	368,370

PBT1222A

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:18:35PM Sample Type: Unknown

, 10 qu 0 = a.to.							
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Ag3280_A		0.3838	ug/L	0.3846	100.2	4.625	
Al3961_R		-7.839	ug/L	10.34	131.9	-7.811	
As1891_A		0.01274	ug/L	0.2385	1,873	0.3336	
Au2427_A		0.1705	ug/L	0.3121	183.0	-4.925	
B_2089_A		7.341	ug/L	0.1247	1.698	8.421	
Ba4554_R	F	14.08	ug/L	0.06524	0.4634	554.5	
Be3130_R		-0.01997	ug/L	0.01816	90.94	-8.190	
Ca3158_R		98.86	ug/L	0.3142	0.3178	63.70	
Cd2265_A		0.01560	ug/L	0.02139	137.1	-1.250	
Co2286_A		-0.1441	ug/L	0.1295	89.88	5.813	
Cr2677_A		0.2667	ug/L	0.07025	26.34	11.72	
Cu3273_A		0.7965	ug/L	0.4175	52.42	-23.86	
Fe2599_R		-0.9586	ug/L	1.104	115.2	8.651	
K_7664_R		91.15	ug/L	15.36	16.85	69.50	
Li6707_R		0.5925	ug/L	0.2504	42.27	-8.091	
Mg2025_A		4.889	ug/L	3.083	63.07	-5.115	
Mn2576_R		1.828	ug/L	0.5909	32.32	7.591	
Mo2020_A		1.132	ug/L	0.09498	8.394	3.645	
Na5895_R	F	312,600	ug/L	5,628	1.800	497,200	

Published: 1/9/2015 9:51:12AM Page 10 of 66

PBT1222A

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:18:35PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ni2316_A		1.441	ug/L	0.05442	3.775	2.496
Pb2203_A		1.236	ug/L	2.267	183.5	-2.296
Sb2068_A		-2.662	ug/L	0.4956	18.61	1.074
Se1960_A		1.192	ug/L	0.2047	17.18	1.237
Si2516_R		13.04	ug/L	3.797	29.12	8.742
Sn1899_A		2.563	ug/L	0.07903	3.084	1.942
Sr4215_R		2.013	ug/L	0.008975	0.4459	80.39
Ti3349_A		0.7169	ug/L	0.05406	7.540	3.225
TI1908_A		-0.8571	ug/L	0.9034	105.4	-1.773
V_2924_A		-0.1892	ug/L	0.05026	26.57	-15.05
Zn2062_A		9.421	ug/L	0.2206	2.342	27.16
Y_3600_R		15,140	Cts/S	117.58	0.77661	15,140
Y_2243_A		10,774	Cts/S	25.168	0.23361	10,774
Y_3600_A		342,230	Cts/S	684.70	0.20007	342,230

SI0027-001T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:23:30PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1961	ug/L	0.02701	13.77	-2.275
Al3961_R		84.32	ug/L	17.38	20.62	43.04
As1891_A		2.328	ug/L	0.9738	41.84	0.9462
Au2427_A		-0.6488	ug/L	0.7156	110.3	-12.81
B_2089_A		13.01	ug/L	0.3435	2.640	13.97
Ba4554_R		67.06	ug/L	0.4695	0.7002	2,603
Be3130_R		0.08963	ug/L	0.003481	3.884	-1.863
Ca3158_R		3,298	ug/L	33.10	1.004	2,646
Cd2265_A		0.2339	ug/L	0.003737	1.598	2.768
Co2286_A		1.443	ug/L	0.03463	2.400	12.71
Cr2677_A		3.488	ug/L	0.2045	5.864	79.80
Cu3273_A		1.288	ug/L	0.2764	21.46	-12.95
Fe2599_R		55.96	ug/L	5.148	9.200	62.93
K_7664_R		410.6	ug/L	15.47	3.767	286.5
Li6707_R		0.6416	ug/L	0.3442	53.64	-7.759
Mg2025_A		210.8	ug/L	1.792	0.8500	30.90
Mn2576_R		427.8	ug/L	4.174	0.9758	2,158
Mo2020_A		0.8108	ug/L	0.01956	2.412	3.071
Na5895_R	F	277,300	ug/L	5,884	2.122	448,600
Ni2316_A		2.586	ug/L	0.4679	18.09	5.567
Pb2203_A		2.903	ug/L	0.4067	14.01	-0.2627
Sb2068_A		-2.234	ug/L	1.441	64.51	1.243
Se1960_A		-0.4561	ug/L	1.713	375.5	0.9912
Si2516_R		295.6	ug/L	11.68	3.953	77.27
Sn1899_A		0.06120	ug/L	0.4943	807.7	0.8587
Sr4215_R		24.30	ug/L	0.1723	0.7091	1,224
Ti3349_A		1.252	ug/L	0.4092	32.69	26.33
TI1908_A		-1.333	ug/L	0.6642	49.84	-2.349
V_2924_A		-0.01937	ug/L	0.07192	371.2	-14.49
Zn2062_A		34.76	ug/L	0.03048	0.08768	99.67
Y_3600_R		15,400	Cts/S	132.74	0.86200	15,400
Y_2243_A		10,850	Cts/S	8.2146	0.075712	10,850
Y_3600_A		340,920	Cts/S	66.634	0.019545	340,920

SI0027-002T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Published: 1/9/2015 9:51:12AM Page 11 of 66

SI0027-002T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:28:22PM Sample Type: Unknown

Acquire Date:	1/0/201	3 1.20.22FW			Sample Type:	Ulkliowii
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1069	ug/L	0.1212	113.3	-4.863
Al3961_R		40.41	ug/L	8.351	20.67	19.29
As1891_A		0.9184	ug/L	0.4960	54.00	0.5750
Au2427_A		-0.3065	ug/L	0.5423	176.9	-8.625
B_2089_A		6.037	ug/L	0.1645	2.724	7.196
Ba4554_R		38.28	ug/L	0.3429	0.8958	1,482
Be3130_R		0.01730	ug/L	0.001936	11.19	-6.040
Ca3158_R		5,492	ug/L	55.29	1.007	4,377
Cd2265_A		0.5991	ug/L	0.006258	1.045	9.340
Co2286_A		0.3455	ug/L	0.08493	24.58	7.960
Cr2677_A		0.6257	ug/L	0.1225	19.57	19.38
Cu3273_A		0.6087	ug/L	0.09956	16.36	-27.73
Fe2599_R		5.690	ug/L	2.408	42.32	14.99
K_7664_R		449.2	ug/L	14.05	3.128	309.9
Li6707_R		2.094	ug/L	0.9214	43.99	6.869
Mg2025_A		328.1	ug/L	4.141	1.262	51.37
Mn2576_R		149.3	ug/L	1.719	1.151	745.1
Mo2020_A		0.4279	ug/L	0.2567	59.98	2.345
Na5895_R	F	257,400	ug/L	3,122	1.213	412,700
Ni2316_A		1.440	ug/L	0.1673	11.61	2.509
Pb2203_A		2.200	ug/L	0.1271	5.778	-1.127
Sb2068_A		-2.464	ug/L	0.9833	39.91	1.155
Se1960_A		-0.7527	ug/L	1.079	143.3	0.9150
Si2516_R		411.6	ug/L	3.987	0.9687	104.4
Sn1899_A		0.5658	ug/L	0.9600	169.7	1.080
Sr4215_R		32.85	ug/L	0.2558	0.7786	1,647
Ti3349_A		0.02615	ug/L	0.08240	315.1	-26.49
TI1908_A		-2.847	ug/L	1.063	37.33	-2.712
V_2924_A		0.3416	ug/L	0.02772	8.114	-4.273
Zn2062_A		33.75	ug/L	0.06092	0.1805	96.79
Y_3600_R		15,260	Cts/S	94.178	0.61714	15,260
Y_2243_A		10,851	Cts/S	2.4795	0.022850	10,851
Y_3600_A		338,880	Cts/S	566.21	0.16708	338,880

SI0027-003T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:33:15PM Sample Type: Unknown

, loquil o Buto.						
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.03827	ug/L	0.06593	172.3	-7.350
Al3961_R		77.94	ug/L	15.46	19.84	41.94
As1891_A		17.90	ug/L	2.190	12.23	5.025
Au2427_A		0.3781	ug/L	0.6373	168.6	-8.412
B_2089_A		8.122	ug/L	0.03370	0.4150	9.144
Ba4554_R		80.25	ug/L	0.3092	0.3853	3,097
Be3130_R		0.06620	ug/L	0.05491	82.95	-3.181
Ca3158_R		16,190	ug/L	80.46	0.4970	12,990
Cd2265_A		1.037	ug/L	0.01766	1.704	17.17
Co2286_A		1.901	ug/L	0.1280	6.733	14.57
Cr2677_A		0.4517	ug/L	0.04096	9.069	16.70
Cu3273_A		2.346	ug/L	0.8204	34.97	10.25
Fe2599_R		19.46	ug/L	4.550	23.39	28.08
K_7664_R		788.7	ug/L	1.256	0.1592	539.8
Li6707_R		1.092	ug/L	0.5067	46.42	-3.209
Mg2025_A		520.0	ug/L	5.629	1.082	84.34
Mn2576_R		495.4	ug/L	3.798	0.7666	2,488
Mo2020_A		0.2027	ug/L	0.01624	8.011	1.910

Published: 1/9/2015 9:51:12AM Page 12 of 66

SI0027-003T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:33:15PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	F	294,200	ug/L	4,849	1.648	473,800
Ni2316_A		2.377	ug/L	0.1565	6.586	4.972
Pb2203_A		12.95	ug/L	0.4178	3.225	12.12
Sb2068_A		-2.568	ug/L	0.3951	15.38	1.104
Se1960_A		-2.259	ug/L	1.095	48.49	0.6735
Si2516_R		847.5	ug/L	1.472	0.1737	210.0
Sn1899_A		0.9301	ug/L	0.3422	36.80	1.231
Sr4215_R		75.35	ug/L	0.2971	0.3943	3,824
Ti3349_A		0.1852	ug/L	0.03535	19.09	-19.84
TI1908_A		0.2308	ug/L	0.4894	212.0	-1.770
V_2924_A		0.1166	ug/L	0.009721	8.336	-11.68
Zn2062_A		69.84	ug/L	0.005459	0.007817	198.3
Y_3600_R		15,332	Cts/S	102.93	0.67137	15,332
Y_2243_A		10,771	Cts/S	10.388	0.096444	10,771
Y_3600_A		341,540	Cts/S	4,413.9	1.2923	341,540

SI0027-004T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:38:07PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.04795	ug/L	0.05489	114.5	-6.763
Al3961_R		29.03	ug/L	5.571	19.19	13.12
As1891_A		1.063	ug/L	1.228	115.6	0.6074
Au2427_A		0.04917	ug/L	0.1610	327.4	-6.425
B_2089_A		6.987	ug/L	0.07091	1.015	8.029
Ba4554_R		63.77	ug/L	0.7900	1.239	2,424
Be3130_R		-0.01128	ug/L	0.1494	1,325	-7.530
Ca3158_R		6,532	ug/L	62.16	0.9516	5,144
Cd2265_A		0.7235	ug/L	0.03504	4.843	11.49
Co2286_A		-0.1940	ug/L	0.09242	47.64	5.582
Cr2677_A		0.2716	ug/L	0.01896	6.980	11.76
Cu3273_A		1.512	ug/L	0.6353	42.02	-7.875
Fe2599_R		5.799	ug/L	1.100	18.97	14.91
K_7664_R		441.4	ug/L	14.90	3.376	300.8
Li6707_R		1.580	ug/L	0.7044	44.59	1.755
Mg2025_A		277.8	ug/L	5.013	1.804	42.17
Mn2576_R		104.1	ug/L	0.4034	0.3875	512.9
Mo2020_A		-0.08508	ug/L	0.1885	221.6	1.363
Na5895_R	F	282,100	ug/L	6,142	2.177	446,700
Ni2316_A		1.405	ug/L	0.3074	21.88	2.392
Pb2203_A		3.164	ug/L	0.8508	26.89	0.07071
Sb2068_A		-2.739	ug/L	0.1007	3.676	1.033
Se1960_A		0.5146	ug/L	3.330	647.1	1.125
Si2516_R		380.9	ug/L	10.58	2.777	95.83
Sn1899_A		5.793	ug/L	1.247	21.53	3.342
Sr4215_R		35.59	ug/L	0.07944	0.2232	1,765
Ti3349_A		0.04542	ug/L	0.07724	170.0	-25.31
TI1908_A		-1.603	ug/L	0.6361	39.69	-2.154
V_2924_A		-0.07078	ug/L	0.1883	266.1	-12.70
Zn2062_A		44.75	ug/L	0.001358	0.003035	127.0
Y_3600_R		15,074	Cts/S	332.83	2.2080	15,074
Y_2243_A		10,753	Cts/S	1.2085	0.011239	10,753
Y_3600_A		333,860	Cts/S	1,091.9	0.32707	333,860

SI0027-005T

Method Name: K6010-2011 Method Revision: 1,614

Published: 1/9/2015 9:51:12AM Page 13 of 66

SI0027-005T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:43:00PM Sample Type: Unknown

Elem Flags Avg Units Stddev %RSD Intent Ag3280_A 0.2561 ug/L 0.01641 6.407 Al3961_R 24.66 ug/L 1.134 4.600 As1891_A 6.489 ug/L 0.6174 9.514 Au2427_A -0.1286 ug/L 0.2478 192.7 B_2089_A 6.543 ug/L 0.4778 7.302 Ba4554_R 61.37 ug/L 0.03644 160.1 Ca3158_R 7.652 ug/L 0.03644 160.1 Ca3158_R 7.652 ug/L 0.06307 8.518 Co2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 u	0.1500 11.48 2.042 -8.900 7.660 2,427
Al3961_R 24.66 ug/L 1.134 4.600 As1891_A 6.489 ug/L 0.6174 9.514 Au2427_A -0.1286 ug/L 0.2478 192.7 B_2089_A 6.543 ug/L 0.4778 7.302 Ba4554_R 61.37 ug/L 3.843 6.261 Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 0.2074 1,184	11.48 2.042 -8.900 7.660
As1891_A 6.489 ug/L 0.6174 9.514 Au2427_A -0.1286 ug/L 0.2478 192.7 B_2089_A 6.543 ug/L 0.4778 7.302 Ba4554_R 61.37 ug/L 3.843 6.261 Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 0.1445	2.042 -8.900 7.660
Au2427_A -0.1286 ug/L 0.2478 192.7 B_2089_A 6.543 ug/L 0.4778 7.302 Ba4554_R 61.37 ug/L 3.843 6.261 Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 0.1445	-8.900 7.660
B_2089_A 6.543 ug/L 0.4778 7.302 Ba4554_R 61.37 ug/L 3.843 6.261 Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 0.1	7.660
Ba4554_R 61.37 ug/L 3.843 6.261 Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1	
Be3130_R 0.02276 ug/L 0.03644 160.1 Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.	2 427
Ca3158_R 7,652 ug/L 429.2 5.609 Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217	∠,→∠1
Cd2265_A 0.7404 ug/L 0.06307 8.518 Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.2	-5.849
Co2286_A 1.104 ug/L 0.07526 6.816 Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	6,269
Cr2677_A 0.2936 ug/L 0.009492 3.233 Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	11.89
Cu3273_A 3.455 ug/L 0.03287 0.9514 Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	11.21
Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	12.91
Fe2599_R 10.87 ug/L 0.2019 1.858 K_7664_R 910.8 ug/L 57.45 6.308 Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	34.85
Li6707_R 0.4613 ug/L 0.6732 146.0 Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	20.42
Mg2025_A 365.8 ug/L 1.566 0.4283 Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	635.8
Mn2576_R 275.5 ug/L 17.24 6.258 Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	-9.634
Mo2020_A 0.01752 ug/L 0.2074 1,184 Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	57.86
Na5895_R F 275,100 ug/L 10,580 3.846 Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	1,414
Ni2316_A 1.546 ug/L 0.1445 9.348 Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	1.568
Pb2203_A 7.677 ug/L 0.3349 4.362 Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	453,200
Sb2068_A -3.198 ug/L 0.5040 15.76 Se1960_A 1.008 ug/L 1.217 120.7	2.786
Se1960_A 1.008 ug/L 1.217 120.7	5.659
-	0.8922
Si2516 R 497.4 ug/L 20.35 4.091	1.235
	128.4
Sn1899_A 2.723 ug/L 0.4367 16.04	2.022
Sr4215_R 40.70 ug/L 2.367 5.815	2,102
Ti3349_A 0.1078 ug/L 0.2441 226.4	-23.23
Tl1908_A -0.5545 ug/L 0.4729 85.29	-1.902
V_2924_A 0.2824 ug/L 0.2342 82.94	-6.420
Zn2062_A 43.33 ug/L 0.05892 0.1360	123.9
Y_3600_R 15,688 Cts/S 488.31 3.1126	15,688
Y_2243_A 10,830 Cts/S 17.913 0.16540	10,830
Y_3600_A 341,960 Cts/S 816.44 0.23875	341,960

SI0027-006T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:47:55PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2656	ug/L	0.07937	29.88	0.6000
Al3961_R		37.03	ug/L	3.732	10.08	17.31
As1891_A		-2.799	ug/L	0.6508	23.25	-0.4073
Au2427_A		-0.2977	ug/L	0.7444	250.0	-7.450
B_2089_A		7.894	ug/L	0.3638	4.608	8.979
Ba4554_R		110.6	ug/L	2.429	2.196	4,229
Be3130_R		0.01465	ug/L	0.07001	477.8	-6.199
Ca3158_R		4,997	ug/L	118.4	2.369	3,969
Cd2265_A		0.7962	ug/L	0.03084	3.873	12.90
Co2286_A		0.3635	ug/L	0.1188	32.68	8.034
Cr2677_A		0.1941	ug/L	0.1118	57.63	10.35
Cu3273_A		0.8274	ug/L	0.2616	31.62	-23.34
Fe2599_R		-2.191	ug/L	1.389	63.39	7.541
K_7664_R		1,075	ug/L	28.36	2.637	727.2
Li6707_R		3.387	ug/L	0.2138	6.312	19.69
Mg2025_A		293.4	ug/L	3.625	1.236	45.29
Mn2576_R		25.16	ug/L	0.5593	2.223	124.0
Mo2020_A		-0.1106	ug/L	0.04905	44.36	1.326

Published: 1/9/2015 9:51:12AM Page 14 of 66

SI0027-006T

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:47:55PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	F	275,700	ug/L	1,628	0.5905	440,800
Ni2316_A		1.849	ug/L	0.01842	0.9964	3.599
Pb2203_A	F	73,760	ug/L	284.7	0.3860	91,470
Sb2068_A		25.83	ug/L	0.4796	1.857	10.86
Se1960_A		-1.832	ug/L	0.5165	28.20	0.7135
Si2516_R		228.9	ug/L	11.37	4.967	60.40
Sn1899_A		1.897	ug/L	0.2259	11.91	1.663
Sr4215_R		31.85	ug/L	0.8449	2.653	1,592
Ti3349_A		-0.1263	ug/L	0.09520	75.38	-33.69
TI1908_A		-1.015	ug/L	0.7382	72.70	-1.870
V_2924_A		-0.02072	ug/L	0.2225	1,074	-11.45
Zn2062_A		41.44	ug/L	0.2039	0.4921	118.7
Y_3600_R		15,218	Cts/S	185.57	1.2194	15,218
Y_2243_A		10,848	Cts/S	35.192	0.32441	10,848
Y_3600_A		345,120	Cts/S	2,799.3	0.81109	345,120

CCV

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:52:48PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		494.2	ug/L	0.3396	0.06871	18,130
Al3961_R		11,940	ug/L	41.35	0.3464	6,642
As1891_A		485.7	ug/L	2.786	0.5737	135.7
Au2427_A		494.3	ug/L	12.42	2.513	2,530
B_2089_A		496.6	ug/L	1.404	0.2827	524.5
Ba4554_R		494.0	ug/L	3.676	0.7441	19,380
Be3130_R		485.7	ug/L	1.987	0.4090	29,260
Ca3158_R		12,290	ug/L	125.2	1.019	10,080
Cd2265_A		490.2	ug/L	0.9559	0.1950	9,403
Co2286_A		497.5	ug/L	2.101	0.4223	2,278
Cr2677_A		489.1	ug/L	1.470	0.3006	11,050
Cu3273_A		498.0	ug/L	0.7523	0.1511	11,820
Fe2599_R		12,030	ug/L	77.94	0.6480	11,660
K_7664_R		12,090	ug/L	25.72	0.2127	8,328
Li6707_R		498.9	ug/L	6.280	1.259	5,106
Mg2025_A		12,770	ug/L	21.51	0.1684	2,371
Mn2576_R		485.9	ug/L	2.479	0.5102	2,496
Mo2020_A		491.8	ug/L	2.623	0.5334	981.4
Na5895_R		12,210	ug/L	109.2	0.8946	20,040
Ni2316_A		501.9	ug/L	0.3092	0.06161	1,414
Pb2203_A		502.1	ug/L	1.750	0.3486	651.1
Sb2068_A		498.5	ug/L	1.437	0.2882	181.9
Se1960_A		486.2	ug/L	5.155	1.060	91.90
Si2516_R		11,980	ug/L	115.1	0.9606	2,959
Sn1899_A		490.3	ug/L	3.592	0.7326	227.8
Sr4215_R		500.0	ug/L	4.091	0.8181	26,070
Ti3349_A		485.1	ug/L	1.237	0.2550	22,680
TI1908_A		502.9	ug/L	1.482	0.2947	208.2
V_2924_A		487.4	ug/L	0.2621	0.05378	11,500
Zn2062_A		481.1	ug/L	2.291	0.4761	1,448
Y_3600_R		15,674	Cts/S	63.640	0.40601	15,674
Y_2243_A		11,452	Cts/S	13.343	0.11652	11,452
Y_3600_A		369,050	Cts/S	47.091	0.012760	369,050

CCB

Method Name: K6010-2011 Method Revision: 1,614

Published: 1/9/2015 9:51:12AM Page 15 of 66

CCB

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 1:57:45PM Sample Type: QC

Acquire Date:	1/0/2013 1.37.43FW			Sample Type: QC	
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	0.3288	ug/L	0.3314	100.8	2.913
Al3961_R	1.640	ug/L	3.118	190.1	-2.837
As1891_A	0.3053	ug/L	0.08142	26.67	0.4449
Au2427_A	0.9906	ug/L	0.2145	21.65	-1.038
B_2089_A	1.975	ug/L	0.05811	2.943	3.572
Ba4554_R	0.07993	ug/L	0.2773	346.9	25.68
Be3130_R	0.02000	ug/L	0.02863	143.1	-6.100
Ca3158_R	2.922	ug/L	3.204	109.6	-12.89
Cd2265_A	0.03766	ug/L	0.003736	9.920	-0.9176
Co2286_A	-0.2211	ug/L	0.09801	44.32	5.931
Cr2677_A	-0.005913	ug/L	0.05230	884.6	6.607
Cu3273_A	0.4005	ug/L	0.1027	25.64	-35.88
Fe2599_R	-0.5392	ug/L	2.053	380.9	9.384
K_7664_R	21.74	ug/L	36.12	166.1	24.25
Li6707_R	-0.003726	ug/L	2.554	68,560	-14.57
Mg2025_A	0.9257	ug/L	0.7446	80.44	-6.274
Mn2576_R	0.7008	ug/L	0.2236	31.91	2.057
Mo2020_A	2.884	ug/L	0.6566	22.77	7.496
Na5895_R	97.56	ug/L	0.8367	0.8576	103.1
Ni2316_A	-0.1072	ug/L	0.02513	23.43	-1.738
Pb2203_A	2.543	ug/L	0.3161	12.43	-0.7483
Sb2068_A	-2.958	ug/L	0.8684	29.36	1.065
Se1960_A	0.1020	ug/L	0.7917	776.1	1.131
Si2516_R	-4.298	ug/L	4.695	109.2	4.800
Sn1899_A	-0.9540	ug/L	0.4420	46.34	0.4437
Sr4215_R	0.05901	ug/L	0.03879	65.74	-18.77
Ti3349_A	0.9178	ug/L	0.09124	9.941	13.25
TI1908_A	-0.09727	ug/L	0.4859	499.6	-1.592
V_2924_A	-0.06536	ug/L	0.1665	254.8	-13.80
Zn2062_A	0.02517	ug/L	0.1123	446.3	0.5758
Y_3600_R	15,719	Cts/S	27.599	0.17557	15,719
Y_2243_A	11,651	Cts/S	37.180	0.31912	11,651
Y_3600_A	376,540	Cts/S	5,008.6	1.3302	376,540

SI0027-006TL

Method Name: K6010-2011 Method Revision: 1,614

Analyst Name: EAM

Acquire Date: 1/8/2015 2:02:53PM Sample Type: Unknown

rioquiro Bato.					p.o . , po	• • • • • • • • • • • • • • • • • • • •
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		1.201	ug/L	0.4318	35.96	-0.2625
Al3961_R		77.01	ug/L	56.85	73.82	4.949
As1891_A		-0.7681	ug/L	3.060	398.3	0.3036
Au2427_A		1.423	ug/L	6.326	444.7	-4.612
B_2089_A		12.51	ug/L	0.4307	3.442	3.926
Ba4554_R		109.7	ug/L	2.038	1.858	877.2
Be3130_R		-0.3249	ug/L	0.2450	75.40	-11.11
Ca3158_R		5,017	ug/L	75.25	1.500	804.5
Cd2265_A		1.027	ug/L	0.08482	8.259	2.268
Co2286_A		-0.5253	ug/L	0.9555	181.9	6.255
Cr2677_A		0.05827	ug/L	0.2388	409.8	6.759
Cu3273_A		0.1955	ug/L	1.127	576.7	-42.99
Fe2599_R		-29.08	ug/L	0.3517	1.209	4.225
K_7664_R		948.9	ug/L	35.96	3.790	139.0
Li6707_R		-6.790	ug/L	8.987	132.4	-28.29
Mg2025_A		341.5	ug/L	2.067	0.6053	6.164
Mn2576_R		25.67	ug/L	1.142	4.447	24.70
Mo2020_A		3.734	ug/L	0.001685	0.04513	3.061

Published: 1/9/2015 9:51:12AM Page 16 of 66

KATAHDIN ANALYTICAL SERVICES METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: <u>I (Thermo iCAP 6500)</u>	ANALYST: HMM ANALYSIS DAT	E: 1-15-15
FILE NAME: IIA (5A	METHOD: ICP ☑ 200.7 ☑ 6010C ☑ DoD	REVIEWED £ ~ 01-23-15 KATAHDIN ANALYTICA METALS SECTION

The pHs of all samples that were tested by direct analysis in this analytical run were checked just prior to analysis and confirmed to be <2. The time of preservation of these samples was checked in the "Measured Turbidity and Preservation of Incoming Samples" logbook to verify that they had been preserved at least 16 hours prior to analysis. These verifications were performed by (initials) on _____ (date).

STANDARDS USED:

Standard Name	Standard ID	Prep. Date	Expiration Date	Standard Conc.
Cal. Blk/ICB/CCB	mw15286	1-15/15	1-15-16	0 ug/L
Standard 1	mwi5 256	12-19-14	2-14-15	Varies by Element
ICV	mw15263	12-23-14	3-23-15	Varies by Element
PQL	mw15 266	1279-14	3-5-15	Varies by Element
LRS1	mw15282	1-9-15	3-5-15	Varies by Element
LRS2	mw15264	12-23-14	3-5-15	Varies by Element
ICSA	mw15 281	1-9-15	4-9-15	Varies by Element
ICSAB	mw5 265	12-24-14	2-15-15	Varies by Element
CCV	mus 285	1-13-15	2-14-15	Varies by Element
Internal Standard	MW15784	1-12-15	1-12-15	5.0 mg/L Yttrium

dditional Commen		>
· •		
	5	
	, 31,22	
	harmon and the same and the sam	
		

Intensity Report

Author:

Published: 1/16/2015 10:12:00AM

Notes:

Blank

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

1/15/2015 4:29:02PM Standard Acquire Date: Sample Type: **Elem Flags** Units Stddev %RSD Intensity Ratio -0.00001200 Cts/S 0.0000 0.03283 Ag3280 A -4.838Al3961_R Cts/S 70.20 -0.0004350 0.0003050 -6.184As1891_A 0.00002000 Cts/S 0.00001600 80.09 0.2300 Au2427 A -0.0004230 Cts/S 0.0002520 59.58 -4.763B 2089 A 0.0002210 Cts/S 0.00005200 23.65 2.488 0.00002700 Ba4554 R 0.001460 Cts/S 1.863 20.70 Cts/S Be3130 R -0.0006450 0.00006000 9.276 -9.149 Cts/S Ca3158 R -0.0007140 0.0004270 59.89 -10.14 Cd2265 A -0.0002330 Cts/S 0.0001320 56.90 -2.614 Co2286 A 0.0005840 Cts/S 0.00004500 7.768 6.566 Cr2677_A 0.00001700 Cts/S 0.00005000 30.54 6.699 Cts/S Cu3273_A -0.00009800 0.000005000 4.951 -39.21 Cts/S Fe2599 R 0.0006250 0.00006200 9.980 8.854 K 7664 R Cts/S -0.00009000 0.001232 1,365 -1.347Cts/S Li6707 R -0.001727 0.00005800 3.361 -24.49Mg2025 A -0.0004750 Cts/S 0.00003300 7.050 -5.341Mn2576_R 0.0001020 Cts/S 0.0002560 249.9 1.438 Mo2020 A 0.0002420 Cts/S 0.00002800 11.74 2.725 Na5895 R -0.001693 Cts/S 0.0003860 22.78 -24.04 Ni2316 A -0.0001120 Cts/S 0.00007500 67.58 -1.255Pb2203 A -0.0003310 Cts/S 0.0001040 31.40 -3.7250.4656 Sb2068 A 0.0001190 Cts/S 0.000001000 1.337 Se1960 A 0.00007200 Cts/S 0.000006000 7.606 0.8149 Si2516 R 0.0004120 Cts/S 0.0002060 50.05 5.833 Sn1899 A 0.00005200 Cts/S 0.00002000 38.85 0.5836 Sr4215_R -0.001476 Cts/S 0.0001420 9.600 -20.92 -0.00009100 Cts/S 34.96 -36.43 Ti3349_A 0.00003200 TI1908 A -0.0001430 Cts/S 0.00001400 9.782 -1.609-0.00002500 V 2924 A Cts/S 0.00001000 41.42 -10.11Zn2062 A 0.00006000 Cts/S 0.000008000 13.84 0.6750 Cts/S 0.77450 Y 3600 R 14,181 109.83 14,181 Y 2243 A 11,242 Cts/S 24.431 0.21732 11,242 Y_3600_A 401,430 Cts/S 1,598.7 0.39826 401,430

Std 1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:34:09PM Sample Type: Standard Units %RSD **Intensity Ratio** Elem Flags Avg Stddev 0.04279 0.08722 Cts/S 0.00003700 Ag3280 A 33,540 Al3961_R 0.7764 Cts/S 0.007809 1.006 10,890 As1891_A 0.02455 Cts/S 0.00007400 0.3028 266.4 Au2427_A 0.4420 Cts/S 0.008726 1.974 4,796 B 2089 A 0.09219 Cts/S 0.0001400 0.1520 1,000 Ba4554 R 2.476 Cts/S 0.02242 0.9055 34,730 Be3130 R 3.304 Cts/S 0.03905 1.182 46,350 Ca3158 R 1.143 Cts/S 0.01273 1.114 16,030 Cd2265 A 1.640 Cts/S 0.0002850 0.01738 17,790 Co2286_A 0.4018 Cts/S 0.0002620 0.06523 4,360 Cr2677_A 0.05545 Cts/S 0.0001470 0.2646 21,320 Cu3273 A 0.05926 Cts/S 0.00004200 0.07103 22,780 Fe2599 R 1.239 Cts/S 0.01876 17,380 1.514

Published: 1/16/2015 10:12:00AM Page 1 of 30

Std 1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:34:09PM Sample Type: Standard

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
K_7664_R		1.136	Cts/S	0.01304	1.147	15,940
Li6707_R		0.6757	Cts/S	0.006612	0.9786	9,479
Mg2025_A		0.4017	Cts/S	0.000005000	0.001315	4,359
Mn2576_R		0.2629	Cts/S	0.002756	1.048	3,689
Mo2020_A		0.1745	Cts/S	0.001550	0.8881	1,894
Na5895_R		2.605	Cts/S	0.03538	1.358	36,550
Ni2316_A		0.2398	Cts/S	0.00008900	0.03731	2,602
Pb2203_A		0.1108	Cts/S	0.0003010	0.2713	1,202
Sb2068_A		0.03066	Cts/S	0.00001000	0.03279	332.7
Se1960_A		0.01637	Cts/S	0.0001360	0.8340	177.6
Si2516_R		0.3078	Cts/S	0.003321	1.079	4,319
Sn1899_A		0.03979	Cts/S	0.00006100	0.1544	431.8
Sr4215_R		3.087	Cts/S	0.03373	1.092	43,310
Ti3349_A		0.1083	Cts/S	0.0004350	0.4014	41,630
TI1908_A		0.03636	Cts/S	0.00007700	0.2114	394.6
V_2924_A		0.05353	Cts/S	0.000002000	0.004659	20,580
Zn2062_A		0.2600	Cts/S	0.0004710	0.1812	2,821
Y_3600_R		14,029	Cts/S	18.361	0.13088	14,029
Y_2243_A		10,851	Cts/S	10.973	0.10113	10,851
Y_3600_A		384,520	Cts/S	704.61	0.18325	384,520

ICV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:39:03PM Sample Type: QC

Acquire Date.	1/13/201	3 4.33.031 1	VI	3	ampie rype. QC	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		408.4	ug/L	0.01327	0.003248	14,060
Al3961_R		10,240	ug/L	109.8	1.073	4,455
As1891_A		400.1	ug/L	0.1851	0.04626	108.8
Au2427_A		389.1	ug/L	10.03	2.578	1,899
B_2089_A		410.6	ug/L	1.217	0.2964	420.3
Ba4554_R		410.0	ug/L	4.292	1.047	14,250
Be3130_R		415.0	ug/L	5.126	1.235	19,230
Ca3158_R		10,050	ug/L	147.3	1.465	6,438
Cd2265_A		409.4	ug/L	0.8718	0.2130	7,421
Co2286_A		411.6	ug/L	1.178	0.2862	1,833
Cr2677_A		408.4	ug/L	0.2886	0.07068	8,940
Cu3273_A		405.9	ug/L	1.046	0.2577	9,468
Fe2599_R		10,070	ug/L	142.5	1.415	7,007
K_7664_R		13,620	ug/L	108.6	0.7976	8,682
Li6707_R		405.9	ug/L	6.067	1.495	3,832
Mg2025_A		10,230	ug/L	22.84	0.2232	1,815
Mn2576_R		409.7	ug/L	1.819	0.4440	1,512
Mo2020_A		417.3	ug/L	1.096	0.2627	807.0
Na5895_R		9,962	ug/L	120.9	1.214	14,550
Ni2316_A		414.5	ug/L	0.3494	0.08429	1,099
Pb2203_A		417.9	ug/L	0.5403	0.1293	509.9
Sb2068_A		407.1	ug/L	2.309	0.5671	138.8
Se1960_A		405.7	ug/L	0.2186	0.05387	73.90
Si2516_R		9,967	ug/L	120.7	1.211	1,725
Sn1899_A		404.3	ug/L	1.716	0.4244	178.2
Sr4215_R		410.3	ug/L	5.185	1.264	17,760
Ti3349_A		400.4	ug/L	0.2910	0.07269	17,090
TI1908_A	W	422.9	ug/L	0.3779	0.08936	169.2
V_2924_A		410.3	ug/L	0.4456	0.1086	8,662
Zn2062_A		411.4	ug/L	2.010	0.4886	1,183
Y_3600_R		14,026	Cts/S	84.974	0.60585	14,026

Published: 1/16/2015 10:12:00AM Page 2 of 30

ICV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:39:03PM Sample Type: QC

Flags Intensity Ratio Elem Units Stddev %RSD <u>Avg</u> Y 2243 A Cts/S 44.397 0.40147 11.059 11,059 Y_3600_A 394,640 Cts/S 570.22 0.14449 394,640

ICB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

1/15/2015 4:46:01PM QC Acquire Date: Sample Type: **Elem Flags** Avg Units Stddev %RSD Intensity Ratio Ag3280 A -0.004584 0.2587 ug/L 5.642 -4.975 Al3961 R 4.798 ug/L 4.428 92.28 -3.969As1891 A -0.5981 ug/L 0.2636 44.08 0.06624 Au2427 A -0.3525ug/L 0.1773 50.28 -6.462 B_2089_A -0.4145ug/L 0.2541 61.30 2.126 Ba4554_R 0.2518 ug/L 0.5946 236.1 29.05 Be3130_R 0.05453 ug/L 0.05083 93.22 -6.504 176.2 Ca3158 R -3.233 ug/L 5.697 -12.02 Cd2265 A 36.01 0.04603 ug/L 0.01658 -1.758Co2286 A -0.1215 ug/L 0.07106 58.48 5.986 Cr2677 A -0.2133ug/L 0.1990 93.32 1.949 Cu3273 A -0.3225ug/L 0.05347 16.58 -46.73Fe2599 R -1.507 ug/L 3.469 230.2 7.675 K 7664 R 25.54 ug/L 0.05219 0.2044 14.95 Li6707_R -1.613 0.7774 48.18 -39.37 ug/L Mg2025_A -0.7365ug/L 1.121 152.2 -5.428 Mn2576 R -0.4065 ug/L 0.1442 35.48 -0.06259Mo2020 A 2.278 0.5504 24.17 7.139 ug/L 52.01 -18.50 Na5895 R 3.542 ug/L 1.842 -0.1988 Ni2316_A ug/L 0.1108 55.76 -1.773Pb2203_A -0.1430 0.03840 26.86 ug/L -3.881 84.49 Sb2068_A 0.6729 ug/L 0.5685 1.556 Se1960 A -0.6858 ug/L 1.706 248.8 0.6849 Si2516_R -7.024ug/L 9.169 130.5 4.556 Sn1899 A 0.2322 ug/L 0.3764 162.1 0.6824 Sr4215_R 0.1591 ug/L 0.1664 104.6 -13.73 Ti3349_A 0.5980 ug/L 0.09187 15.36 -10.28 TI1908 A -0.2817 ug/L 0.5027 178.4 -1.715 V 2924 A 0.2278 ug/L 0.08964 39.34 -5.434 Zn2062 A 0.4173 ug/L 0.04768 11.42 1.884 Y 3600 R 13.965 Cts/S 55.789 0.39948 13.965 Y 2243 A 11,166 Cts/S 15.658 0.14023 11,166 Cts/S 280.82 0.070224 399,890 Y_3600_A 399,890

PQL

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:51:08PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		10.78	ug/L	0.3082	2.859	371.1
Al3961_R		318.6	ug/L	13.99	4.393	131.1
As1891_A		6.895	ug/L	0.5825	8.448	2.132
Au2427_A		97.44	ug/L	3.885	3.987	477.8
B_2089_A		50.60	ug/L	0.5779	1.142	53.47
Ba4554_R		5.477	ug/L	0.4778	8.723	208.0
Be3130_R		5.189	ug/L	0.04227	0.8146	228.3
Ca3158_R		103.1	ug/L	11.24	10.91	55.42
Cd2265_A		5.143	ug/L	0.06210	1.207	91.92
Co2286_A		10.34	ug/L	0.1355	1.310	53.13

Published: 1/16/2015 10:12:00AM Page 3 of 30

PQL

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:51:08PM Sample Type: QC

7 toquire Bute.				Ou	ilipio i ypo.	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Cr2677_A		10.28	ug/L	0.06182	0.6016	233.4
Cu3273_A		26.98	ug/L	0.3677	1.363	598.8
Fe2599_R		102.5	ug/L	1.890	1.844	79.00
K_7664_R		1,037	ug/L	3.238	0.3123	651.6
Li6707_R		106.6	ug/L	1.666	1.563	976.8
Mg2025_A		106.7	ug/L	0.9568	0.8970	14.17
Mn2576_R		4.636	ug/L	0.2639	5.692	18.30
Mo2020_A		10.75	ug/L	0.02276	0.2118	23.71
Na5895_R		1,049	ug/L	3.893	0.3712	1,492
Ni2316_A		10.60	ug/L	0.09967	0.9403	27.28
Pb2203_A	W	6.402	ug/L	0.4768	7.448	4.233
Sb2068_A		8.369	ug/L	1.166	13.94	3.889
Se1960_A		8.542	ug/L	0.4892	5.728	2.373
Si2516_R		183.2	ug/L	8.955	4.887	36.94
Sn1899_A		106.4	ug/L	0.1712	0.1609	47.97
Sr4215_R		10.66	ug/L	0.1833	1.720	435.7
Ti3349_A		15.40	ug/L	0.1878	1.219	628.3
TI1908_A		16.26	ug/L	0.7473	4.596	5.080
V_2924_A		10.37	ug/L	0.3067	2.957	211.2
Zn2062_A		20.81	ug/L	0.1191	0.5722	61.35
Y_3600_R		13,855	Cts/S	41.145	0.29698	13,855
Y_2243_A		11,211	Cts/S	12.158	0.10845	11,211
Y_3600_A		398,220	Cts/S	4,167.4	1.0465	398,220

LRS1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:58:15PM Sample Type: QC

Elem Flags Avg Units Stddev %RSD Interest Ag3280_A W 2,110 ug/L 0.3854 0.01827 Al3961_R 30.50 ug/L 6.841 22.43 As1891_A W 21,350 ug/L 3.485 0.01632 Au2427_A W 21,840 ug/L 19.74 0.09041 B_2089_A W 21,250 ug/L 13.03 0.06133 Ba4554_R 20,010 ug/L 17.37 0.08680 Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	70,030 76.44 5,508 101,200 20,110 691,300 934,600 0.6935 338,800
As1891_A W 21,350 ug/L 3.485 0.01632 Au2427_A W 21,840 ug/L 19.74 0.09041 B_2089_A W 21,250 ug/L 13.03 0.06133 Ba4554_R 20,010 ug/L 17.37 0.08680 Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	5,508 101,200 20,110 691,300 934,600 0.6935 338,800
As1891_A W 21,350 ug/L 3.485 0.01632 Au2427_A W 21,840 ug/L 19.74 0.09041 B_2089_A W 21,250 ug/L 13.03 0.06133 Ba4554_R 20,010 ug/L 17.37 0.08680 Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	101,200 20,110 691,300 934,600 0.6935 338,800
B_2089_A W 21,250 ug/L 13.03 0.06133 Ba4554_R 20,010 ug/L 17.37 0.08680 Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	20,110 691,300 934,600 0.6935 338,800
Ba4554_R 20,010 ug/L 17.37 0.08680 Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	691,300 934,600 0.6935 338,800
Be3130_R 20,260 ug/L 194.8 0.9615 Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	934,600 0.6935 338,800
Ca3158_R -1.279 ug/L 5.419 423.8 Cd2265_A 19,690 ug/L 37.12 0.1885	0.6935 338,800
Cd2265_A 19,690 ug/L 37.12 0.1885	338,800
Cd2265_A 19,690 ug/L 37.12 0.1885	
	00.000
Co2286_A 20,950 ug/L 34.28 0.1636	88,360
Cr2677_A 20,280 ug/L 30.94 0.1526	425,900
Cu3273_A W 21,570 ug/L 19.24 0.08919	484,900
Fe2599_R -16.62 ug/L 0.9860 5.933	-2.777
K_7664_R 44.60 ug/L 18.85 42.26	27.10
Li6707_R 20,100 ug/L 72.18 0.3591	190,100
Mg2025_A -921.8 ug/L 10.57 1.146	576.8
Mn2576_R 20,570 ug/L 6.176 0.03003	75,470
Mo2020_A W 5,338 ug/L 16.21 0.3037	9,779
Na5895_R 33.66 ug/L 1.246 3.701	25.37
Ni2316_A 20,970 ug/L 7.515 0.03585	52,880
Pb2203_A W 21,280 ug/L 35.46 0.1666	24,930
Sb2068_A 20,990 ug/L 67.43 0.3213	6,734
Se1960_A F 22,330 ug/L 23.90 0.1071	3,824
Si2516_R 158.1 ug/L 5.190 3.284	45.20
Sn1899_A 20,730 ug/L 26.77 0.1291	8,660
Sr4215_R 20,380 ug/L 82.27 0.4037	878,800
Ti3349_A 19,970 ug/L 67.46 0.3378	819,200
TI1908_A 20,840 ug/L 41.11 0.1973	8,000

Published: 1/16/2015 10:12:00AM Page 4 of 30

LRS1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 4:58:15PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
V_2924_A		20,360	ug/L	1.935	0.009506	414,800
Zn2062_A		19,960	ug/L	98.87	0.4954	54,520
Y_3600_R		13,962	Cts/S	110.11	0.78861	13,962
Y_2243_A		10,511	Cts/S	10.270	0.097709	10,511
Y_3600_A		378,860	Cts/S	541.52	0.14293	378,860

LRS2

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:03:33PM Sample Type: QC

Acquire Date.	1/10/20	10 0.00.001	IVI	06	ample Type. QO	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		4.767	ug/L	0.4008	8.408	-1,792
Al3961_R		516,300	ug/L	262.4	0.05081	217,400
As1891_A		18.61	ug/L	1.800	9.669	1.216
Au2427_A		9.417	ug/L	1.311	13.93	180.4
B_2089_A		9.000	ug/L	2.605	28.94	10.68
Ba4554_R		17.60	ug/L	0.2350	1.335	610.7
Be3130_R		3.272	ug/L	0.2716	8.300	137.2
Ca3158_R	W	467,000	ug/L	9,645	2.065	289,600
Cd2265_A		0.3951	ug/L	0.4073	103.1	284.9
Co2286_A		1.293	ug/L	0.4813	37.23	10.89
Cr2677_A		0.2614	ug/L	0.2417	92.45	44.14
Cu3273_A		0.9188	ug/L	0.06271	6.825	68.03
Fe2599_R		239,600	ug/L	824.8	0.3443	161,000
K_7664_R		291,600	ug/L	2,214	0.7590	179,900
Li6707_R		21.62	ug/L	0.7480	3.459	175.3
Mg2025_A		190,600	ug/L	180.0	0.09444	29,970
Mn2576_R		11.75	ug/L	0.3891	3.312	47.79
Mo2020_A		21.28	ug/L	3.631	17.06	38.99
Na5895_R	W	188,400	ug/L	484.7	0.2573	266,400
Ni2316_A		4.416	ug/L	0.06188	1.401	-12.60
Pb2203_A		1.554	ug/L	0.1675	10.78	-66.03
Sb2068_A		5.495	ug/L	0.1604	2.919	10.47
Se1960_A		30.44	ug/L	6.067	19.93	6.583
Si2516_R		50,160	ug/L	111.7	0.2227	8,361
Sn1899_A		7.875	ug/L	0.3415	4.337	3.600
Sr4215_R		10.54	ug/L	0.3341	3.170	421.6
Ti3349_A		26.95	ug/L	1.553	5.763	969.2
TI1908_A		4.271	ug/L	2.346	54.93	-1.615
V_2924_A		3.272	ug/L	0.8029	24.54	143.6
Zn2062_A		5.209	ug/L	0.4404	8.455	13.97
Y_3600_R		13,565	Cts/S	76.654	0.56509	13,565
Y_2243_A		9,867.3	Cts/S	23.194	0.23505	9,867.3
Y_3600_A		342,750	Cts/S	3,101.8	0.90497	342,750
_ _		•		•		•

ICSA

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:12:32PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		2.593	ug/L	0.2242	8.647	-1,409
Al3961_R		514,100	ug/L	7,918	1.540	216,100
As1891_A		-0.005048	ug/L	3.290	65,180	-1.766
Au2427_A		1.676	ug/L	0.2461	14.68	112.9
B_2089_A		2.731	ug/L	0.7093	25.98	4.658
Ba4554_R		0.05444	ug/L	0.1241	228.1	21.60
Be3130_R		0.02043	ug/L	0.08396	410.9	-7.915

Published: 1/16/2015 10:12:00AM Page 5 of 30

ICSA

K6010-2011 Method Name: Method Revision: 1,626

HHM Analyst Name:

1/15/2015 5:12:32PM QC Acquire Date: Sample Type:

Acquire Date.			••	cample Type.		
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ca3158_R		457,900	ug/L	2,096	0.4578	283,600
Cd2265_A		-0.5558	ug/L	0.1958	35.22	203.7
Co2286_A		0.1292	ug/L	0.1698	131.4	6.085
Cr2677_A		-0.09692	ug/L	0.2554	263.5	29.54
Cu3273_A		-3.035	ug/L	0.1699	5.596	-5.450
Fe2599_R		183,800	ug/L	3,016	1.641	123,400
K_7664_R		260.0	ug/L	37.82	14.54	158.8
Li6707_R		12.66	ug/L	2.311	18.26	92.77
Mg2025_A		461,800	ug/L	449.8	0.09741	72,430
Mn2576_R		-0.9643	ug/L	1.324	137.3	0.8119
Mo2020_A		3.026	ug/L	0.5752	19.01	7.575
Na5895_R		80.14	ug/L	6.326	7.893	90.28
Ni2316_A		0.8597	ug/L	0.4356	50.67	-15.90
Pb2203_A		2.604	ug/L	0.2850	10.95	-66.28
Sb2068_A		2.518	ug/L	0.08441	3.352	8.799
Se1960_A		6.264	ug/L	0.8363	13.35	2.739
Si2516_R		28.65	ug/L	15.84	55.27	3.144
Sn1899_A		4.190	ug/L	1.096	26.16	2.149
Sr4215_R	W	4.997	ug/L	0.2329	4.661	189.1
Ti3349_A		3.279	ug/L	0.1991	6.072	90.71
TI1908_A		3.003	ug/L	0.3925	13.07	-1.927
V_2924_A		0.1601	ug/L	0.1643	102.7	66.00
Zn2062_A		0.9105	ug/L	0.1697	18.64	2.922
Y_3600_R		13,544	Cts/S	68.272	0.50407	13,544
Y_2243_A		9,841.4	Cts/S	5.8003	0.058938	9,841.4
Y_3600_A		343,090	Cts/S	3,875.5	1.1296	343,090

ICSAB

K6010-2011 1,626 Method Name: Method Revision:

HHM Analyst Name: 1/15/2015 5:17:17PM

Analyst Name.	I II IIVI					
Acquire Date:	1/15/201	5 5:17:17PM			Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		226.2	ug/L	0.5294	0.2340	5,372
Al3961_R		514,500	ug/L	7,954	1.546	213,900
As1891_A		98.60	ug/L	2.386	2.420	22.33
Au2427_A		524.8	ug/L	10.97	2.090	2,384
B_2089_A		505.2	ug/L	0.04491	0.008889	459.2
Ba4554_R		530.5	ug/L	3.947	0.7441	17,600
Be3130_R		525.1	ug/L	8.481	1.615	23,230
Ca3158_R		456,200	ug/L	11,970	2.623	279,500
Cd2265_A		959.8	ug/L	0.7542	0.07858	15,680
Co2286_A		474.2	ug/L	1.155	0.2436	1,879
Cr2677_A		496.0	ug/L	2.286	0.4608	9,556
Cu3273_A		532.7	ug/L	1.927	0.3617	11,010
Fe2599_R		184,800	ug/L	3,088	1.671	122,700
K_7664_R		22,050	ug/L	62.65	0.2841	13,430
Li6707_R		567.4	ug/L	1.839	0.3240	5,126
Mg2025_A		460,300	ug/L	372.7	0.08096	72,250
Mn2576_R		497.3	ug/L	4.834	0.9720	1,755
Mo2020_A		487.7	ug/L	3.277	0.6719	839.2
Na5895_R		21,660	ug/L	46.98	0.2169	30,240
Ni2316_A		939.9	ug/L	0.2462	0.02620	2,203
Pb2203_A		49.16	ug/L	1.521	3.095	-15.50
Sb2068_A		630.2	ug/L	3.647	0.5787	197.4
Se1960_A		55.85	ug/L	1.860	3.331	10.72
Si2516_R		2,106	ug/L	49.10	2.331	346.1
Sn1899_A		470.6	ug/L	2.306	0.4900	184.6

Published: 1/16/2015 10:12:00AM Page 6 of 30 **ICSAB**

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:17:17PM Sample Type: QC

				_		
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Sr4215_R		527.0	ug/L	2.164	0.4106	21,790
Ti3349_A		496.9	ug/L	1.706	0.3433	18,620
TI1908_A		95.49	ug/L	1.060	1.110	29.66
V_2924_A		513.3	ug/L	2.185	0.4257	9,587
Zn2062_A		945.7	ug/L	0.8066	0.08529	2,422
Y_3600_R		13,397	Cts/S	8.8521	0.066077	13,397
Y_2243_A		9,845.8	Cts/S	0.12667	0.0012870	9,845.8
Y_3600_A		346,470	Cts/S	1,803.6	0.52058	346,470

CCV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

1/15/2015 5:23:59PM Sample Type: QC Acquire Date: **Elem** Units Stddev %RSD Intensity Ratio **Flags** Avg Ag3280_A 508.1 3.023 0.5949 17,320 ug/L Al3961_R 26.39 0.2066 12,780 ug/L 5,613 As1891_A 503.1 ug/L 1.331 0.2645 136.7 Au2427 A 493.6 ug/L 12.83 2.599 2,410 B 2089 A 508.1 ug/L 0.9987 0.1966 519.1 Ba4554 R 506.9 ug/L 3.914 0.7720 17,780 ug/L Be3130 R 512.8 1.705 0.3325 23,980 Ca3158 R 12,400 193.5 8,018 ug/L 1.560 Cd2265_A 502.7 1.016 0.2021 9,110 ug/L Co2286 A 508.3 ug/L 1.060 0.2085 2,261 Cr2677_A 506.3 ug/L 3.057 0.6038 10,970 508.7 2.283 11,760 Cu3273_A ug/L 0.4488 12,700 Fe2599 R ug/L 123.8 0.9744 8,919 K_7664_R 12,500 92.44 0.7396 8,042 ug/L 496.6 5.668 Li6707_R ug/L 1.141 4,737 Mg2025_A 12,750 ug/L 3.897 0.03057 2,262 Mn2576_R 504.3 ug/L 7.197 1.427 1,878 Mo2020_A 507.8 ug/L 3.007 0.5923 981.0 Na5895_R 12,320 ug/L 149.9 1.217 18,160 Ni2316_A 507.5 ug/L 0.2842 0.05601 1,345 Pb2203_A 511.4 ug/L 0.1299 0.02540 624.6 Sb2068 A 503.6 ug/L 2.000 0.3970 171.4 Se1960 A 500.7 ug/L 6.566 1.311 90.99 Si2516 R 12,480 ug/L 94.63 0.7581 2,179 Sn1899 A 500.8 ug/L 0.2652 0.05297 220.6 Sr4215 R 498.1 ug/L 6.084 1.221 21.760 501.9 ug/L 5.222 1.040 21,220 Ti3349 A 0.2810 0.05491 205.0 TI1908_A 511.8 ug/L V_2924_A 3.717 10,700 511.5 ug/L 0.7266 Zn2062_A 501.2 ug/L 0.3801 0.07583 1,441 Y_3600_R 14,156 Cts/S 115.16 0.81346 14,156 Y 2243 A 8.4095 11,055 11,055 Cts/S 0.076070 Y_3600_A 390,780 Cts/S 1,518.8 0.38866 390,780

CCB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:28:56PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1191	ug/L	0.3437	288.6	-0.7375
Al3961_R		-12.78	ug/L	0.05200	0.4068	-11.69
As1891_A		1.015	ug/L	0.7656	75.43	0.5111
Au2427_A		0.5818	ug/L	0.2686	46.16	-1.863

Published: 1/16/2015 10:12:00AM Page 7 of 30

CCB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

1/15/2015 5:28:56PM QC Acquire Date: Sample Type: Flags Elem Units Stddev %RSD **Intensity Ratio** <u>Avg</u> B 2089 A 2.105 ug/L 0.3023 14.36 4.725 Ba4554_R 0.02506 0.2287 912.4 21.51 ug/L Be3130 R -0.1028 0.06553 63.75 -13.96 ug/L Ca3158_R -5.947ug/L 2.141 36.01 -13.92 Cd2265_A 0.1102 ug/L 0.05582 50.67 -0.5822Co2286_A -0.08588ug/L 0.1632 190.0 6.182 Cr2677 A -0.01249 ug/L 0.01995 159.7 6.414 Cu3273 A -0.2033ug/L 0.1461 71.88 -44.00 Fe2599_R 2.736 ug/L 4.583 167.5 10.74 K_7664_R 29.20 ug/L 16.21 55.51 17.47 Li6707_R 2.340 ug/L 0.5607 23.96 -2.011Mg2025 A 8.256 2.125 25.74 -3.832 ug/L -0.1149 0.8176 711.8 1.025 Mn2576 R ug/L Mo2020 A 4.483 ug/L 0.6440 14.37 11.48 Na5895 R 0.2385 ug/L 5.080 2.130 -23.57Ni2316 A 0.03251 ug/L 0.05122 157.5 -1.1530.5392 0.2321 43.05 -3.044 Pb2203 A ug/L 0.8546 76.41 1.715 Sb2068 A 1.118 ug/L 3.042 1.345 44.21 1.368 Se1960 A ug/L -14.91 2.439 16.36 3.241 Si2516_R ug/L 0.4283 230.3 Sn1899_A 0.1859 ug/L 0.6648 70.02 -7.766Sr4215 R 0.3001 ug/L 0.2102 Ti3349 A 1.375 ug/L 0.07739 5.628 23.51 TI1908 A 0.07400 ug/L 0.07031 95.02 -1.576V_2924_A 0.2600 ug/L 0.02004 7.708 -5.043

SI0167-011

Zn2062_A

Y 3600 R

Y 2243 A

Y_3600_A

Sb2068 A

Method Name: K6010-2011 Method Revision: 1,626

0.002566

35.399

0.31605

4,087.3

5.152

0.25053

1.0205

90.35

0.0028180

0.5279

14,130

11,215

400,540

ug/L

Cts/S

Cts/S

Cts/S

Analyst Name: HHM

-0.04981

14,130

11,215

-19.70

ug/L

400,540

1/15/2015 5:34:04PM Sample Type: Unknown Acquire Date: **Intensity Ratio Elem Flags** Avg Units Stddev %RSD Aq3280 A 16.87 ug/L 0.6644 3.938 -339.4 Al3961 R 239,000 ug/L 1,884 0.7880 10,470 As1891 A 196.6 ug/L 3.133 1.593 4.499 Au2427 A 9.674 7.175 74.16 21.45 ug/L B 2089 A 21.72 1.641 7.557 4.723 ug/L 519.9 ug/L 0.7621 1,837 Ba4554 R 3.962 0.3898 2.289 Be3130 R 7.242 5.383 ug/L 30,550 1.797 Ca3158_R ug/L 549.0 1,962 0.01283 Cd2265_A -0.52452.447 52.41 ug/L 190.0 0.5235 0.2755 100.0 Co2286_A ug/L Cr2677 A 478.6 ug/L 4.036 0.8432 1,057 Cu3273 A 376.8 ug/L 3.646 0.9676 832.0 Fe2599_R W 418,200 ug/L 3,757 0.8985 29,260 K_7664_R 24,620 ug/L 307.3 1.248 1,579 Li6707_R 453.8 ug/L 21.11 4.652 409.5 105,000 0.1124 Mg2025 A ug/L 118.0 1,873 Mn2576 R 7,671 ug/L 109.2 1.423 2,849 Mo2020 A 20.71 ug/L 0.7178 3.466 6.777 Na5895 R 3,071 ug/L 134.8 4.388 428.3 Ni2316 A 583.6 ug/L 0.3381 0.05795 151.5 Pb2203_A 218.6 ug/L 1.209 0.5530 21.50

Published: 1/16/2015 10:12:00AM Page 8 of 30

17.80

1.590

SI0167-011

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:34:04PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Se1960_A		7.814	ug/L	3.282	41.99	1.040
Si2516_R		5,912	ug/L	397.4	6.722	106.8
Sn1899_A		35.90	ug/L	4.345	12.10	2.183
Sr4215_R		190.4	ug/L	0.8399	0.4411	809.7
Ti3349_A		6,741	ug/L	22.65	0.3360	28,630
TI1908_A		2.112	ug/L	1.212	57.41	-2.803
V_2924_A		383.5	ug/L	2.337	0.6095	829.0
Zn2062_A		939.3	ug/L	4.720	0.5025	274.8
Y_3600_R		14,122	Cts/S	190.93	1.3521	14,122
Y_2243_A		11,222	Cts/S	12.334	0.10991	11,222
Y_3600_A		392,930	Cts/S	1,082.8	0.27558	392,930

SI0167-011

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:39:06PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		11.62	ug/L	0.07572	0.6519	-698.1
Al3961_R	W	240,000	ug/L	2,095	0.8729	20,890
As1891_A		199.8	ug/L	6.227	3.117	8.843
Au2427_A		15.50	ug/L	0.1121	0.7235	52.25
B_2089_A		19.97	ug/L	2.039	10.21	6.444
Ba4554_R		511.6	ug/L	1.087	0.2125	3,574
Be3130_R		8.217	ug/L	0.1214	1.478	23.53
Ca3158_R		29,720	ug/L	397.4	1.337	3,804
Cd2265_A		-1.237	ug/L	0.2098	16.96	102.2
Co2286_A		189.1	ug/L	1.348	0.7125	189.7
Cr2677_A		474.3	ug/L	2.333	0.4918	2,077
Cu3273_A		371.8	ug/L	3.665	0.9858	1,670
Fe2599_R	W	413,700	ug/L	3,267	0.7897	57,540
K_7664_R		24,690	ug/L	391.1	1.584	3,149
Li6707_R		416.2	ug/L	11.96	2.874	766.9
Mg2025_A		103,000	ug/L	86.69	0.08420	3,628
Mn2576_R	W	7,578	ug/L	53.34	0.7039	5,593
Mo2020_A		8.049	ug/L	0.3129	3.887	5.798
Na5895_R		2,894	ug/L	12.69	0.4385	823.4
Ni2316_A		577.7	ug/L	0.4177	0.07230	297.0
Pb2203_A		213.0	ug/L	3.096	1.453	44.62
Sb2068_A		-7.557	ug/L	8.636	114.3	2.634
Se1960_A		-6.814	ug/L	0.1548	2.272	0.7211
Si2516_R		5,614	ug/L	56.04	0.9982	196.4
Sn1899_A		34.56	ug/L	2.271	6.571	3.614
Sr4215_R		183.6	ug/L	2.915	1.587	1,571
Ti3349_A	W	6,611	ug/L	48.63	0.7356	55,880
TI1908_A		1.588	ug/L	4.293	270.3	-3.953
V_2924_A		378.7	ug/L	3.079	0.8131	1,638
Zn2062_A		943.0	ug/L	1.284	0.1362	543.4
Y_3600_R		14,034	Cts/S	169.51	1.2078	14,034
Y_2243_A		11,066	Cts/S	17.283	0.15618	11,066
Y_3600_A		390,730	Cts/S	3,721.6	0.95250	390,730

SI0167-011

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:44:07PM Sample Type: Unknown

 Elem
 Flags
 Avg
 Units
 Stddev
 %RSD
 Intensity Ratio

 Ag3280_A
 9.386
 ug/L
 0.7515
 8.007
 -1,665

Published: 1/16/2015 10:12:00AM Page 9 of 30

SI0167-011

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:44:07PM Sample Type: Unknown

Acquire Date:	1/15/20	15 5.44.07	VI		Sample Type:	Ulknowii
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Al3961_R	W	232,000	ug/L	560.2	0.2415	51,330
As1891_A		186.1	ug/L	5.632	3.026	20.01
Au2427_A		17.75	ug/L	0.2333	1.315	135.9
B_2089_A		14.25	ug/L	1.169	8.206	9.460
Ba4554_R		500.2	ug/L	1.254	0.2507	8,849
Be3130_R		7.756	ug/L	0.01560	0.2012	65.57
Ca3158_R		28,740	ug/L	110.4	0.3840	9,365
Cd2265_A		-0.5769	ug/L	0.3120	54.08	248.6
Co2286_A		183.2	ug/L	0.6073	0.3315	445.6
Cr2677_A		459.7	ug/L	0.9622	0.2093	4,986
Cu3273_A		366.3	ug/L	1.968	0.5373	4,139
Fe2599_R	W	392,300	ug/L	3,080	0.7850	138,600
K_7664_R		24,130	ug/L	62.23	0.2578	7,824
Li6707_R		401.7	ug/L	1.469	0.3658	1,916
Mg2025_A	W	99,720	ug/L	161.8	0.1623	8,699
Mn2576_R	W	7,285	ug/L	33.92	0.4657	13,660
Mo2020_A		4.565	ug/L	0.9554	20.93	7.037
Na5895_R		2,801	ug/L	27.41	0.9786	2,060
Ni2316_A		556.9	ug/L	0.3319	0.05959	710.3
Pb2203_A		201.0	ug/L	0.8502	0.4229	108.7
Sb2068_A		1.153	ug/L	0.5687	49.35	5.823
Se1960_A		0.5184	ug/L	2.847	549.2	1.236
Si2516_R		5,519	ug/L	106.8	1.936	482.4
Sn1899_A		31.02	ug/L	0.2078	0.6700	7.317
Sr4215_R		178.8	ug/L	0.2565	0.1435	3,919
Ti3349_A	W	6,443	ug/L	10.93	0.1696	135,200
TI1908_A		3.122	ug/L	1.336	42.80	-6.898
V_2924_A		366.2	ug/L	0.9267	0.2530	3,944
Zn2062_A		919.6	ug/L	0.8610	0.09364	1,310
Y_3600_R		14,265	Cts/S	150.76	1.0569	14,265
Y_2243_A		10,949	Cts/S	14.509	0.13251	10,949
Y_3600_A		387,830	Cts/S	322.17	0.083070	387,830

PBWIA13ICW1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:49:09PM Sample Type: Unknown

- 1			P - 7P -					
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio		
Ag3280_A		0.03854	ug/L	0.1132	293.7	-4.763		
Al3961_R		58.87	ug/L	12.83	21.80	20.13		
As1891_A		1.479	ug/L	0.6819	46.12	0.6299		
Au2427_A		-0.6778	ug/L	0.4309	63.57	-8.013		
B_2089_A		0.3636	ug/L	0.4308	118.5	2.818		
Ba4554_R		0.2200	ug/L	0.1374	62.46	28.99		
Be3130_R		-0.08623	ug/L	0.06921	80.26	-13.50		
Ca3158_R		7.838	ug/L	5.680	72.47	-5.118		
Cd2265_A		0.04005	ug/L	0.02023	50.51	-1.713		
Co2286_A		0.02482	ug/L	0.04743	191.1	6.655		
Cr2677_A		-0.06815	ug/L	0.2220	325.8	5.464		
Cu3273_A		-0.2552	ug/L	0.07212	28.26	-47.34		
Fe2599_R	F	114.0	ug/L	22.89	20.08	90.76		
K_7664_R		-2.478	ug/L	15.44	623.2	-2.889		
Li6707_R		1.368	ug/L	0.6634	48.50	-11.60		
Mg2025_A		13.71	ug/L	0.8714	6.357	-2.866		
Mn2576_R		2.391	ug/L	0.08016	3.353	10.57		
Mo2020_A		-0.5441	ug/L	0.2526	46.43	1.646		
Na5895_R		24.72	ug/L	22.87	92.49	12.94		

Published: 1/16/2015 10:12:00AM Page 10 of 30

PBWIA13ICW1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:49:09PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ni2316_A		-0.1495	ug/L	0.01921	12.85	-1.659
Pb2203_A		0.3898	ug/L	0.7966	204.4	-3.219
Sb2068_A		0.5129	ug/L	0.06276	12.24	1.504
Se1960_A		-0.1702	ug/L	2.750	1,616	0.7787
Si2516_R		9.320	ug/L	5.791	62.13	7.605
Sn1899_A		0.4127	ug/L	0.1919	46.50	0.7624
Sr4215_R		0.1134	ug/L	0.05259	46.38	-16.26
Ti3349_A		1.938	ug/L	0.08404	4.336	49.93
TI1908_A		0.1982	ug/L	0.4421	223.0	-1.520
V_2924_A		0.1025	ug/L	0.1899	185.2	-8.097
Zn2062_A		0.3621	ug/L	0.008318	2.297	1.722
Y_3600_R		14,457	Cts/S	126.98	0.87836	14,457
Y_2243_A		11,164	Cts/S	6.5846	0.058981	11,164
Y_3600_A		419,310	Cts/S	3,193.0	0.76149	419,310

LCSWIA13ICW1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:54:17PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		52.36	ug/L	0.08534	0.1630	1,871
Al3961_R		2,186	ug/L	69.53	3.181	981.6
As1891_A		105.0	ug/L	1.476	1.406	28.51
Au2427_A		0.6129	ug/L	0.8380	136.7	-5.784
B_2089_A		538.3	ug/L	2.406	0.4470	531.8
Ba4554_R		2,124	ug/L	32.72	1.541	76,470
Be3130_R		53.46	ug/L	0.9940	1.859	2,548
Ca3158_R		2,462	ug/L	27.65	1.123	1,627
Cd2265_A		265.0	ug/L	1.092	0.4118	4,753
Co2286_A		570.7	ug/L	3.075	0.5389	2,515
Cr2677_A		212.2	ug/L	1.600	0.7540	4,840
Cu3273_A		264.4	ug/L	2.032	0.7685	6,408
Fe2599_R		1,017	ug/L	17.21	1.693	741.6
K_7664_R		9,908	ug/L	150.2	1.516	6,550
Li6707_R		491.5	ug/L	5.902	1.201	4,817
Mg2025_A		5,482	ug/L	10.09	0.1840	973.0
Mn2576_R		521.4	ug/L	7.531	1.444	1,995
Mo2020_A	W	83.23	ug/L	5.714	6.865	161.5
Na5895_R		7,400	ug/L	68.02	0.9192	11,200
Ni2316_A		557.2	ug/L	0.3740	0.06712	1,464
Pb2203_A		109.4	ug/L	0.07976	0.07294	129.7
Sb2068_A		103.6	ug/L	0.6172	0.5956	34.59
Se1960_A		94.91	ug/L	10.82	11.40	17.77
Si2516_R		972.8	ug/L	29.10	2.991	180.1
Sn1899_A		501.3	ug/L	7.903	1.577	218.9
Sr4215_R		487.7	ug/L	6.367	1.306	21,890
Ti3349_A		446.8	ug/L	3.528	0.7897	19,840
TI1908_A		111.9	ug/L	2.217	1.982	41.53
V_2924_A		510.5	ug/L	4.778	0.9358	11,300
Zn2062_A		567.3	ug/L	2.950	0.5200	1,618
Y_3600_R		14,545	Cts/S	11.430	0.078580	14,545
Y_2243_A		10,959	Cts/S	29.764	0.27159	10,959
Y_3600_A		410,900	Cts/S	3,769.5	0.91736	410,900

SI0168-001

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Published: 1/16/2015 10:12:00AM Page 11 of 30

SI0168-001

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 5:59:18PM Sample Type: Unknown

Acquire Date:	1/15/20	10 0.09.10FN	/I		Sample Type:	Ulkilowii
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2512	ug/L	0.1554	61.87	-39.70
Al3961_R		1,365	ug/L	34.57	2.532	621.0
As1891_A		7.127	ug/L	0.7050	9.893	1.977
Au2427_A		0.6669	ug/L	0.8931	133.9	-1.838
B_2089_A		791.5	ug/L	1.512	0.1910	751.3
Ba4554_R		643.3	ug/L	13.52	2.102	23,470
Be3130_R		0.06148	ug/L	0.05820	94.66	-7.997
Ca3158_R		16,070	ug/L	350.6	2.182	10,810
Cd2265_A		1.693	ug/L	0.01257	0.7424	32.42
Co2286_A		5.824	ug/L	0.1085	1.863	31.31
Cr2677_A		27.31	ug/L	0.02686	0.09837	620.6
Cu3273_A		527.1	ug/L	6.310	1.197	12,620
Fe2599_R		4,552	ug/L	116.4	2.557	3,331
K_7664_R		12,680	ug/L	195.6	1.542	8,490
Li6707_R		26.59	ug/L	0.7756	2.917	239.9
Mg2025_A		1,745	ug/L	0.1923	0.01102	291.1
Mn2576_R		385.3	ug/L	10.69	2.774	1,493
Mo2020_A		68.05	ug/L	2.950	4.336	127.9
Na5895_R	W	75,910	ug/L	1,786	2.352	116,600
Ni2316_A		101.3	ug/L	0.1770	0.1748	255.3
Pb2203_A		40.25	ug/L	0.6166	1.532	43.91
Sb2068_A		3.601	ug/L	1.195	33.18	1.898
Se1960_A		-0.02229	ug/L	0.9912	4,446	0.7924
Si2516_R		5,215	ug/L	112.7	2.160	950.4
Sn1899_A		18.87	ug/L	0.01403	0.07431	8.472
Sr4215_R		56.80	ug/L	1.154	2.031	2,563
Ti3349_A		43.54	ug/L	0.4361	1.002	1,873
TI1908_A		-0.3771	ug/L	0.2454	65.07	-2.041
V_2924_A		7.478	ug/L	0.1773	2.371	142.0
Zn2062_A	W	4,419	ug/L	13.24	0.2995	12,150
Y_3600_R		14,729	Cts/S	33.985	0.23074	14,729
Y_2243_A		10,566	Cts/S	22.026	0.20846	10,566
Y_3600_A		404,560	Cts/S	2,879.1	0.71164	404,560

SI0168-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:04:21PM Sample Type: Unknown

, loquil o Buto.				- Cu		
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-0.02863	ug/L	0.04511	157.6	-17.01
Al3961_R		134.7	ug/L	5.962	4.427	58.11
As1891_A		5.631	ug/L	0.4697	8.341	1.667
Au2427_A		0.2481	ug/L	0.6665	268.6	-4.238
B_2089_A		764.6	ug/L	3.565	0.4662	726.5
Ba4554_R		76.65	ug/L	2.927	3.818	2,882
Be3130_R		-0.01599	ug/L	0.02331	145.8	-10.64
Ca3158_R		6,156	ug/L	196.9	3.198	4,234
Cd2265_A		0.1265	ug/L	0.03428	27.09	1.091
Co2286_A		2.747	ug/L	0.09749	3.549	17.88
Cr2677_A		3.680	ug/L	0.02426	0.6594	90.72
Cu3273_A		26.56	ug/L	0.2069	0.7789	603.6
Fe2599_R		1,149	ug/L	51.01	4.440	867.7
K_7664_R		9,832	ug/L	349.1	3.551	6,740
Li6707_R		12.45	ug/L	0.7031	5.649	101.2
Mg2025_A		858.7	ug/L	0.4764	0.05548	140.6
Mn2576_R		187.2	ug/L	6.532	3.490	743.3
Mo2020_A		40.45	ug/L	1.438	3.555	77.19

Published: 1/16/2015 10:12:00AM Page 12 of 30

SI0168-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:04:21PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	W	58,070	ug/L	1,532	2.638	91,310
Ni2316_A		61.62	ug/L	0.05291	0.08586	155.3
Pb2203_A		4.855	ug/L	0.6967	14.35	2.232
Sb2068_A		0.7412	ug/L	0.3980	53.70	1.332
Se1960_A		-1.789	ug/L	1.447	80.90	0.4737
Si2516_R		3,113	ug/L	180.7	5.804	583.3
Sn1899_A		3.169	ug/L	0.2160	6.815	1.882
Sr4215_R		20.89	ug/L	0.7194	3.444	950.8
Ti3349_A		3.721	ug/L	0.2475	6.651	129.3
TI1908_A		0.1009	ug/L	0.7598	753.2	-1.649
V_2924_A		2.814	ug/L	0.1156	4.108	45.16
Zn2062_A	W	1,137	ug/L	1.876	0.1650	3,132
Y_3600_R		15,084	Cts/S	216.41	1.4346	15,084
Y_2243_A		10,585	Cts/S	6.3679	0.060160	10,585
Y_3600_A		408,250	Cts/S	823.70	0.20177	408,250

PBSIA14ICS1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:09:27PM Sample Type: Unknown

Acquire Date.	1/13/2013 0.09.271 W				Sample Type. Onknown		
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio	
Ag3280_A		0.1845	ug/L	0.08780	47.58	1.363	
Al3961_R		17.04	ug/L	5.298	31.09	1.502	
As1891_A		0.09139	ug/L	0.06909	75.60	0.2475	
Au2427_A		0.3655	ug/L	0.4835	132.3	-2.838	
B_2089_A		0.5683	ug/L	0.2198	38.68	3.034	
Ba4554_R		0.6105	ug/L	0.1166	19.10	43.15	
Be3130_R		-0.08786	ug/L	0.03294	37.49	-13.63	
Ca3158_R	F	385.2	ug/L	12.10	3.143	245.7	
Cd2265_A		0.04119	ug/L	0.04091	99.32	-1.746	
Co2286_A		-0.09787	ug/L	0.07344	75.03	5.942	
Cr2677_A		0.5964	ug/L	0.04142	6.946	20.91	
Cu3273_A		0.4729	ug/L	0.02857	6.042	-29.26	
Fe2599_R		38.56	ug/L	2.135	5.537	36.86	
K_7664_R		16.24	ug/L	11.55	71.14	9.309	
Li6707_R		4.391	ug/L	0.9089	20.70	18.29	
Mg2025_A		21.75	ug/L	0.6993	3.215	-1.385	
Mn2576_R		1.754	ug/L	0.3465	19.75	8.219	
Mo2020_A		2.597	ug/L	0.7112	27.38	7.559	
Na5895_R		88.71	ug/L	25.95	29.25	109.4	
Ni2316_A		0.4849	ug/L	0.01752	3.613	0.05385	
Pb2203_A		-0.4075	ug/L	0.3159	77.52	-4.101	
Sb2068_A		-0.4178	ug/L	0.5278	126.3	1.079	
Se1960_A		-1.340	ug/L	0.6454	48.16	0.5511	
Si2516_R		2.884	ug/L	2.886	100.1	6.507	
Sn1899_A		24.64	ug/L	0.08863	0.3596	11.21	
Sr4215_R	W	7.382	ug/L	0.04961	0.6721	310.3	
Ti3349_A		1.343	ug/L	0.08336	6.205	23.10	
TI1908_A		0.2805	ug/L	0.4167	148.6	-1.447	
V_2924_A		0.2414	ug/L	0.3617	149.8	-5.525	
Zn2062_A		1.726	ug/L	0.1910	11.07	5.534	
Y_3600_R		14,550	Cts/S	451.61	3.1039	14,550	
Y_2243_A		10,874	Cts/S	8.3555	0.076838	10,874	
Y_3600_A		420,060	Cts/S	2,746.4	0.65381	420,060	
		*		•		·	

LCSOIA14ICS1

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 13 of 30

LCSOIA14ICS1

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:14:35PM Sample Type: Unknown

Acquire Date:	1/13/2013	0.14.33FW			Sample Type:	UTIKITOWIT
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		47.11	ug/L	0.07909	0.1679	1,668
Al3961_R		2,046	ug/L	9.869	0.4823	909.4
As1891_A		105.4	ug/L	0.8953	0.8496	27.64
Au2427_A		0.3733	ug/L	1.273	341.0	-6.458
B_2089_A		521.7	ug/L	3.273	0.6274	498.8
Ba4554_R		2,034	ug/L	24.81	1.220	72,460
Be3130_R		50.49	ug/L	0.7358	1.457	2,380
Ca3158_R		2,551	ug/L	15.23	0.5972	1,668
Cd2265_A		259.4	ug/L	1.391	0.5361	4,494
Co2286_A		551.3	ug/L	2.726	0.4946	2,347
Cr2677_A		198.7	ug/L	0.6010	0.3024	4,498
Cu3273_A		245.9	ug/L	0.2332	0.09485	5,907
Fe2599_R		1,019	ug/L	9.930	0.9749	735.2
K_7664_R		9,587	ug/L	163.2	1.702	6,272
Li6707_R		477.1	ug/L	4.340	0.9096	4,626
Mg2025_A		5,173	ug/L	33.59	0.6493	887.3
Mn2576_R		495.2	ug/L	3.512	0.7091	1,874
Mo2020_A		111.6	ug/L	1.507	1.351	208.3
Na5895_R		7,006	ug/L	36.68	0.5236	10,490
Ni2316_A		526.7	ug/L	1.328	0.2521	1,337
Pb2203_A		105.6	ug/L	0.3563	0.3373	120.9
Sb2068_A		97.28	ug/L	1.560	1.604	31.21
Se1960_A		105.0	ug/L	1.015	0.9666	18.91
Si2516_R		954.1	ug/L	2.791	0.2926	175.0
Sn1899_A		542.1	ug/L	0.7152	0.1319	228.6
Sr4215_R		468.2	ug/L	4.749	1.014	20,790
Ti3349_A		435.2	ug/L	1.429	0.3284	19,170
TI1908_A		108.7	ug/L	1.884	1.734	39.03
V_2924_A		466.2	ug/L	0.04081	0.008754	10,240
Zn2062_A		547.0	ug/L	3.323	0.6075	1,507
Y_3600_R		14,392	Cts/S	24.826	0.17250	14,392
Y_2243_A		10,586	Cts/S	38.782	0.36633	10,586
Y_3600_A		407,600	Cts/S	861.35	0.21132	407,600

SI0210-001

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:19:36PM Sample Type: Unknown

rioquiro Buto.			=· =			
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2477	ug/L	0.2966	119.8	-20.20
Al3961_R		394.0	ug/L	5.501	1.396	175.2
As1891_A		0.3328	ug/L	0.03222	9.682	0.2499
Au2427_A		-0.1184	ug/L	0.1147	96.89	-4.435
B_2089_A		114.4	ug/L	0.2207	0.1929	113.4
Ba4554_R		21.90	ug/L	0.2801	1.279	824.3
Be3130_R		-0.09600	ug/L	0.04296	44.75	-14.49
Ca3158_R		1,558	ug/L	9.631	0.6181	1,045
Cd2265_A		0.5953	ug/L	0.01431	2.403	11.04
Co2286_A		1.786	ug/L	0.07407	4.147	14.14
Cr2677_A		13.84	ug/L	0.09122	0.6592	333.0
Cu3273_A		964.6	ug/L	0.8456	0.08767	24,240
Fe2599_R		2,430	ug/L	63.10	2.597	1,792
K_7664_R		315.5	ug/L	19.81	6.279	211.0
Li6707_R		3.566	ug/L	2.353	65.99	9.978
Mg2025_A		64.71	ug/L	0.02360	0.03647	7.098
Mn2576_R		99.05	ug/L	1.262	1.274	387.2
Mo2020_A		16.69	ug/L	0.01795	0.1076	34.07

Published: 1/16/2015 10:12:00AM Page 14 of 30

SI0210-001

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:19:36PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		89.03	ug/L	12.99	14.60	112.7
Ni2316_A		71.07	ug/L	0.4837	0.6806	182.9
Pb2203_A		220.7	ug/L	0.08675	0.03931	262.5
Sb2068_A		1.824	ug/L	0.02135	1.171	1.499
Se1960_A		1.267	ug/L	0.1331	10.50	1.013
Si2516_R		355.5	ug/L	15.32	4.310	70.76
Sn1899_A		44.04	ug/L	0.4476	1.016	19.48
Sr4215_R		2.478	ug/L	0.07395	2.984	91.53
Ti3349_A		7.286	ug/L	0.01114	0.1530	296.9
TI1908_A		0.2653	ug/L	0.2287	86.21	-1.535
V_2924_A		0.8502	ug/L	0.1259	14.81	5.713
Zn2062_A	W	2,395	ug/L	5.784	0.2415	6,736
Y_3600_R		14,817	Cts/S	283.91	1.9161	14,817
Y_2243_A		10,811	Cts/S	4.7132	0.043598	10,811
Y_3600_A		424,140	Cts/S	957.43	0.22573	424,140

CCV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:24:42PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	W	462.1	ug/L	0.04294	0.009292	16,500
Al3961_R		12,430	ug/L	167.6	1.348	5,583
As1891_A	W	540.1	ug/L	0.01225	0.002269	139.8
Au2427_A		496.7	ug/L	15.30	3.080	2,311
B_2089_A	W	529.8	ug/L	0.9975	0.1883	515.8
Ba4554_R		506.4	ug/L	3.835	0.7573	18,160
Be3130_R		498.1	ug/L	4.536	0.9107	23,810
Ca3158_R	W	11,720	ug/L	165.0	1.408	7,746
Cd2265_A		525.4	ug/L	0.1124	0.02139	9,075
Co2286_A	W	545.5	ug/L	1.107	0.2029	2,312
Cr2677_A		487.4	ug/L	0.7156	0.1468	11,070
Cu3273_A		484.0	ug/L	0.5484	0.1133	11,720
Fe2599_R		12,220	ug/L	197.2	1.614	8,775
K_7664_R		12,050	ug/L	145.1	1.204	7,930
Li6707_R	W	470.2	ug/L	2.401	0.5106	4,586
Mg2025_A		13,120	ug/L	13.77	0.1049	2,220
Mn2576_R		479.4	ug/L	6.179	1.289	1,825
Mo2020_A	W	530.2	ug/L	4.596	0.8668	976.3
Na5895_R	W	11,440	ug/L	166.9	1.458	17,250
Ni2316_A		512.2	ug/L	0.4945	0.09654	1,294
Pb2203_A	W	532.9	ug/L	0.6360	0.1194	620.6
Sb2068_A		495.0	ug/L	2.324	0.4694	160.4
Se1960_A		519.8	ug/L	3.178	0.6113	90.00
Si2516_R	W	11,660	ug/L	199.1	1.707	2,082
Sn1899_A		520.9	ug/L	0.3658	0.07023	218.6
Sr4215_R	W	460.4	ug/L	5.960	1.294	20,560
Ti3349_A	W	456.9	ug/L	0.4028	0.08816	20,240
TI1908_A	W	542.3	ug/L	0.4509	0.08313	207.5
V_2924_A	W	454.8	ug/L	0.6967	0.1532	9,952
Zn2062_A	W	543.9	ug/L	1.303	0.2396	1,490
Y_3600_R		14,475	Cts/S	163.79	1.1315	14,475
Y_2243_A		10,537	Cts/S	18.828	0.17869	10,537
Y_3600_A		409,550	Cts/S	87.567	0.021381	409,550

CCB

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 15 of 30

CCB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:29:39PM Sample Type: QC

Acquire Date.	1/13/2013 0.29.391	IVI	36		
Elem	Flags Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	0.08423	ug/L	0.1273	151.2	-1.988
Al3961_R	0.8157	ug/L	0.6651	81.54	-5.861
As1891_A	2.397	ug/L	1.044	43.53	0.8512
Au2427_A	0.5272	ug/L	0.01834	3.479	-2.038
B_2089_A	0.1828	ug/L	0.1861	101.8	2.641
Ba4554_R	0.5644	ug/L	0.1677	29.70	41.19
Be3130_R	0.1659	ug/L	0.01209	7.285	-1.427
Ca3158_R	1.391	ug/L	6.610	475.1	-9.378
Cd2265_A	0.06193	ug/L	0.06219	100.4	-1.404
Co2286_A	-0.001809	ug/L	0.04007	2,214	6.267
Cr2677_A	0.06977	ug/L	0.01889	27.07	8.652
Cu3273_A	0.01598	ug/L	0.3769	2,359	-40.72
Fe2599_R	1.942	ug/L	1.474	75.86	10.39
K_7664_R	-13.65	ug/L	5.394	39.53	-10.24
Li6707_R	3.430	ug/L	0.3913	11.41	8.589
Mg2025_A	-0.8291	ug/L	3.566	430.1	-5.218
Mn2576_R	-0.3320	ug/L	0.1282	38.63	0.2182
Mo2020_A	3.292	ug/L	0.7671	23.30	8.748
Na5895_R	22.50	ug/L	13.48	59.91	9.393
Ni2316_A	-0.3293	ug/L	0.01856	5.637	-2.035
Pb2203_A	-0.06819	ug/L	0.8048	1,180	-3.637
Sb2068_A	0.1412	ug/L	0.1362	96.48	1.318
Se1960_A	1.608	ug/L	3.387	210.6	1.057
Si2516_R	-19.82	ug/L	2.468	12.45	2.434
Sn1899_A	0.3049	ug/L	0.2269	74.41	0.6862
Sr4215_R	0.1211	ug/L	0.1681	138.8	-15.90
Ti3349_A	1.145	ug/L	0.01830	1.597	14.16
TI1908_A	-0.1107	ug/L	0.03324	30.02	-1.580
V_2924_A	0.4432	ug/L	0.03665	8.268	-0.9751
Zn2062_A	-0.04351	ug/L	0.07058	162.2	0.5220
Y_3600_R	14,418	Cts/S	42.493	0.29471	14,418
Y_2243_A	10,720	Cts/S	9.1079	0.084963	10,720
Y_3600_A	420,730	Cts/S	105.31	0.025031	420,730

PBWIA14ICW2

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:34:47PM Sample Type: Unknown

rioquiro Buto.			= -	Ou	*	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-0.1659	ug/L	0.1658	99.93	-11.06
Al3961_R		-1.904	ug/L	22.26	1,169	-7.074
As1891_A		-0.8558	ug/L	0.1890	22.09	-0.005001
Au2427_A		0.2662	ug/L	0.5522	207.4	-3.263
B_2089_A		0.4216	ug/L	0.2556	60.64	2.787
Ba4554_R		0.2661	ug/L	0.4255	159.9	30.41
Be3130_R		-0.04849	ug/L	0.005330	10.99	-11.58
Ca3158_R		9.585	ug/L	5.279	55.07	-3.958
Cd2265_A		-0.04596	ug/L	0.04547	98.93	-3.282
Co2286_A		0.03095	ug/L	0.06534	211.1	6.365
Cr2677_A		0.04039	ug/L	0.001225	3.032	7.887
Cu3273_A		0.1397	ug/L	0.1694	121.2	-37.22
Fe2599_R		0.4416	ug/L	1.676	379.5	9.287
K_7664_R		-67.53	ug/L	21.99	32.56	-45.41
Li6707_R		3.732	ug/L	2.380	63.76	11.49
Mg2025_A		0.5953	ug/L	0.7411	124.5	-4.958
Mn2576_R		0.2776	ug/L	0.4531	163.2	2.521
Mo2020_A		0.8687	ug/L	0.03694	4.253	4.198

Published: 1/16/2015 10:12:00AM Page 16 of 30

PBWIA14ICW2

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:34:47PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		27.89	ug/L	16.10	57.74	17.43
Ni2316_A		0.06198	ug/L	0.005071	8.181	-1.029
Pb2203_A		0.02908	ug/L	0.1793	616.7	-3.499
Sb2068_A		0.8505	ug/L	0.5633	66.24	1.541
Se1960_A		-1.090	ug/L	1.333	122.3	0.5837
Si2516_R		-7.977	ug/L	5.668	71.05	4.513
Sn1899_A		1.491	ug/L	0.007414	0.4974	1.185
Sr4215_R		0.05630	ug/L	0.01199	21.29	-18.70
Ti3349_A		0.3705	ug/L	0.07966	21.50	-21.00
TI1908_A		-0.2565	ug/L	0.7222	281.6	-1.627
V_2924_A		0.01835	ug/L	0.05814	316.9	-10.22
Zn2062_A		1.517	ug/L	0.04894	3.225	4.850
Y_3600_R		14,365	Cts/S	24.508	0.17061	14,365
Y_2243_A		10,663	Cts/S	3.9215	0.036777	10,663
Y_3600_A		416,490	Cts/S	4,629.4	1.1115	416,490

LCSWIA14ICW2

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:39:57PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		49.34	ug/L	0.3284	0.6655	1,739
Al3961_R		2,207	ug/L	30.17	1.367	974.8
As1891_A		108.6	ug/L	1.219	1.122	28.29
Au2427_A		0.9648	ug/L	0.3559	36.89	-3.832
B_2089_A		523.8	ug/L	0.5040	0.09622	497.4
Ba4554_R		2,169	ug/L	34.17	1.576	76,780
Be3130_R		53.91	ug/L	0.2853	0.5293	2,528
Ca3158_R		2,386	ug/L	53.66	2.249	1,550
Cd2265_A		265.8	ug/L	0.06290	0.02366	4,573
Co2286_A	W	590.8	ug/L	0.1453	0.02460	2,497
Cr2677_A		212.1	ug/L	0.7280	0.3433	4,777
Cu3273_A		261.8	ug/L	1.245	0.4756	6,264
Fe2599_R		1,057	ug/L	5.152	0.4874	758.2
K_7664_R		9,744	ug/L	142.0	1.457	6,335
Li6707_R		479.1	ug/L	7.753	1.618	4,618
Mg2025_A		5,230	ug/L	1.112	0.02126	891.9
Mn2576_R		515.5	ug/L	10.39	2.016	1,939
Mo2020_A		113.4	ug/L	0.9425	0.8311	210.2
Na5895_R		6,979	ug/L	97.29	1.394	10,390
Ni2316_A		555.0	ug/L	0.9633	0.1736	1,399
Pb2203_A		108.6	ug/L	0.6361	0.5858	123.5
Sb2068_A		100.4	ug/L	0.7803	0.7773	32.04
Se1960_A		108.1	ug/L	0.8795	0.8135	19.31
Si2516_R		936.1	ug/L	20.44	2.184	170.7
Sn1899_A		529.8	ug/L	1.043	0.1969	221.9
Sr4215_R		467.4	ug/L	6.891	1.474	20,630
Ti3349_A		436.5	ug/L	4.228	0.9686	19,140
TI1908_A		110.5	ug/L	1.125	1.018	39.37
V_2924_A		497.5	ug/L	0.03195	0.006421	10,870
Zn2062_A	W	589.6	ug/L	1.077	0.1826	1,613
Y_3600_R		14,305	Cts/S	186.66	1.3048	14,305
Y_2243_A		10,513	Cts/S	11.731	0.11159	10,513
Y_3600_A		405,710	Cts/S	668.09	0.16467	405,710

SI0210-002

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 17 of 30

SI0210-002

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:44:58PM Sample Type: Unknown

Acquire Date.	1/10/2010 0.44.001 WI				Sample Type.	Onknown
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		9.472	ug/L	0.7396	7.808	-1,536
Al3961_R		12,630	ug/L	187.5	1.484	5,546
As1891_A		28.14	ug/L	1.051	3.733	1.901
Au2427_A		17.22	ug/L	0.2628	1.526	171.0
B_2089_A	F	74,100	ug/L	288.5	0.3893	65,510
Ba4554_R		468.6	ug/L	4.799	1.024	16,430
Be3130_R		0.07695	ug/L	0.04330	56.26	-12.88
Ca3158_R		8,341	ug/L	71.02	0.8515	5,387
Cd2265_A		6.798	ug/L	0.1452	2.136	339.4
Co2286_A		68.56	ug/L	0.3112	0.4539	280.5
Cr2677_A	W	1,043	ug/L	6.220	0.5961	22,560
Cu3273_A	F	23,190	ug/L	77.20	0.3329	536,000
Fe2599_R	W	202,400	ug/L	2,514	1.242	141,900
K_7664_R	W	128,200	ug/L	1,291	1.007	82,480
 Li6707_R		23.87	ug/L	1.680	7.038	204.3
Mg2025_A		2,043	ug/L	12.14	0.5942	332.8
Mn2576_R	W	2,697	ug/L	23.49	0.8709	10,040
Mo2020_A		508.5	ug/L	1.553	0.3053	879.5
Na5895 R		21,030	ug/L	234.6	1.116	31,000
Ni2316_A	W	4,973	ug/L	1.207	0.02427	11,780
Pb2203_A	W	2,813	ug/L	0.8683	0.03086	3,108
Sb2068_A		34.59	ug/L	1.275	3.687	9.498
Se1960_A		4.962	ug/L	0.5841	11.77	1.555
Si2516_R		12,810	ug/L	92.60	0.7230	2,226
Sn1899_A		701.4	ug/L	1.659	0.2365	276.3
Sr4215_R		33.46	ug/L	0.2573	0.7689	1,442
Ti3349_A		228.4	ug/L	2.032	0.8897	9,617
TI1908_A		-3.692	ug/L	0.5847	15.84	-5.573
V_2924_A		77.73	ug/L	0.4741	0.6099	1,546
Zn2062_A	F	33,010	ug/L	177.8	0.5388	84,970
Y_3600_R		14,149	Cts/S	52.372	0.37016	14,149
Y_2243_A		9,893.7	Cts/S	37.900	0.38307	9,893.7
Y_3600_A		389,400	Cts/S	3,251.3	0.83494	389,400

SI0212-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:49:40PM Sample Type: Unknown

					. ,.	
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.2210	ug/L	0.007402	3.349	2.413
Al3961_R		43.92	ug/L	6.976	15.88	19.91
As1891_A		4.523	ug/L	0.1314	2.906	1.291
Au2427_A		-0.06129	ug/L	0.05856	95.54	-4.950
B_2089_A		160.1	ug/L	0.6257	0.3909	142.6
Ba4554_R		3.473	ug/L	0.09973	2.872	143.8
Be3130_R		-0.08032	ug/L	0.07937	98.81	-13.05
Ca3158_R	W	40,210	ug/L	422.8	1.051	26,280
Cd2265_A		-0.01219	ug/L	0.003211	26.34	-2.428
Co2286_A		0.2033	ug/L	0.01322	6.504	6.529
Cr2677_A		1.167	ug/L	0.2001	17.15	31.03
Cu3273_A		4.962	ug/L	0.9902	19.96	74.71
Fe2599_R		42.58	ug/L	1.508	3.541	39.09
K_7664_R		8,619	ug/L	142.6	1.655	5,601
Li6707_R		25.71	ug/L	0.04897	0.1905	224.3
Mg2025_A	W	34,660	ug/L	114.2	0.3296	5,412
Mn2576_R		68.12	ug/L	0.08967	0.1316	257.4
Mo2020_A		7.243	ug/L	0.5960	8.228	14.76
W02020_A		7.243	ug/L	0.5960	0.220	

Published: 1/16/2015 10:12:00AM Page 18 of 30

SI0212-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:49:40PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	F	225,200	ug/L	10,460	4.646	335,700
Ni2316_A		0.9408	ug/L	0.1170	12.44	1.130
Pb2203_A		0.3137	ug/L	0.01668	5.318	-2.916
Sb2068_A		1.895	ug/L	1.481	78.19	1.730
Se1960_A		0.3992	ug/L	1.014	253.9	0.7799
Si2516_R		5,958	ug/L	29.79	0.5000	1,053
Sn1899_A		1.071	ug/L	0.03412	3.186	0.9261
Sr4215_R		307.7	ug/L	3.179	1.033	13,570
Ti3349_A		0.3696	ug/L	0.05641	15.26	-18.91
TI1908_A		0.3178	ug/L	0.1266	39.84	-1.343
V_2924_A		0.2143	ug/L	0.09995	46.65	-6.628
Zn2062_A		12.35	ug/L	0.7402	5.994	32.09
Y_3600_R		14,299	Cts/S	165.84	1.1598	14,299
Y_2243_A		9,805.5	Cts/S	11.851	0.12086	9,805.5
Y_3600_A		379,480	Cts/S	466.88	0.12303	379,480

SI0212-004

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:54:33PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		-0.03902	ug/L	0.1886	483.3	-4.813
Al3961_R		83.23	ug/L	15.87	19.07	72.68
As1891_A		2.237	ug/L	2.683	119.9	0.5835
Au2427_A		-0.3977	ug/L	0.8660	217.7	-4.900
B_2089_A	W	1,725	ug/L	5.381	0.3119	1,192
Ba4554_R		32.86	ug/L	0.6969	2.121	1,071
Be3130_R		-0.1431	ug/L	0.06968	48.68	-14.50
Ca3158_R	W	303,500	ug/L	4,387	1.446	179,600
Cd2265_A		-0.02007	ug/L	0.009118	45.44	-2.042
Co2286_A		0.9423	ug/L	0.08910	9.456	7.435
Cr2677_A		0.6050	ug/L	0.04144	6.849	15.34
Cu3273_A		5.294	ug/L	0.05178	0.9780	65.83
Fe2599_R		9.277	ug/L	3.145	33.90	14.05
K_7664_R	W	103,100	ug/L	1,747	1.695	60,660
Li6707_R		151.4	ug/L	0.5739	0.3791	1,305
Mg2025_A	F	505,700	ug/L	3,646	0.7211	62,250
Mn2576_R		42.58	ug/L	0.9314	2.188	146.2
Mo2020_A		4.760	ug/L	0.4743	9.965	8.280
Na5895_R	F	1,011,000	ug/L	67,690	6.695	1,366,000
Ni2316_A		0.7802	ug/L	0.03384	4.338	0.5912
Pb2203_A		-1.589	ug/L	0.4617	29.05	-3.939
Sb2068_A		7.190	ug/L	0.9158	12.74	2.615
Se1960_A		3.861	ug/L	1.798	46.58	1.048
Si2516_R		4,734	ug/L	47.84	1.011	758.8
Sn1899_A		0.7911	ug/L	0.4697	59.37	0.6435
Sr4215_R	W	3,993	ug/L	43.73	1.095	159,600
Ti3349_A		1.221	ug/L	0.1158	9.489	12.74
TI1908_A		0.5306	ug/L	1.589	299.5	-0.9791
V_2924_A		-0.5188	ug/L	0.06238	12.02	-16.91
Zn2062_A		53.33	ug/L	0.5621	1.054	107.6
Y_3600_R		12,946	Cts/S	159.30	1.2305	12,946
Y_2243_A		7,723.8	Cts/S	12.416	0.16075	7,723.8
Y_3600_A		303,920	Cts/S	3,989.8	1.3128	303,920

SI0230-002

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 19 of 30

SI0230-002

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 6:59:22PM Sample Type: Unknown

Acquire Date.	1/13/2013 0.39.221 W				Sample Type.	OTIKITOWIT
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.03051	ug/L	0.04144	135.9	-101.2
Al3961_R	W	28,650	ug/L	112.7	0.3933	13,000
As1891_A		9.785	ug/L	1.195	12.22	2.642
Au2427_A		1.041	ug/L	0.1738	16.70	5.370
B_2089_A		37.27	ug/L	0.1050	0.2818	37.67
Ba4554_R		364.4	ug/L	2.013	0.5524	13,220
Be3130_R		1.854	ug/L	0.02469	1.332	77.72
Ca3158_R		6,785	ug/L	52.35	0.7716	4,530
Cd2265_A		0.09522	ug/L	0.04578	48.08	11.84
Co2286_A		15.39	ug/L	0.01281	0.08321	71.99
Cr2677_A		28.19	ug/L	0.5613	1.991	644.6
Cu3273_A		120.8	ug/L	1.807	1.496	2,885
Fe2599_R		10,090	ug/L	67.57	0.6696	7,326
K_7664_R		2,922	ug/L	4.213	0.1442	1,943
Li6707_R		19.90	ug/L	1.669	8.388	172.0
Mg2025_A		4,729	ug/L	9.616	0.2033	790.5
Mn2576_R		166.5	ug/L	0.7144	0.4291	641.9
Mo2020_A		7.986	ug/L	0.2228	2.790	17.23
Na5895_R		19,490	ug/L	64.68	0.3319	29,720
Ni2316_A		21.02	ug/L	0.09887	0.4704	51.03
Pb2203_A		24.45	ug/L	0.8745	3.577	21.32
Sb2068_A		-0.9202	ug/L	0.4152	45.11	1.393
Se1960_A		-1.668	ug/L	2.225	133.4	0.5524
Si2516_R		10,600	ug/L	18.68	0.1762	1,914
Sn1899_A		3.471	ug/L	0.1179	3.397	2.002
Sr4215_R		177.5	ug/L	0.7835	0.4415	8,001
Ti3349_A		76.61	ug/L	1.275	1.665	3,339
TI1908_A		-0.06976	ug/L	0.9384	1,345	-1.888
V_2924_A		25.63	ug/L	0.3413	1.332	555.3
Zn2062_A		63.88	ug/L	0.1207	0.1890	175.8
Y_3600_R		14,635	Cts/S	66.184	0.45224	14,635
Y_2243_A		10,547	Cts/S	1.7320	0.016423	10,547
Y_3600_A		407,090	Cts/S	6,680.9	1.6411	407,090

SI0230-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:04:25PM Sample Type: Unknown

Flags W	-0.8253 68,100 23.37 4.497	Units ug/L ug/L ug/L ug/L	Stddev 0.003177 266.9 1.081	%RSD 0.3850 0.3920 4.628	-393.2 31,300
W	68,100 23.37 4.497	ug/L ug/L	266.9	0.3920	31,300
W	23.37 4.497	ug/L			,
	4.497	_	1.081	4 628	F 000
		ua/l		1.020	5.668
	E 4 00	~ ⊃′ –	0.7286	16.20	35.32
	54.66	ug/L	0.2733	0.5001	54.76
	235.5	ug/L	2.315	0.9831	8,658
	6.251	ug/L	0.1114	1.781	292.6
	20,660	ug/L	237.3	1.149	13,990
	0.08059	ug/L	0.05024	62.34	45.06
	35.36	ug/L	0.2998	0.8480	157.5
	90.57	ug/L	0.3613	0.3989	2,092
	98.14	ug/L	0.002665	0.002716	2,383
W	36,670	ug/L	308.0	0.8399	26,930
	5,596	ug/L	3.375	0.06031	3,769
	41.73	ug/L	0.9832	2.356	393.2
	11,000	ug/L	5.020	0.04564	1,854
	547.6	ug/L	3.376	0.6165	2,135
	24.62	-	0.1795	0.7292	48.02
	W	6.251 20,660 0.08059 35.36 90.57 98.14 W 36,670 5,596 41.73 11,000 547.6	6.251 ug/L 20,660 ug/L 0.08059 ug/L 35.36 ug/L 90.57 ug/L 98.14 ug/L W 36,670 ug/L 5,596 ug/L 41.73 ug/L 11,000 ug/L 547.6 ug/L	6.251 ug/L 0.1114 20,660 ug/L 237.3 0.08059 ug/L 0.05024 35.36 ug/L 0.2998 90.57 ug/L 0.3613 98.14 ug/L 0.002665 W 36,670 ug/L 308.0 5,596 ug/L 3.375 41.73 ug/L 0.9832 11,000 ug/L 5.020 547.6 ug/L 3.376	6.251 ug/L 0.1114 1.781 20,660 ug/L 237.3 1.149 0.08059 ug/L 0.05024 62.34 35.36 ug/L 0.2998 0.8480 90.57 ug/L 0.3613 0.3989 98.14 ug/L 0.002665 0.002716 W 36,670 ug/L 308.0 0.8399 5,596 ug/L 3.375 0.06031 41.73 ug/L 0.9832 2.356 11,000 ug/L 5.020 0.04564 547.6 ug/L 3.376 0.6165

Published: 1/16/2015 10:12:00AM Page 20 of 30

SI0230-003

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:04:25PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R	W	55,080	ug/L	616.4	1.119	85,090
Ni2316_A		53.32	ug/L	0.2645	0.4961	130.8
Pb2203_A		86.08	ug/L	0.7376	0.8569	89.17
Sb2068_A		-2.122	ug/L	0.4291	20.22	1.841
Se1960_A		-2.162	ug/L	4.988	230.7	0.5712
Si2516_R		21,810	ug/L	257.4	1.180	3,977
Sn1899_A		6.879	ug/L	0.8225	11.96	3.446
Sr4215_R		388.7	ug/L	3.405	0.8759	17,770
Ti3349_A		124.6	ug/L	0.1768	0.1418	5,549
TI1908_A		-1.900	ug/L	0.2957	15.57	-3.248
V_2924_A		65.14	ug/L	0.3760	0.5772	1,452
Zn2062_A		238.3	ug/L	0.6463	0.2712	657.3
Y_3600_R		14,818	Cts/S	41.916	0.28286	14,818
Y_2243_A		10,594	Cts/S	5.0755	0.047908	10,594
Y_3600_A		414,000	Cts/S	765.55	0.18491	414,000

SI0230-004

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:09:26PM Sample Type: Unknown

Elem	Flags Avg		Stddev	%RSD	Intensity Ratio
Ag3280_A	-0.07718	ug/L	0.06746	87.40	-80.34
Al3961_R	10,080	ug/L	212.6	2.110	4,541
As1891_A	2.934	ug/L	0.1049	3.577	0.8237
Au2427_A	0.6586	ug/L	0.2761	41.93	2.435
B_2089_A	22.53	ug/L	0.6523	2.895	23.58
Ba4554_R	45.93	ug/L	0.9572	2.084	1,674
Be3130_R	0.6011	ug/L	0.01862	3.097	18.03
Ca3158_R	4,498	ug/L	69.27	1.540	2,981
Cd2265_A	0.07025	ug/L	0.03168	45.10	7.932
Co2286_A	5.871	ug/L	0.1621	2.760	31.32
Cr2677_A	13.17	ug/L	0.1533	1.164	312.8
Cu3273_A	16.88	ug/L	0.3028	1.794	378.3
Fe2599_R	7,343	ug/L	105.0	1.430	5,300
K_7664_R	1,609	ug/L	44.76	2.782	1,063
Li6707_R	11.38	ug/L	0.2053	1.804	87.02
Mg2025_A	2,419	ug/L	6.306	0.2607	400.3
Mn2576_R	98.56	ug/L	2.142	2.173	378.4
Mo2020_A	3.792	ug/L	0.2104	5.548	9.489
Na5895_R	13,370	ug/L	311.0	2.326	20,250
Ni2316_A	11.62	ug/L	0.3911	3.366	27.40
Pb2203_A	12.44	ug/L	0.01754	0.1410	9.840
Sb2068_A	-0.6900	ug/L	1.514	219.3	1.229
Se1960_A	-0.9425	ug/L	2.317	245.9	0.6262
Si2516_R	11,380	ug/L	279.9	2.460	2,041
Sn1899_A	2.384	ug/L	0.7301	30.62	1.541
Sr4215_R	65.71	ug/L	0.9099	1.385	2,931
Ti3349_A	45.02	ug/L	0.04074	0.09048	1,995
TI1908_A	-0.8880	ug/L	0.4343	48.91	-2.031
V_2924_A	11.88	ug/L	0.1190	1.002	259.3
Zn2062_A	65.78	ug/L	0.3053	0.4642	180.4
Y_3600_R	14,546	Cts/S	157.57	1.0833	14,546
Y_2243_A	10,507	Cts/S	30.145	0.28691	10,507
Y_3600_A	417,100	Cts/S	2,982.7	0.71510	417,100

SI0230-004L

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 21 of 30

SI0230-004L

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:14:29PM Sample Type: Unknown

Acquire Date:	1/13/2013	7.14.29FW			Sample Type:	UTIKITOWIT
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.8532	ug/L	0.9191	107.7	-13.73
Al3961_R		10,150	ug/L	195.9	1.929	903.7
As1891_A		2.254	ug/L	3.080	136.7	0.3050
Au2427_A		-1.630	ug/L	0.4277	26.25	-5.263
B_2089_A		37.01	ug/L	0.3109	0.8400	9.398
Ba4554_R		47.66	ug/L	1.989	4.174	361.7
Be3130_R		0.3573	ug/L	0.05249	14.69	-6.215
Ca3158_R		4,516	ug/L	74.36	1.647	586.1
Cd2265_A	(0.05310	ug/L	0.05767	108.6	-0.4264
Co2286_A		5.794	ug/L	0.3393	5.856	11.26
Cr2677_A		13.22	ug/L	0.2727	2.063	70.40
Cu3273_A		16.24	ug/L	1.752	10.79	41.05
Fe2599_R		7,370	ug/L	121.1	1.644	1,063
K_7664_R		1,545	ug/L	43.67	2.826	201.5
Li6707_R		32.36	ug/L	1.110	3.430	38.36
Mg2025_A		2,542	ug/L	0.9684	0.03810	81.20
Mn2576_R		102.1	ug/L	3.180	3.116	78.97
Mo2020_A		1.243	ug/L	0.9572	76.98	3.039
Na5895_R		14,090	ug/L	269.9	1.915	4,220
Ni2316_A		10.53	ug/L	2.137	20.30	4.040
Pb2203_A		14.11	ug/L	2.051	14.54	-0.4345
Sb2068_A		8.072	ug/L	2.498	30.95	1.833
Se1960_A		-2.593	ug/L	7.067	272.6	0.6862
Si2516_R		12,410	ug/L	117.5	0.9470	446.6
Sn1899_A		2.992	ug/L	1.503	50.23	0.8049
Sr4215_R		65.71	ug/L	0.8194	1.247	564.9
Ti3349_A		46.99	ug/L	1.464	3.117	397.8
TI1908_A		0.7492	ug/L	4.036	538.8	-1.501
V_2924_A		11.75	ug/L	0.5608	4.772	44.24
Zn2062_A		71.37	ug/L	1.139	1.596	40.15
Y_3600_R		14,441	Cts/S	82.556	0.57168	14,441
Y_2243_A		10,640	Cts/S	42.002	0.39475	10,640
Y_3600_A		129,390	Cts/S	1,000.5	0.23302	429,390

SI0230-004A

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:19:37PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		419.6	ug/L	0.9130	0.2176	15,070
Al3961_R		19,970	ug/L	302.1	1.513	9,067
As1891_A		531.0	ug/L	3.649	0.6873	134.9
Au2427_A		2.144	ug/L	0.4535	21.15	8.496
B_2089_A		531.1	ug/L	0.6053	0.1140	507.2
Ba4554_R		530.3	ug/L	6.745	1.272	19,220
Be3130_R		481.7	ug/L	6.062	1.259	23,280
Ca3158_R		9,181	ug/L	153.0	1.666	6,132
Cd2265_A		506.6	ug/L	1.315	0.2595	8,588
Co2286_A		539.5	ug/L	1.456	0.2700	2,243
Cr2677_A		470.9	ug/L	2.227	0.4728	10,770
Cu3273_A		470.7	ug/L	1.743	0.3704	11,480
Fe2599_R		12,300	ug/L	153.1	1.245	8,925
K_7664_R		10,720	ug/L	206.4	1.926	7,125
Li6707_R		442.2	ug/L	5.024	1.136	4,357
Mg2025_A		7,967	ug/L	5.144	0.06457	1,328
Mn2576_R		537.7	ug/L	9.101	1.693	2,069
Mo2020_A		526.5	ug/L	2.075	0.3941	951.2

Published: 1/16/2015 10:12:00AM Page 22 of 30

SI0230-004A

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:19:37PM Sample Type: Unknown

	_				
Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
	17,650	ug/L	377.4	2.138	26,910
	500.7	ug/L	0.2400	0.04793	1,241
	527.8	ug/L	0.1412	0.02675	602.0
	461.8	ug/L	0.9168	0.1986	148.4
	505.4	ug/L	1.156	0.2287	85.92
	11,540	ug/L	290.4	2.516	2,083
	2.293	ug/L	0.4796	20.92	1.478
	490.8	ug/L	9.068	1.848	22,160
	453.6	ug/L	1.906	0.4202	20,220
	531.3	ug/L	0.2482	0.04672	199.4
	435.3	ug/L	0.4385	0.1007	9,582
	624.9	ug/L	2.051	0.3282	1,680
	14,631	Cts/S	218.57	1.4939	14,631
	10,340	Cts/S	30.162	0.29171	10,340
	412,140	Cts/S	1,943.1	0.47146	412,140
	Flags	17,650 500.7 527.8 461.8 505.4 11,540 2.293 490.8 453.6 531.3 435.3 624.9 14,631 10,340	17,650 ug/L 500.7 ug/L 527.8 ug/L 461.8 ug/L 505.4 ug/L 11,540 ug/L 2.293 ug/L 490.8 ug/L 453.6 ug/L 531.3 ug/L 435.3 ug/L 624.9 ug/L 14,631 Cts/S 10,340 Cts/S	17,650 ug/L 377.4 500.7 ug/L 0.2400 527.8 ug/L 0.1412 461.8 ug/L 0.9168 505.4 ug/L 1.156 11,540 ug/L 290.4 2.293 ug/L 0.4796 490.8 ug/L 9.068 453.6 ug/L 1.906 531.3 ug/L 0.2482 435.3 ug/L 0.4385 624.9 ug/L 2.051 14,631 Cts/S 218.57 10,340 Cts/S 30.162	17,650 ug/L 377.4 2.138 500.7 ug/L 0.2400 0.04793 527.8 ug/L 0.1412 0.02675 461.8 ug/L 0.9168 0.1986 505.4 ug/L 1.156 0.2287 11,540 ug/L 290.4 2.516 2.293 ug/L 0.4796 20.92 490.8 ug/L 9.068 1.848 453.6 ug/L 1.906 0.4202 531.3 ug/L 0.2482 0.04672 435.3 ug/L 0.4385 0.1007 624.9 ug/L 2.051 0.3282 14,631 Cts/S 218.57 1.4939 10,340 Cts/S 30.162 0.29171

CCV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:24:35PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A	W	449.1	ug/L	6.430	1.432	16,250
Al3961_R		12,670	ug/L	18.46	0.1457	5,651
As1891_A	F	563.2	ug/L	2.143	0.3805	143.2
Au2427_A		503.1	ug/L	21.25	4.225	2,299
B_2089_A	W	548.0	ug/L	0.1510	0.02757	523.9
Ba4554_R		505.9	ug/L	7.714	1.525	18,010
Be3130_R		501.4	ug/L	6.314	1.259	23,800
Ca3158_R	W	11,330	ug/L	198.9	1.756	7,433
Cd2265_A	W	535.3	ug/L	1.151	0.2151	9,083
Co2286_A	F	562.8	ug/L	1.700	0.3021	2,342
Cr2677_A		477.9	ug/L	6.052	1.266	11,000
Cu3273_A		478.7	ug/L	6.858	1.433	11,750
Fe2599_R		12,200	ug/L	193.3	1.584	8,697
K_7664_R		12,060	ug/L	94.93	0.7873	7,875
Li6707_R	W	461.2	ug/L	6.012	1.304	4,464
Mg2025_A	W	13,320	ug/L	10.44	0.07841	2,214
Mn2576_R	W	468.5	ug/L	8.489	1.812	1,771
Mo2020_A	W	545.5	ug/L	4.117	0.7548	986.6
Na5895_R	F	10,850	ug/L	141.6	1.305	16,240
Ni2316_A		513.3	ug/L	0.6733	0.1312	1,274
Pb2203_A	W	547.6	ug/L	0.1776	0.03244	626.6
Sb2068_A		494.9	ug/L	0.09335	0.01886	157.5
Se1960_A	W	534.4	ug/L	8.332	1.559	90.87
Si2516_R		11,890	ug/L	218.0	1.834	2,107
Sn1899_A	W	533.4	ug/L	0.5912	0.1108	219.9
Sr4215_R	F	443.7	ug/L	5.699	1.284	19,670
Ti3349_A	F	432.4	ug/L	4.798	1.109	19,420
TI1908_A	F	556.3	ug/L	2.589	0.4655	209.3
V_2924_A	F	444.4	ug/L	5.566	1.253	9,852
Zn2062_A	F	562.6	ug/L	2.532	0.4501	1,514
Y_3600_R		14,369	Cts/S	20.607	0.14341	14,369
Y_2243_A		10,352	Cts/S	39.277	0.37943	10,352
Y_3600_A		415,160	Cts/S	3,585.6	0.86366	415,160

CCB

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 23 of 30

CCB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:29:31PM Sample Type: QC

Acquire Date:	1/15/2015	7:29:31Pi	IVI		Sample Type:	QC
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		0.1414	ug/L	0.3369	238.2	0.06251
Al3961_R		-6.032	ug/L	2.557	42.40	-8.910
As1891_A		1.126	ug/L	0.5744	51.00	0.5074
Au2427_A		0.9988	ug/L	0.2309	23.12	0.1875
B_2089_A		2.969	ug/L	0.5249	17.68	5.206
Ba4554_R		0.6010	ug/L	0.1894	31.52	42.42
Be3130_R		0.1845	ug/L	0.04899	26.55	-0.5400
Ca3158_R		6.129	ug/L	4.541	74.09	-6.238
Cd2265_A		0.08256	ug/L	0.02550	30.89	-1.018
Co2286_A		0.1769	ug/L	0.08291	46.87	6.901
Cr2677_A		0.09079	ug/L	0.01565	17.24	9.209
Cu3273_A		-0.1645	ug/L	0.008365	5.086	-45.54
Fe2599_R		5.263	ug/L	6.779	128.8	12.74
K_7664_R		-36.96	ug/L	16.20	43.84	-25.48
Li6707_R		3.257	ug/L	0.3166	9.723	6.893
Mg2025_A		-2.374	ug/L	2.094	88.24	-5.374
Mn2576_R		0.4103	ug/L	1.131	275.8	3.026
Mo2020_A		3.158	ug/L	0.5010	15.86	8.340
Na5895_R		40.68	ug/L	0.8803	2.164	36.70
Ni2316_A		-0.1767	ug/L	0.1585	89.69	-1.613
Pb2203_A		-0.3590	ug/L	0.6149	171.3	-3.908
Sb2068_A		0.4921	ug/L	0.1304	26.50	1.410
Se1960_A		1.502	ug/L	0.1822	12.13	1.020
Si2516_R	W	123.9	ug/L	2.706	2.184	27.87
Sn1899_A		-0.6333	ug/L	0.5620	88.75	0.2812
Sr4215_R		0.4391	ug/L	0.09386	21.38	-1.721
Ti3349_A		1.068	ug/L	0.08855	8.290	10.73
TI1908_A		-0.4420	ug/L	0.9259	209.5	-1.678
V_2924_A		0.1258	ug/L	0.2301	183.0	-8.253
Zn2062_A		-0.01035	ug/L	0.04119	398.1	0.6029
Y_3600_R		14,395	Cts/S	4.7839	0.033233	14,395
Y_2243_A		10,519	Cts/S	3.1417	0.029866	10,519
Y_3600_A		423,670	Cts/S	2,076.7	0.49017	423,670

SI0230-004P

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:34:40PM Sample Type: Unknown

ags W	Avg 46.51 27,650	Units ug/L ug/L	Stddev 0.1215	%RSD 0.2613	Intensity Ratio 1,550
W	27,650	-	0.1215	0.2613	1 550
W	,	ua/l			1,550
		ug/∟	243.2	0.8793	12,330
	117.9	ug/L	0.9801	0.8311	30.00
	2.498	ug/L	0.02947	1.180	9.043
	537.9	ug/L	3.331	0.6191	501.5
W	2,176	ug/L	32.10	1.476	77,420
	54.53	ug/L	0.7081	1.299	2,572
	6,640	ug/L	115.1	1.734	4,355
	262.7	ug/L	1.118	0.4255	4,451
	594.5	ug/L	4.360	0.7333	2,466
	224.1	ug/L	0.9766	0.4357	5,082
	270.7	ug/L	0.4666	0.1724	6,525
	11,440	ug/L	197.5	1.727	8,156
	11,150	ug/L	98.82	0.8866	7,284
	464.3	ug/L	2.754	0.5930	4,497
	8,379	ug/L	52.28	0.6240	1,394
	595.5	ug/L	8.559	1.437	2,252
	117.6	•	1.490	1.268	213.9
		11,150 464.3 8,379 595.5	11,150 ug/L 464.3 ug/L 8,379 ug/L 595.5 ug/L	11,150 ug/L 98.82 464.3 ug/L 2.754 8,379 ug/L 52.28 595.5 ug/L 8.559	11,150 ug/L 98.82 0.8866 464.3 ug/L 2.754 0.5930 8,379 ug/L 52.28 0.6240 595.5 ug/L 8.559 1.437

Published: 1/16/2015 10:12:00AM Page 24 of 30

SI0230-004P

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:34:40PM Sample Type: Unknown

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		19,250	ug/L	121.1	0.6293	28,830
Ni2316_A		549.9	ug/L	1.540	0.2800	1,360
Pb2203_A		122.7	ug/L	0.7292	0.5945	134.1
Sb2068_A		48.67	ug/L	2.185	4.489	16.08
Se1960_A		106.4	ug/L	1.955	1.837	18.73
Si2516_R		15,280	ug/L	178.4	1.168	2,706
Sn1899_A		322.8	ug/L	1.533	0.4748	132.9
Sr4215_R		504.1	ug/L	4.758	0.9438	22,370
Ti3349_A		362.2	ug/L	2.952	0.8149	15,980
TI1908_A		107.6	ug/L	0.2384	0.2215	37.48
V_2924_A		486.6	ug/L	4.070	0.8364	10,700
Zn2062_A		705.7	ug/L	5.293	0.7501	1,895
Y_3600_R		14,377	Cts/S	109.74	0.76331	14,377
Y_2243_A		10,322	Cts/S	62.479	0.60530	10,322
Y_3600_A		408,330	Cts/S	3,279.7	0.80318	408,330

SI0230-004S

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:39:40PM Sample Type: Unknown

Acquire Date.	1/13/20	13 1.39.401 W			Sample Type.	OTIKTOWIT
Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		46.00	ug/L	0.1952	0.4243	1,537
Al3961_R	W	30,910	ug/L	726.7	2.351	13,850
As1891_A		116.2	ug/L	1.622	1.396	29.66
Au2427_A		2.252	ug/L	0.2050	9.103	8.285
B_2089_A		538.6	ug/L	2.454	0.4556	503.6
Ba4554_R	W	2,160	ug/L	31.77	1.471	77,240
Be3130_R		54.04	ug/L	0.9847	1.822	2,559
Ca3158_R		6,727	ug/L	67.75	1.007	4,433
Cd2265_A		260.7	ug/L	0.1886	0.07236	4,429
Co2286_A		591.7	ug/L	1.509	0.2549	2,462
Cr2677_A		223.3	ug/L	0.02433	0.01090	5,100
Cu3273_A		267.2	ug/L	1.718	0.6428	6,489
Fe2599_R		12,000	ug/L	278.7	2.322	8,598
K_7664_R		11,290	ug/L	150.2	1.331	7,411
Li6707_R		464.4	ug/L	3.519	0.7577	4,519
Mg2025_A		8,550	ug/L	21.58	0.2525	1,426
Mn2576_R		596.1	ug/L	7.647	1.283	2,265
Mo2020_A		116.8	ug/L	0.1990	0.1704	213.2
Na5895_R		19,670	ug/L	185.8	0.9445	29,610
Ni2316_A		546.5	ug/L	0.5528	0.1012	1,355
Pb2203_A		121.8	ug/L	0.4457	0.3660	133.0
Sb2068_A		57.72	ug/L	0.6244	1.082	19.06
Se1960_A		107.8	ug/L	1.004	0.9313	19.02
Si2516_R	W	30,780	ug/L	684.9	2.225	5,473
Sn1899_A		315.6	ug/L	1.908	0.6045	130.4
Sr4215_R		505.7	ug/L	7.073	1.399	22,540
Ti3349_A		419.3	ug/L	1.000	0.2385	18,640
TI1908_A		106.7	ug/L	2.434	2.282	37.19
V_2924_A		484.3	ug/L	2.811	0.5805	10,730
Zn2062_A		689.0	ug/L	2.356	0.3419	1,856
Y_3600_R		14,446	Cts/S	62.627	0.43353	14,446
Y_2243_A		10,351	Cts/S	35.463	0.34260	10,351
Y_3600_A		411,350	Cts/S	1,128.8	0.27440	411,350

CCV

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 25 of 30

CCV

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

1/15/2015 7:44:41PM QC Acquire Date: Sample Type: Elem Flags Units Stddev %RSD <u>Avg</u> **Intensity Ratio** Ag3280 A 445.0 ug/L 4.052 0.9106 16.050 Al3961_R 12,590 227.2 1.805 5,674 ug/L 0.07886 F 0.4503 143.8 As1891 A 571.0 ug/L Au2427_A 501.9 ug/L 15.90 3.168 2,271 F B_2089_A 554.1 ug/L 1.106 0.1996 524.4 18,170 Ba4554_R 505.1 7.196 1.425 ug/L Be3130 R 497.8 ug/L 10.67 2.143 23,880 F Ca3158 R 11,130 ug/L 169.7 1.525 7,376 Cd2265_A W 539.3 ug/L 1.288 0.2388 9,059 Co2286_A F 569.4 ug/L 1.858 0.3263 2,346 Cr2677_A 478.8 ug/L 2.242 0.4681 10,990 Cu3273 A 477.4 3.183 0.6666 11,690 ug/L 12,130 287.0 2.366 8,733 Fe2599 R ug/L K 7664 R 11.950 132.0 1.105 7.885 ug/L W Li6707 R 452.0 4.802 1.062 4.420 ug/L Mg2025 A W 13.360 10.68 0.07995 2.199 ug/L W 464.7 9.326 Mn2576 R ug/L 2.007 1,775 W 548.3 2.792 0.5092 Mo2020 A 981.9 ug/L F 10,680 44.69 0.4183 Na5895_R ug/L 16,150 Ni2316_A 0.3523 514.3 0.06850 1,264 ug/L W 0.1768 551.2 0.9742 Pb2203_A ug/L 624.5 493.0 Sb2068 A ug/L 1.376 0.2791 155.3 W Se1960 A 542.2 ug/L 3.913 0.7217 91.28 Si2516_R W 11,790 ug/L 209.9 1.780 2,112 Sn1899_A W 534.6 ug/L 1.733 0.3243 218.3 Sr4215_R F 436.6 ug/L 4.716 1.080 19,560 F Ti3349 A 429.3 0.7491 0.1745 ug/L 19,220 F 560.9 0.2791 208.9 TI1908 A ug/L 1.566 V 2924_A F 438.6 ug/L 5.067 1.155 9,694 F Zn2062 A 569.5 ug/L 2.740 0.4811 1,518

CCB

Y 3600 R

Y 2243 A

Y_3600_A

Method Name: K6010-2011 Method Revision: 1,626

43.550

35 854

4,279.4

0.29995

0.34982

1.0338

14,519

10,249

413,950

Cts/S

Cts/S

Cts/S

14,519

10,249

413,950

Analyst Name: HHM

1/15/2015 7:49:38PM QC Acquire Date: Sample Type: **Elem** Avg Units Stddev %RSD Intensity Ratio **Flags** Ag3280_A -0.07118 0.0001200 0.1688 -7.713 ug/L 132.9 -12.20 Al3961 R -127516.95 ug/L As1891 A 2.810 0.3411 12 14 0.9311 ug/L Au2427_A 125.4 -2.0880.5044 0.6324 ug/L 2.143 0.4238 19.77 4.380 B_2089_A ug/L 0.6053 0.2208 36.48 43.25 Ba4554_R ug/L Be3130 R -0.03289ug/L 0.1073 326.3 -11.13 Ca3158_R 0.6170 ug/L 0.1131 18.33 -10.04Cd2265_A 0.1779 ug/L 0.07280 40.93 0.6169 Co2286_A 0.1746 ug/L 0.07081 40.55 6.815 Cr2677_A 0.2028 ug/L 0.1376 67.87 11.65 -0.7185 Cu3273 A ug/L 0.3970 55.26 -58.91 Fe2599 R 4.258 ug/L 2.188 51.39 12.23 K 7664 R -38.79ug/L 31.62 81.52 -27.38 Li6707 R 3.750 ug/L 2.026 54.04 12.12 Mg2025_A -1.001 4.386 438.2 -5.087ug/L 376.7 0.9356 Mn2576 R -0.1413ug/L 0.5323 Mo2020 A 3.099 ug/L 0.5743 18.53 8.142

Published: 1/16/2015 10:12:00AM Page 26 of 30

CCB

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:49:38PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Na5895_R		7.944	ug/L	0.2759	3.473	-12.68
Ni2316_A		-0.1239	ug/L	0.05269	42.53	-1.464
Pb2203_A		-0.3974	ug/L	0.7574	190.6	-3.911
Sb2068_A		0.3228	ug/L	0.8635	267.5	1.337
Se1960_A		1.872	ug/L	0.4944	26.41	1.071
Si2516_R	W	150.6	ug/L	14.45	9.592	33.15
Sn1899_A		0.7520	ug/L	0.3811	50.68	0.8511
Sr4215_R		0.1083	ug/L	0.1004	92.77	-16.77
Ti3349_A		0.9113	ug/L	0.2143	23.51	3.338
TI1908_A		0.6761	ug/L	0.3943	58.32	-1.231
V_2924_A		0.2945	ug/L	0.1128	38.30	-4.288
Zn2062_A		0.02493	ug/L	0.1390	557.6	0.6921
Y_3600_R		14,652	Cts/S	302.30	2.0632	14,652
Y_2243_A		10,404	Cts/S	37.882	0.36411	10,404
Y_3600_A		418,620	Cts/S	12,084	2.8866	418,620

PQL

Method Name: K6010-2011 Method Revision: 1,626

Analyst Name: HHM

Acquire Date: 1/15/2015 7:54:46PM Sample Type: QC

Elem	Flags	Avg	Units	Stddev	%RSD	Intensity Ratio
Ag3280_A		9.238	ug/L	0.2690	2.912	340.8
Al3961_R		304.5	ug/L	5.411	1.777	132.1
As1891_A	W	9.676	ug/L	0.9097	9.402	2.694
Au2427_A		99.37	ug/L	4.286	4.313	453.2
B_2089_A		56.63	ug/L	0.6639	1.172	55.36
Ba4554_R		5.317	ug/L	0.4832	9.087	214.0
Be3130_R		4.914	ug/L	0.1045	2.127	228.0
Ca3158_R		94.25	ug/L	2.689	2.854	52.66
Cd2265_A		5.486	ug/L	0.01082	0.1972	91.31
Co2286_A		11.77	ug/L	0.1913	1.626	55.33
Cr2677_A		9.712	ug/L	0.1521	1.567	237.4
Cu3273_A		25.25	ug/L	0.1917	0.7593	599.3
Fe2599_R		97.50	ug/L	3.548	3.639	79.87
K_7664_R		972.2	ug/L	5.551	0.5710	645.8
Li6707_R		96.65	ug/L	1.587	1.642	933.3
Mg2025_A		111.2	ug/L	4.150	3.733	13.97
Mn2576_R		5.013	ug/L	0.01877	0.3744	20.79
Mo2020_A		11.54	ug/L	0.2363	2.047	23.49
Na5895_R		897.7	ug/L	6.214	0.6922	1,346
Ni2316_A		10.29	ug/L	0.2090	2.032	24.58
Pb2203_A	W	6.280	ug/L	0.08490	1.352	3.796
Sb2068_A		8.181	ug/L	0.9232	11.28	3.531
Se1960_A	W	12.92	ug/L	0.4626	3.581	2.950
Si2516_R	W	255.4	ug/L	9.159	3.587	52.02
Sn1899_A		114.2	ug/L	0.2320	0.2030	47.87
Sr4215_R		8.918	ug/L	0.2520	2.826	381.8
Ti3349_A		13.07	ug/L	0.1242	0.9502	567.0
TI1908_A		17.01	ug/L	0.2768	1.628	5.020
V_2924_A		8.904	ug/L	0.1328	1.492	192.8
Zn2062_A		23.44	ug/L	0.1034	0.4412	64.19
Y_3600_R		14,642	Cts/S	16.430	0.11221	14,642
Y_2243_A		10,425	Cts/S	8.8428	0.084823	10,425
Y_3600_A		427,720	Cts/S	161.98	0.037872	427,720

ICSA

Method Name: K6010-2011 Method Revision: 1,626

Published: 1/16/2015 10:12:00AM Page 27 of 30

KATAHDIN ANALYTICAL SERVICES METALS ANALYSIS RUN INFORMATION SHEET

INSTR. ID: I (Thermo iCAP 6500)	ANALYST: _£< ANALYSIS DATE:	01-22-15
FILE NAME: ITALB	METHOD: ICP	
	☑ 200.7	REVIEWED
	₽ 6010C	HHM 1-76-15
	☑ DoD	HTTM 1-26-15 KATAHDIN ANALYTICAL
		METALS SECTION

The pHs of all samples that were tested by direct analysis in this analytical run were checked just prior to analysis and confirmed to be <2. The time of preservation of these samples was checked in the "Measured Turbidity and Preservation of Incoming Samples" logbook to verify that they had been preserved at least 16 hours prior to analysis. These verifications were performed by (initals) on Original (date).

STANDARDS USED:

Standard Name	Standard ID	Prep. Date	Expiration Date	Standard Conc.
Cal. Blk/ICB/CCB	MW15286	01-15-15	31-15-16	0 ug/L
Standard 1	MW15256	12-19-14	J2-14-15	Varies by Element
ICV	MW15263	12-23-14	03-73-15	Varies by Element
PQL	MW15260	12-19-14	03-05-15	Varies by Element
LRS1	mw15282	01-04-15	1	Varies by Element
LRS2	MW15787	31-16-15	1	Varies by Element
ICSA	MW15281	01-09-15	04-09-15	Varies by Element
ICSAB	MW15265	12-24-14	02-15-15	Varies by Element
CCV	MW15285	01-13-15	32-14-15	Varies by Element
Internal Standard	mw15284	01-12-15	۵4-12-15	5.0 mg/L Yttrium

and the state of t			and and analysis analysis and analysis and analysis and analysis and analysis and analysis analysis and analysis and analysis and analysis and analy	
	·			
		AND THE PARTY OF T		
		and the state of t		
	30			
WV.	30			
				· · · · · · · · · · · · · · · · · · ·

INSTRUMENT RUNLOG

Instrument: ICAP 6500

SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
Blank	1.000	IIA22B	1/22/2015	16:49	EAM
Std 1	1.000	IIA22B	1/22/2015	16:54	EAM
CV	1.000	IIA22B	1/22/2015	16:59	EAM
CB	1.000	IIA22B	1/22/2015	17:06	EAM
PQL	1.000	IIA22B	1/22/2015	17:11	EAM
RS1	1.000	IIA22B	1/22/2015	17:18	EAM
LRS2	1.000	IIA22B	1/22/2015	17:23	EAM
CSA	1.000	IIA22B	1/22/2015	17:32	EAM
CSAB	1.000	IIA22B	1/22/2015	17:36	EAM
CCV	1.000	IIA22B	1/22/2015	17:43	EAM
CCB	1.000	IIA22B	1/22/2015	17:48	EAM
BSIA19ICS1	1.000	IIA22B	1/22/2015	17:53	EAM
CSOIA19ICS1	1.000	IIA22B	1/22/2015	17:58	EAM
.C2OIA19ICS1	1.000	IIA22B	1/22/2015	18:03	EAM
510209-001	1.000	IIA22B	1/22/2015	18:08	EAM
510219-001	1.000	IIA22B	1/22/2015	18:13	EAM
10318-001	1.000	IIA22B	1/22/2015	18:18	EAM
10344-001	1.000	IIA22B	1/22/2015	18:24	EAM
10349-001	1.000	IIA22B	1/22/2015	18:29	EAM
BSIA16ICS1	1.000	IIA22B	1/22/2015	18:34	EAM
CSOIA16ICS1	1.000	IIA22B	1/22/2015	18:39	EAM
CCV	1.000	IIA22B	1/22/2015	18:44	EAM
CCB	1.000	IIA22B	1/22/2015	18:49	EAM
10220-001	1.000	IIA22B	1/22/2015	18:54	EAM
BWIA21ICW1	1.000	IIA22B	1/22/2015	18:59	EAM
CSWIA21ICW1	2.000	IIA22B	1/22/2015	19:04	EAM
10386-001	5.000	IIA22B	1/22/2015	19:09	EAM
BWIA14ICW1	1.000	IIA22B	1/22/2015	19:14	EAM
CSWIA14ICW1	2.000	IIA22B	1/22/2015	19:19	EAM
10226-001	5.000	IIA22B	1/22/2015	19:24	EAM
BWIA14ICW2	1.000	IIA22B	1/22/2015	19:30	EAM
CSWIA14ICW2	1.000	IIA22B	1/22/2015	19:35	EAM
10230-002	1.000	IIA22B	1/22/2015	19:40	EAM
CCV	1.000	IIA22B	1/22/2015	19:45	EAM
ССВ	1.000	IIA22B	1/22/2015	19:50	EAM
10230-003	1.000	IIA22B	1/22/2015	19:55	EAM
10230-004	1.000	IIA22B	1/22/2015	20:00	EAM
I0230-004L	5.000	IIA22B	1/22/2015	20:05	EAM
I0230-004A	1.000	IIA22B	1/22/2015	20:10	EAM
10230-004S	1.000	IIA22B	1/22/2015	20:15	EAM
I0230-004P	1.000	IIA22B	1/22/2015	20:20	EAM
510210-002	1.000	IIA22B	1/22/2015	20:25	EAM
10212-004	5.000	IIA22B	1/22/2015	20:30	EAM
BWIA16ICW1	1.000	IIA22B	1/22/2015	20:35	EAM
	•				

CARADI E ID	T) T?	TIPE BI	DATE		ANIAKAZORI
SAMPLE ID	DF	FILE	DATE	TIME	ANALYST
LCSWIA16ICW1	1.000	IIA22B	1/22/2015	20:40	EAM
CCV	1.000	IIA22B	1/22/2015	20:45	EAM
CCB	1.000	IIA22B	1/22/2015	20:50	EAM
SI0386-001	1.000	IIA22B	1/22/2015	20:55	EAM
SI0226-001	1.000	IIA22B	1/22/2015	21:00	EAM
PBT1223D	1.000	IIA22B	1/22/2015	21:05	EAM
PBT1225A	1.000	IIA22B	1/22/2015	21:10	EAM
SI0227-001T	1.000	IIA22B	1/22/2015	21:15	EAM
SI0227-002T	1.000	IIA22B	1/22/2015	21:20	EAM
SI0227-003T	1.000	IIA22B	1/22/2015	21:25	EAM
SI0227-004T	1.000	IIA22B	1/22/2015	21:29	EAM
SI0230-001T	1.000	IIA22B	1/22/2015	21:34	EAM
SI0279-001	1.000	IIA22B	1/22/2015	21:39	EAM
CCV	1.000	IIA22B	1/22/2015	21:44	EAM
CCB	1.000	IIA22B	1/22/2015	21:49	EAM
PBWIA16ICW2	1.000	IIA22B	1/22/2015	21:54	EAM
LCSWIA16ICW2	2.000	IIA22B	1/22/2015	21:59	EAM
SI0234-001	1.000	IIA22B	1/22/2015	22:04	EAM
SI0234-002	1.000	IIA22B	1/22/2015	22:10	EAM
SI0234-003	1.000	IIA22B	1/22/2015	22:15	EAM
SI0234-004	1.000	IIA22B	1/22/2015	22:20	EAM
SI0234-004L	5.000	IIA22B	1/22/2015	22:25	EAM
SI0234-004S	1.000	IIA22B	1/22/2015	22:30	EAM
SI0234-004P	1.000	IIA22B	1/22/2015	22:35	EAM
SI0299-001	1.000	IIA22B	1/22/2015	22:40	EAM
CCV	1.000	IIA22B	1/22/2015	22:45	EAM
CCB	1.000	IIA22B	1/22/2015	22:50	EAM
SI0299-001	2.000	IIA22B	1/22/2015	22:55	EAM
CCV	1.000	IIA22B	1/22/2015	23:00	EAM
CCB	1.000	IIA22B	1/22/2015	23:05	EAM
PQL	1.000	IIA22B	1/22/2015	23:10	EAM
ICSA	1.000	IIA22B	1/22/2015	23:15	EAM
ICSAB	1.000	IIA22B	1/22/2015	23:20	EAM
CCV	1.000	IIA22B	1/22/2015	23:24	EAM
CCB	1.000	IIA22B	1/22/2015	23:29	EAM

Sample Name: Blank Acquired: 1/22/2015 16:49:12 Type: Cal

Method: K6010-2011(v1630) Mode: IR Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A
Line	328.068 {103}	396.152 { 85}	189.042 {479}	242.795 {139}	208.959 {461}
IS Ref	(Y_3600_A)	(Y_3600_R)	(Y_2243_A)	(Y_2243_A)	(Y_2243_A)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0000	0001	0001	0003	.0002
Stddev	.0000	.0001	.0000	.0001	.0000
%RSD	63.43	149.8	26.24	18.27	10.78
#1	.0001	0001	0001	0003	.0003
#2	.0000	.0000	0001	0004	.0002
Elem	Ba4554_R	Be3130_R	Ca3158_R	Cd2265_A	Co2286_A
Line	455.403 { 74}	313.042 {108}	315.887 {107}	226.502 {449}	228.616 {447}
IS Ref	(Y_3600_R)	(Y_3600_R)	(Y_3600_R)	(Y_2243_A)	(Y_2243_A)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0034	0002	0006	.0001	.0005
Stddev	.0000	.0003	.0000	.0000	.0000
%RSD	.6012	158.3	6.762	7.086	8.115
#1	.0034	.0000	0006	.0001	.0004
#2	.0034	0004	0007	.0001	.0005
Elem	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R	Li6707_R
Line	267.716 {126}	327.396 {103}	259.940 {130}	766.490 { 44}	670.784 { 50}
IS Ref	(Y_3600_A)	(Y_3600_A)	(Y_3600_R)	(Y_3600_R)	(Y_3600_R)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0000	.0003	.0003	.0016	0007
Stddev	.0000	.0000	.0002	.0005	.0004
%RSD	10.41	3.930	57.76	32.81	58.68
#1	.0000	.0003	.0002	.0012	0010
#2	.0000	.0003	.0005	.0020	0004

Sample Name: Blank Acquired: 1/22/2015 16:49:12 Type: Cal Method: K6010-2011(v1630) Mode: IR Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem Line IS Ref Units Avg Stddev %RSD	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A
	202.582 {467}4	257.610 {131}	202.030 {467}	589.592 { 57}	231.604 {445}
	(Y_2243_A)	(Y_3600_R)	(Y_2243_A)	(Y_3600_R)	(Y_2243_A)
	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
	0002	0000	.0002	0009	0001
	.0001	.0002	.0000	.0004	.0000
	36.64	538.1	7.158	43.84	43.18
#1	0001	0002	.0002	0006	0000
#2	0003	.0001	.0003	0011	0001
Elem	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R	Sn1899_A
Line	220.353 {453}	206.833 {463}	196.090 {472}	251.611 {134}	189.989 {477}
IS Ref	(Y_2243_A)	(Y_2243_A)	(Y_2243_A)	(Y_3600_R)	(Y_2243_A)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0000	.0000	.0000	.0002	.0001
Stddev	.0000	.0000	.0000	.0000	.0000
%RSD	67.75	58.00	2.386	17.21	30.87
#1	.0000	.0000	.0000	.0002	.0001
#2	.0000	.0000	.0000	.0002	.0001
Elem Line IS Ref Units Avg Stddev %RSD	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
	421.552 { 80}	334.904 {101}	190.856 {477}	292.402 {115}	206.200 {463}
	(Y_3600_R)	(Y_3600_A)	(Y_2243_A)	(Y_3600_A)	(Y_2243_A)
	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
	0014	0001	0001	0000	.0001
	.0006	.0000	.0000	.0000	.0000
	43.28	6.964	8.702	40.50	52.09
#1	0018	0001	0001	0000	.0001
#2	0009	0001	0001	0000	.0000

Sample Name: Blank Acquired: 1/22/2015 16:49:12 Type: Cal Method: K6010-2011(v1630) Mode: IR Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Int. Std.	Y_3600_R	Y_2243_A	Y_3600_A
Line	360.073 { 94}	224.306 {450}	360.073 { 94}2
Units	Cts/S	Cts/S	Cts/S
Avg	12767.	12094.	443280.
Stddev	93 .	14.	999.
%RSD	.73124	.11642	.22534
#1	12833.	12104.	443990.
#2	12701.	12084.	442580.

Sample Name: Std 1 Acquired: 1/22/2015 16:54:19 Type: Cal Method: K6010-2011(v1630) Mode: IR

Corr. Factor: 1.000000

User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem Line IS Ref Units Avg Stddev %RSD	Ag3280_A 328.068 {103} (Y_3600_A) Cts/S .0811 .0000 .0080			Au2427_A 242.795 {139} (Y_2243_A) Cts/S .3909 .0094 2.416	B_2089_A 208.959 {461} (Y_2243_A) Cts/S .0854 .0001 .1165
#1	.0811	.8195	.0247	.3842	.0853
#2	.0811	.8367	.0248	.3976	.0855
Elem Line IS Ref Units Avg Stddev %RSD		313.042 {108}		226.502 {449}	Co2286_A 228.616 {447} (Y_2243_A) Cts/S .4064 .0002 .0542
#1	2.746	2.732	1.079	1.468	.4062
#2	2.793	2.785	1.095	1.471	.4065
Elem Line IS Ref Units Avg Stddev %RSD	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R	Li6707_R
	267.716 {126}	327.396 {103}	259.940 {130}	766.490 { 44}	670.784 { 50}
	(Y_3600_A)	(Y_3600_A)	(Y_3600_R)	(Y_3600_R)	(Y_3600_R)
	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
	.0479	.0507	.9409	1.134	. 7573
	.0000	.0000	.0122	.011	.0117
	.0050	.0200	1.302	.9907	1.539
#1	.0479	.0507	.9322	1.126	.7491
#2	.0479	.0507	.9495	1.141	.7656

Sample Name: Std 1 Acquired: 1/22/2015 16:54:19 Type: Cal Method: K6010-2011(v1630) Mode: IR Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Mg2025_A	257.610 {131}	Mo2020_A	Na5895_R	Ni2316_A
Line	202.582 {467}4		202.030 {467}	589.592 { 57}	231.604 {445}
IS Ref	(Y_2243_A)		(Y_2243_A)	(Y_3600_R)	(Y_2243_A)
Units	Cts/S		Cts/S	Cts/S	Cts/S
Avg	.3827		.1430	3.204	.2446
Stddev	.0001		.0012	.032	.0004
%RSD	.0290		.8430	.9829	.1787
#1	.3826	.2111	.1422	3.182	.2443
#2	.3827	.2135	.1439	3.226	.2449
Elem	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R	Sn1899_A
Line	220.353 {453}	206.833 {463}	196.090 {472}	251.611 {134}	189.989 {477}
IS Ref	(Y_2243_A)	(Y_2243_A)	(Y_2243_A)	(Y_3600_R)	(Y_2243_A)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.0976	.0317	.0149	.2536	.0356
Stddev	.0000	.0001	.0001	.0035	.0001
%RSD	.0072	.3289	.8745	1.366	.2699
#1	.0976	.0317	.0148	.2511	.0355
#2	.0976	.0318	.0150	.2560	.0357
Elem	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
Line	421.552 { 80}	334.904 {101}	190.856 {477}	292.402 {115}	206.200 {463}
IS Ref	(Y_3600_R)	(Y_3600_A)	(Y_2243_A)	(Y_3600_A)	(Y_2243_A)
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	3.141	.1209	.0327	.0553	.2543
Stddev	.038	.0003	.0000	.0002	.0005
%RSD	1.221	.2630	.0456	.4214	.2077
#1	3.114	.1207	.0327	.0554	.2539
#2	3.169	.1211	.0327	.0551	.2547

Sample Name: Std 1 Acquired: 1/22/2015 16:54:19 Type: Cal Method: K6010-2011(v1630) Mode: IR Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Int. Std.	Y_3600_R	Y_2243_A	Y_3600_A
Line	360.073 { 94}	224.306 {450}	360.073 { 94}2
Units	Cts/S	Čts/Ś	Cts/S
Avg	12752.	11751.	427510.
Stddev	24.	6.	1313.
%RSD	.18731	.04882	.30707
#1	12769.	11755.	426580.
#2	12736.	11747.	428440.

Sample Name: ICV Acquired: 1/22/2015 16:59:12 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	410.6	10090.	399.7	392.5	412.9	413.6	416.8
Stddev	1.2	51.	1.9	10.8	1.0	4.0	5.9
%RSD	.2878	.5077	.4647	2.738	.2431	.9621	1.407
#1	409.7	10050.	398.4	384.9	412.2	410.8	412.7
#2	411.4	10120.	401.0	400.1	413.6	416.4	421.0
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 0180 .	409.6	413.8	414.1	409.9	10140.	1 3760 .
Stddev	65.	.6	.0	.6	.8	195.	144.
%RSD	.6353	.1523	.0061	.1356	.1865	1.918	1.049
#1	10140.	409.2	413.8	413.7	409.4	10010.	13660.
#2	10230.	410.1	413.8	414.5	410.5	10280.	13860.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	411.5	10230.	419.1	418.9	10150.	416.4	418.1
Stddev	3.3	27.	5.6	3.0	70.	.8	.8
%RSD	.7919	.2604	1.330	.7070	.6903	.1958	.1876
#1	409.2	10210.	415.2	416.8	10100.	415.8	418.7
#2	413.8	10250.	423.1	421.0	10200.	417.0	417.6
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: ICV Acquired: 1/22/2015 16:59:12 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12844.

11978.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 407.0 .6 .1362	Se1960_A ug/L 411.0 3.5 .8464	Si2516_R ug/L 10190. 131. 1.286	Sn1899_A ug/L 403.4 2.8 .6901	Sr4215_R ug/L 416.5 3.5 .8521	Ti3349_A ug/L 410.9 1.7 .4191	TI1908_A ug/L W 427.9 .4 .0984
#1 #2	406.6 407.4	408.5 413.4	10100. 10280.	401.4 405.3	414.0 419.0	409.7 412.1	427.6 428.2
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 400.0 5.400%
Elem Units Avg Stddev %RSD	V_2924_A ug/L 413.0 .8 .1847	Zn2062_A ug/L 411.9 .8 .1944					
#1 #2	412.5 413.5	411.3 412.4					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12826. 25. .19565	Y_2243_A Cts/S 11997. 27. .22499	Y_3600_A Cts/S 436380. 1127. .25833				
#1	12808.	12016.	437170.				

Type: QC Sample Name: ICB Acquired: 1/22/2015 17:06:08

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3283	. 4364	. 8580	7616	.5079	0028	.0479
Stddev	.0625	18.60	.5752	.5259	.2133	.1951	.1026
%RSD	19.03	4262.	67.04	69.05	42.00	7082.	214.0
#1	2841	13.59	1.265	3897	.3570	- 1407	.1205
#2	3724	-12.71	.4513	-1.133	.6587	.1352	0246
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	-9.463	0436	.1320	0206	4125	. 9825	-48.22
Stddev	.574	.0132	.1022	.0467	.2783	.4180	18.75
%RSD	6.067	30.34	77.45	227.1	67.49	42.55	38.88
#1	-9.869	0529	.2042	0536	6093	1.278	-34.96
#2	-9.057	0342	.0597	.0125	2156	.6869	-61.48
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3.471	1106	. 2598	2.438	14.66	0864	3473
Stddev	1.960	3.087	.3637	.622	3.45	.0228	.1058
%RSD	56.46	2792.	140.0	25.50	23.51	26.41	30.47
#1	2.085	2.072	.5170	2.877	12.22	0703	2724
#2	4.857	-2.293	.0026	1.998	17.10	1026	4221
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: ICB Acquired: 1/22/2015 17:06:08 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

12110.

12484.

444200.

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L .0830 .5333 642.3	Se1960_A ug/L . 779 1 3.437 441.1	Si2516_R ug/L 26.23 1.97 7.525	Sn1899_A ug/L 1 905 .4788 251.4	Sr4215_R ug/L 0197 .1378 699.0	Ti3349_A ug/L . 6708 .0088 1.317	TI1908_A ug/L . 8408 1.268 150.8
#1 #2	2941 .4601	3.209 -1.651	27.63 24.84	5290 .1481	.0778 1172	.6646 .6771	0559 1.737
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 1399 .1788 127.8	Zn2062_A ug/L 1554 .1272 81.87					
#1 #2	2664 0134	2454 0654					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12576. 130. 1.0316	Y_2243_A Cts/S 12121. 15. .12674	Y_3600_A Cts/S 442490. 2413. .54534				
#1	12667.	12132.	440780.				

Sample Name: PQL Acquired: 1/22/2015 17:11:16 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	10.62	319.2	8.734	96.01	49.35	4.836	5.095
Stddev	.13	21.9	.789	3.52	.53	.178	.061
%RSD	1.214	6.876	9.035	3.670	1.069	3.688	1.189
#1	10.53	303.7	8.176	93.52	49.72	4.710	5.053
#2	10.71	334.7	9.292	98.50	48.98	4.963	5.138
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	100.7	4.961	10.45	10.16	26.75	101.5	1065.
Stddev	10.4	.001	.09	.10	.07	5.0	14.
%RSD	10.37	.0265	.8179	.9606	.2556	4.886	1.345
#1	93.35	4.960	10.39	10.23	26.80	105.0	1055.
#2	108.1	4.962	10.51	10.09	26.70	97.98	1076.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	104.2	1 09.7	5.327	11.05	1052.	10.46	4. 735
Stddev	1.8	.2	.973	.11	17.	.08	.478
%RSD	1.689	.1856	18.26	1.035	1.614	.7245	10.10
#1	103.0	109.9	4.639	11.14	1040.	10.40	5.073
#2	105.5	109.6	6.014	10.97	1064.	10.51	4.397
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PQL Acquired: 1/22/2015 17:11:16 Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 7.613 .106 1.389	Se1960_A ug/L 10.29 .82 8.004	Si2516_R ug/L 204.6 32.2 15.73	Sn1899_A ug/L 1 04.8 .9 .8269	Sr4215_R ug/L 10.43 .46 4.419	Ti3349_A ug/L 15.43 .24 1.532	TI1908_A ug/L 17.17 .33 1.935
#1 #2	7.539 7.688	9.711 10.88	227.4 181.9	104.2 105.4	10.10 10.75	15.26 15.60	16.93 17.40
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 9.9 76 .177 1.771	Zn2062_A ug/L 20.53 .07 .3190					
#1 #2	9.851 10.10	20.48 20.57					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12674. 49. .38632	Y_2243_A Cts/S 12137.	Y_3600_A Cts/S 443760. 4728. 1.0655				
#1	12709.	12137.	447100.				

12137. 440420.

Sample Name: LRS1 Acquired: 1/22/2015 17:18:21 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 2126 .	107.7	W 21360 .	W 21910 .	21050.	20210.	20430 .
Stddev	19.	5.4	27.	25.	33.	509.	56.
%RSD	.9102	5.028	.1248	.1127	.1556	2.521	.2726
#1	2140.	103.8	21340.	21920.	21030.	19850.	20390.
#2	2112.	111.5	21380.	21890.	21070.	20570.	20470.
Check ? Value Range	Chk Warn 2000. 5.400%	None	Chk Warn 20000. 5.400%	Chk Warn 20000. 5.400%	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	-15.51	19460.	21010.	20630.	W 22070 .	-4.561	10.13
Stddev	3.82	22.	21.	146.	69.	.785	21.61
%RSD	24.63	.1134	.1019	.7061	.3137	17.21	213.4
#1	-18.21	19470.	20990.	20730.	22120.	-5.116	25.41
#2	-12.81	19440.	21020.	20520.	22020.	-4.006	-5.152
Check ? Value Range	None	Chk Pass	Chk Pass	Chk Pass	Chk Warn 20000. 5.400%	None	None
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	20120 .	- 302 1.	20930 .	W 5408 .	19.13	20880.	21000.
Stddev	5.	5.	119.	13.	.81	22.	17.
%RSD	.0264	.1542	.5669	.2434	4.235	.1051	.0819
#1	20120.	-3018.	20850.	5398.	19.70	20870.	20990.
#2	20120.	-3025.	21010.	5417.	18.55	20900.	21010.
Check ? Value Range	Chk Pass	None	Chk Pass	Chk Warn 5000. 5.400%	None	Chk Pass	Chk Pass

Sample Name: LRS1 Acquired: 1/22/2015 17:18:21 Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 21070 . 13. .0623	Se1960_A ug/L F 22440 . 29. .1303	Si2516_R ug/L 384.3 4.2 1.084	Sn1899_A ug/L 20640 . 12. .0557	Sr4215_R ug/L 20370 . 173. .8469	Ti3349_A ug/L 20490 . 33. .1609	TI1908_A ug/L W 21110. 13. .0603
#1 #2	21060. 21080.	22420. 22460.	387.2 381.3	20630. 20650.	20250. 20500.	20510. 20470.	21100. 21120.
Check ? Value Range	Chk Pass	Chk Fail 20000. 10.40%	None	Chk Pass	Chk Pass	Chk Pass	Chk Warn 20000. 5.400%
Elem Units Avg Stddev %RSD	V_2924_A ug/L 20710 . 47. .2271	Zn2062_A ug/L 19970 . 7. .0327					
#1 #2	20740. 20680.	19970. 19980.					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12788. 55. .43359	Y_2243_A Cts/S 11473. 3. .02792	Y_3600_A Cts/S 421390. 2489. .59070				
#1 #2	12827. 12749.	11475. 11471.	419630. 423150.				

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5.063	510200 .	26.13	-4.909	9.768	16.00	1. 992
Stddev	.851	5828.	2.80	2.153	1.999	.16	.129
%RSD	16.82	1.142	10.72	43.86	20.46	.9743	6.469
#1	4.461	506100.	28.11	-3.387	11.18	16.11	2.083
#2	5.665	514300.	24.15	-6.432	8.355	15.89	1.901
Check ? Value Range	None	Chk Pass	None	None	None	None	None
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	476600 .	-2.208	. 6335	-2.369	-1.345	236700.	291900.
Stddev	5455.	.502	.1225	.435	.234	2609.	133.
%RSD	1.145	22.74	19.33	18.35	17.43	1.102	.0454
#1	472800.	-1.853	.5469	-2.061	-1.511	234800.	292000.
#2	480500.	-2.562	.7201	-2.676	-1.179	238500.	291800.
Check ? Value Range	Chk Pass	None	None	None	None	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	19.27	1 92200.	11.42	23.67	190300.	7.087	8.086
Stddev	.69	161.	.02	4.64	590.	.182	.262
%RSD	3.585	.0836	.1320	19.59	.3102	2.562	3.245
#1	18.79	192300.	11.43	26.95	189900.	7.215	8.272
#2	19.76	192100.	11.41	20.39	190700.	6.959	7.901
Check ? Value Range	None	Chk Pass	None	None	Chk Pass	None	None

Sample Name: LRS2 Acquired: 1/22/2015 17:23:44 Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 3.562 .630 17.68	Se1960_A ug/L 29.77 5.58 18.73	Si2516_R ug/L 50480. 468. .9270	Sn1899_A ug/L 7.816 .918 11.75	Sr4215_R ug/L 8. 759 .151 1.722	Ti3349_A ug/L 29.05 1.84 6.330	TI1908_A ug/L 6721 .9320 138.7
#1 #2	4.008 3.117	33.71 25.83	50150. 50810.	8.465 7.167	8.652 8.866	30.35 27.75	0130 -1.331
Check ? Value Range	None	None	Chk Pass	None	None	None	None
Elem Units Avg Stddev %RSD	V_2924_A ug/L . 8240 .0335 4.065	Zn2062_A ug/L 4.610 .606 13.14					
#1 #2	.8477 .8003	5.038 4.181					
Check ? Value Range	None	None					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12329. 65. .52456	Y_2243_A Cts/S 10716. 1. .01069	Y_3600_A Cts/S 386220. 288. .07445				
#1 #2	12284. 12375.	10717. 10715.	386430. 386020.				

Sample Name: ICSA Acquired: 1/22/2015 17:32:19 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3.914	493300 .	3.396	-9.256	2.245	1257	.0767
Stddev	1.167	3046.	.214	.373	.015	.2127	.0566
%RSD	29.83	.6175	6.307	4.034	.6601	169.2	73.73
#1	3.089	491200.	3.547	-9.520	2.255	2761	.1167
#2	4.740	495500.	3.244	-8.992	2.234	.0247	.0367
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	455100 .	-2.197	4687	-1.686	-3.496	181100.	86.10
Stddev	4132.	.217	.1008	.255	.056	2946.	13.63
%RSD	.9078	9.858	21.51	15.13	1.601	1.627	15.83
#1	452200.	-2.044	5400	-1.506	-3.536	179000.	95.74
#2	458000.	-2.350	3974	-1.867	-3.457	183200.	76.47
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	12.12	456000.	.2202	1. 829	85.77	3.394	-1. 797
Stddev	.57	117.	.6926	.019	6.65	.048	.500
%RSD	4.666	.0257	314.5	1.037	7.749	1.405	27.82
#1	12.52	455900.	2695	1.815	90.47	3.361	-2.150
#2	11.72	456100.	.7100	1.842	81.07	3.428	-1.443
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: ICSA Acquired: 1/22/2015 17:32:19 Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Elem Sb2068 A Se1960 A Sn1899 A Si2516_R Sr4215_R Ti3349 A TI1908 A Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L Avq -.4658 3.563 55.72 3.309 W 4.752 3.588 .3441 Stddev 1.314 2.571 12.82 .299 .031 .109 1.406 %RSD 282.1 72.15 23.01 9.034 .6586 3.047 408.7 #1 4634 5.381 46.66 3.520 4.730 3.666 -.6504 #2 -1.395 1.745 64.79 3.098 4.774 3.511 1.339 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Warn Chk Pass Chk Pass High Limit 4.000 Low Limit -4.000 Elem V 2924 A Zn2062 A Units ug/L ug/L -1.447 Avg .8198 Stddev .014 .1327 %RSD .9505 16.19 #1 -1.437 .9137 -1.456 #2 .7259 Check? Chk Pass Chk Pass High Limit Low Limit Int. Std. Y 3600 R Y 2243 A Y 3600 A Units Cts/S Cts/S Cts/S

Avg

#1

#2

Stddev

%RSD

12177.

.22882

12157.

12196.

28.

10728.

.11431

10737.

10719.

12.

388070.

2256.

.58129

389670.

Sample Name: ICSAB Acquired: 1/22/2015 17:36:56 Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	227.2	504600.	101.6	514.6	514.1	531.8	523.4
Stddev	.4	7099.	.9	8.9	3.2	7.6	7.9
%RSD	.1612	1.407	.8562	1.738	.6188	1.424	1.505
#1	226.9	499500.	102.3	508.2	516.3	526.4	517.8
#2	227.4	509600.	101.0	520.9	511.8	537.1	529.0
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	460900 .	959.7	483.5	511.4	547.0	185600.	22340 .
Stddev	5038.	5.4	2.0	.1	2.3	2954.	337.
%RSD	1.093	.5665	.4114	.0283	.4166	1.591	1.510
#1	457300.	963.5	484.9	511.6	548.6	183600.	22100.
#2	464400.	955.9	482.1	511.3	545.4	187700.	22580.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	574.5	464800.	495.7	500.7	21820 .	951.0	44.23
Stddev	9.2	2704.	6.7	3.2	265.	3.7	1.98
%RSD	1.598	.5818	1.348	.6319	1.216	.3935	4.470
#1	568.0	466700.	491.0	498.5	21630.	953.6	42.83
#2	581.0	462900.	500.5	503.0	22010.	948.3	45.62
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Acquired: 1/22/2015 17:36:56 Sample Name: ICSAB Type: QC Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: EAM Comment: Sb2068 A Se1960 A Si2516 R Sn1899 A Sr4215 R Ti3349_A TI1908_A Elem ug/L ug/L Units ug/L ug/L ug/L ug/L ug/L 51.55 473.5 99.94 634.4 2063. 526.1 507.0 Avg 1.41 5.7 3.34 19. 6.7 .3 Stddev 2.6 .0590 1.405 %RSD .9023 6.470 .9170 .5479 1.270 #1 638.5 53.90 2049. 475.3 521.4 506.8 100.9 630.4 2076. 471.7 530.8 507.2 98.95 #2 49.19 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Value Range Elem V 2924 A Zn2062 A Units ug/L ug/L 511.8 962.6 Avg Stddev .4 2.3 %RSD .0738 .2366 #1 512.1 964.2 #2 511.5 961.0 Check? Chk Pass Chk Pass Value Range

Y 3600 R

Cts/S

71.

12344.

.57293

12394.

12294.

Int. Std. Units

Stddev

%RSD

Avg

#1

#2

Y 2243 A

Cts/S

27.

10602.

.25820

10583.

10621.

Y 3600 A

Cts/S

285.

.07432

383220.

382820.

Sample Name: CCV Acquired: 1/22/2015 17:43:27 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	503.5	1 2520 .	500.3	492.2	505.6	507.8	512.2
Stddev	.5	82.	1.1	12.1	1.4	4.5	9.1
%RSD	.0994	.6530	.2297	2.457	.2674	.8934	1.777
#1	503.1	12460.	499.5	483.6	504.6	504.6	505.8
#2	503.8	12570.	501.1	500.7	506.5	511.0	518.7
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	ug/L	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L		ug/L
Avg	1 2530 .	502.5	510.6	509.7	508.5		1 2630 .
Stddev	146.	.8	.7	3.0	.6		205.
%RSD	1.163	.1521	.1333	.5834	.1201		1.619
#1	12430.	502.0	510.1	507.6	508.1	12570.	12490.
#2	12630.	503.0	511.1	511.8	508.9	12880.	12780.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	505.4	1 2700 .	505.8	514.1	1 2590 .	507.1	504.0
Stddev	7.6	15.	7.5	4.2	75.	.0	1.7
%RSD	1.499	.1200	1.480	.8145	.5995	.0073	.3393
#1	500.1	12720.	500.5	511.1	12530.	507.1	502.8
#2	510.8	12690.	511.1	517.1	12640.	507.1	505.2
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 1/22/2015 17:43:27 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: EAM Custom ID2: Custom ID3:

Comment:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 501.8 2.1 .4200	Se1960_A ug/L 498.4 7.4 1.476	Si2516_R ug/L 1 2570 . 82. .6507	Sn1899_A ug/L 500.3 .3 .0554	Sr4215_R ug/L 501.7 5.5 1.091	Ti3349_A ug/L 503.3 2.1 .4256	TI1908_A ug/L 518.4 .9 .1805
#1 #2	503.3 500.3	493.2 503.6	12510. 12630.	500.5 500.1	497.8 505.5	501.7 504.8	519.1 517.8
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 500.2 1.5 .2953	Zn2062_A ug/L 504.9 .0					
#1 #2	499.2 501.3	504.9 504.8					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12656. 25. .19377	Y_2243_A Cts/S 11878. 19. .16250	Y_3600_A Cts/S 434150. 1116. .25710				
#1 #2	12674. 12639.	11892. 11865.	434940. 433360.				

Sample Name: CCB Acquired: 1/22/2015 17:48:23 Type: QC

Method: K6010-2011(v1630) Corr. Factor: 1.000000 Mode: CONC User: EAM Custom ID1:

Comment:

Custom ID2:

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4353	13.19	3.207	. 8048	1. 629	. 0574	.0695
Stddev	.1081	14.34	.956	.3650	.223	.2099	.0057
%RSD	24.84	108.7	29.80	45.36	13.67	365.7	8.143
#1	5117	23.33	3.883	.5467	1.787	0910	.0655
#2	3588	3.054	2.531	1.063	1.472	.2058	.0735
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4. 786	.0680	0011	1 924	3290	4.984	-14.32
Stddev	.542	.0070	.1539	.0105	.1723	2.470	8.34
%RSD	11.32	10.24	13700.	5.437	52.37	49.56	58.23
#1	4.403	.0729	1100	1998	4508	3.237	-8.424
#2	5.169	.0631	.1077	1850	2071	6.730	-20.22
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 834	8.834	1. 727	4.142	17.51	.1800	. 205 1
Stddev	1.165	3.064	.735	.445	.81	.0789	.6307
%RSD	63.50	34.69	42.56	10.74	4.598	43.84	307.5
#1	2.658	6.667	2.246	4.457	18.08	.1242	2409
#2	1.011	11.00	1.207	3.827	16.94	.2359	.6510
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Type: QC Sample Name: CCB Acquired: 1/22/2015 17:48:23 Mode: CONC Method: K6010-2011(v1630) Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Ti3349 A Sb2068 A Se1960 A Si2516 R Sn1899 A Sr4215_R TI1908 A Elem Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 1.898 -.0833 .0456 1.245 4881 1.288 13.01 Avg .3031 .204 .5083 .744 .297 11.92 .1456 Stddev 104.2 %RSD 57.81 15.66 91.61 364.0 319.2 16.36 #1 1.814 2.109 4.582 -.2976 .1486 1.389 .8475 #2 .7613 1.688 21.44 .1311 -.0573 1.101 .1286 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass **High Limit** Low Limit V 2924 A Zn2062 A Elem Units ug/L ug/L -.0534 .1140 Avg .2169 .1472 Stddev %RSD 129.1 406.5 #1 .1000 .2181 #2 -.2067 .0100 Chk Pass Check? Chk Pass **High Limit** Low Limit Int. Std. Y_3600_R Y 2243 A Y 3600 A Cts/S Units Cts/S Cts/S

442440.

2167.

.48970

440910.

443970.

12605.

1.6428

12752.

12459.

207.

Avg Stddev

#1

#2

%RSD

12101.

.07579

12095.

12108.

Sample Name: PBSIA19ICS1 Acquired: 1/22/2015 17:53:31 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3593	8.838	1.677	0075	. 8746	.0349	.1010
Stddev	.2113	1.270	1.263	.5907	.3176	.0870	.0743
%RSD	58.82	14.37	75.35	7874.	36.31	249.0	73.54
#1	5087	9.736	2.570	.4102	1.099	0266	.0485
#2	2098	7.940	.7833	4252	.6500	.0964	.1536
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	27.10	0184	1011	. 2968	.8671	17.63	-13.67
Stddev	1.93	.0375	.0262	.0449	.3594	1.54	19.25
%RSD	7.121	204.3	25.95	15.13	41.45	8.753	140.8
#1	28.46	0449	1197	.2651	1.121	16.54	-27.29
#2	25.73	.0082	0826	.3286	.6129	18.72	0640
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	.8190	25.88	1.604	2.300	29.17	.2123	6594
Stddev	.2341	4.65	.519	.123	2.67	.1097	.3163
%RSD	28.59	17.97	32.34	5.333	9.144	51.71	47.96
#1	.9846	29.17	1.237	2.387	31.05	.1347	4358
#2	.6535	22.60	1.971	2.213	27.28	.2899	8830
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBSIA19ICS1 Acquired: 1/22/2015 17:53:31 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12743.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 2990 1.299 434.4	Se1960_A ug/L .1910 2.727 1428.	Si2516_R ug/L 10.04 14.24 141.8	Sn1899_A ug/L 15.39 .50 3.230	Sr4215_R ug/L .0347 .2986 859.6	Ti3349_A ug/L .8401 .1372 16.33	TI1908_A ug/L 1.271 .978 76.97
#1 #2	1.217 6194	2.119 -1.737	0267 20.11	15.74 15.03	1764 .2459	.7431 .9372	1.963 .5792
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 0514 .1754 341.3	Zn2062_A ug/L 1.047 .137 13.06					
#1 #2	1754 .0727	.9508 1.144					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12851. 153. 1.1902	Y_2243_A Cts/S 12215. 25. .20801	Y_3600_A Cts/S 448360. 1166. .26002				
#1	12959.	12233.	447530.				

449180.

Sample Name: LCSOIA19ICS1 Acquired: 1/22/2015 17:58:40 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	51.18	2146.	101.5	1. 287	4 89.2	2090.	53.01
Stddev	.05	34.	.2	.469	.7	24.	.64
%RSD	.1048	1.586	.2029	36.42	.1392	1.153	1.201
#1	51.14	2122.	101.7	.9554	489.7	2073.	52.56
#2	51.22	2170.	101.4	1.618	488.7	2107.	53.46
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2601 .	254.8	526.7	214.5	263.0	1050.	10230.
Stddev	19.	.3	.5	.6	.2	12.	112.
%RSD	.7457	.1030	.0916	.2994	.0882	1.125	1.093
#1	2588.	255.0	527.0	214.0	263.2	1041.	10160.
#2	2615.	254.6	526.3	214.9	262.9	1058.	10310.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	513.4	5078 .	526.7	108.8	7778 .	527.0	101.3
Stddev	5.0	17.	6.9	.5	97.	.6	.2
%RSD	.9836	.3296	1.308	.4219	1.242	.1073	.1688
#1	509.8	5090.	521.8	108.5	7709.	527.4	101.4
#2	517.0	5066.	531.6	109.1	7846.	526.6	101.2
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Acquired: 1/22/2015 17:58:40 Type: Unk Sample Name: LCSOIA19ICS1 Corr. Factor: 1.000000 Method: K6010-2011(v1630) Mode: CONC Custom ID2: Custom ID3: Custom ID1: User: EAM Comment: Ti3349_A TI1908 A Sn1899 A Sr4215_R Sb2068 A Se1960_A Si2516_R Elem ug/L ug/L ug/L ug/L ug/L ug/L Units ug/L 514.4 493.6 111.7 101.1 1029. 524.0 101.9 Avg 1.3 .9 26. 1.2 4.6 Stddev .2 1.5 .8360 2.507 .2365 .9037 .2593 %RSD .1502 1.490 492.7 111.0 524.9 511.1 #1 102.0 100.00 1047. 101.8 102.1 1011. 523.1 517.7 494.5 112.3 #2 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass **High Limit** Low Limit Zn2062 A Elem V 2924 A Units ug/L ug/L 517.6 528.2 Avg 1.6 Stddev .7 %RSD .1377 .3069 #1 527.6 518.7 516.5 #2 528.7 Check? Chk Pass Chk Pass **High Limit Low Limit** Y 3600 R Y 2243_A Y 3600 A Int. Std. Units Cts/S Cts/S Cts/S 11979. 433360. 12679. Avg

25.

.00574

433380.

433340.

102.

.80519

12751.

12607.

Stddev

%RSD

#1

#2

26.

.21599

11960.

Sample Name: LC2OIA19ICS1 Acquired: 1/22/2015 18:03:42 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	49.97	2110.	99.41	1.051	480.3	2030.	51.46
Stddev	.29	51.	1.58	.067	1.4	23.	.48
%RSD	.5821	2.409	1.587	6.340	.2879	1.136	.9369
#1	50.18	2074.	98.29	1.004	479.3	2014.	51.12
#2	49.76	2146.	100.5	1.098	481.3	2046.	51.81
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2583 .	255.2	513.8	214.2	253.2	1055.	10010.
Stddev	22.	.2	.8	.7	1.6	10.	104.
%RSD	.8483	.0848	.1596	.3167	.6358	.9358	1.038
#1	2567.	255.1	513.2	214.7	254.4	1048.	9937.
#2	2598.	255.4	514.3	213.7	252.1	1062.	10080.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	509.6	5066 .	517.9	105.8	7755 .	519.0	1 02.3
Stddev	4.9	3.	6.5	1.0	106.	1.0	.9
%RSD	.9529	.0519	1.262	.9026	1.363	.2016	.8567
#1	506.1	5064.	513.3	105.1	7680.	518.2	103.0
#2	513.0	5068.	522.5	106.5	7830.	519.7	101.7
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LC2OIA19ICS1 Acquired: 1/22/2015 18:03:42 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Elem Sb2068 A Se1960 A Si2516 R Sn1899 A Sr4215 R Ti3349 A TI1908 A Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 101.1 Avg 102.4 973.4 520.7 505.8 479.5 110.6 Stddev 2.2 1.3 2.4 5.1 2.8 .5 .3 %RSD 2.199 1.253 .0558 1.009 .5774 .4545 .3026 #1 99.51 101.5 973.8 519.1 502.2 481.4 110.9 #2 102.7 103.3 973.0 522.4 509.4 477.5 110.4 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem V_2924_A Zn2062 A **Units** ug/L ug/L 507.7 508.2 Avg Stddev 4.2 1.1 %RSD .8242 .2243 #1 510.6 507.4 #2 504.7 509.0 Chk Pass Check? Chk Pass **High Limit** Low Limit Y 2243_A Int. Std. Y 3600 R Y 3600 A Cts/S Units Cts/S Cts/S

11974.

.10884

11983.

11965.

13.

435900.

3374.

.77394

433520.

438290.

12546.

.29540

12573.

12520.

37.

Avg

#1

#2

Stddev

%RSD

Type: Unk Sample Name: SI0209-001 Acquired: 1/22/2015 18:08:44 Method: K6010-2011(v1630)

Corr. Factor: 1.000000 Mode: CONC

Custom ID3: User: EAM Custom ID1: Custom ID2:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3478	104.9	.3834	.0647	117.0	29.99	.1447
Stddev	.0451	6.4	.4897	.6237	1.1	.05	.0643
%RSD	12.97	6.132	127.7	964.5	.9168	.1661	44.40
#1	3159	109.5	.7297	3764	116.2	30.02	.1902
#2	3797	100.4	.0371	.5057	117.8	29.95	.0993
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	767.1	.0371	.0706	3.588	43.65	123.9	50.47
Stddev	8.1	.0161	.0322	.366	.52	6.6	3.55
%RSD	1.056	43.40	45.59	10.19	1.186	5.353	7.035
#1	761.4	.0484	.0934	3.846	44.02	119.2	47.96
#2	772.8	.0257	.0479	3.329	43.28	128.6	52.98
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2.459	43.66	16.05	2.210	256.2	5.601	16.56
Stddev	1.007	3.86	.43	.125	.5	.195	.39
%RSD	40.95	8.841	2.707	5.650	.1790	3.480	2.375
#1	1.747	46.38	15.74	2.298	256.6	5.739	16.28
#2	3.171	40.93	16.36	2.121	255.9	5.463	16.84
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Acquired: 1/22/2015 18:08:44 Type: Unk Sample Name: SI0209-001 Corr. Factor: 1.000000 Method: K6010-2011(v1630) Mode: CONC User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Sn1899 A Sr4215 R Ti3349 A TI1908 A Sb2068 A Se1960_A Si2516_R Elem Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 2.273 2.150 .6093 -.0800 286.4 16.38 1.729 Avg .5230 1.6 .82 .034 .198 .814 1.050 Stddev 9.210 35.81 %RSD 172.3 654.1 .5609 5.017 1.964 16.96 1.753 2.010 1.697 #1 -.1330 -.4497 285.3 #2 1.352 .2898 287.6 15.80 1.705 2.290 2.848 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass High Limit Low Limit Elem V 2924 A Zn2062 A Units ug/L ug/L .0336 377.0 Avg .1125 .7 Stddev .1934 %RSD 335.2 #1 .1132 376.4 377.5 #2 -.0460 Chk Pass Chk Pass Check? **High Limit Low Limit** Y 3600 A Int. Std. Y 3600 R Y 2243 A Cts/S Cts/S Units Cts/S 454360. 13207. 12327. Avg

1886.

41514

453030.

455690.

8.

.06589

12333.

12321.

Stddev

%RSD

#1

#2

45.

.34177

13175.

 Sample Name:
 Sl0219-001
 Acquired:
 1/22/2015
 18:13:50
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 899	6.139	5.161	4619	5.002	. 9224	.1178
Stddev	.0130	4.598	.032	.1833	.191	.1506	.0943
%RSD	6.852	74.89	.6240	39.69	3.812	16.33	80.05
#1	1807	2.888	5.184	3323	5.136	.8159	.0511
#2	1990	9.390	5.138	5915	4.867	1.029	.1845
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 31100.	0853	0502	. 8470	3.670	9.185	3791 .
Stddev	442.	.0511	.1259	.1903	.066	2.140	41.
%RSD	1.422	59.91	250.6	22.47	1.803	23.30	1.091
#1	30790.	0492	.0388	.9816	3.623	7.672	3762.
#2	31410.	1214	1392	.7125	3.717	10.70	3820.
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	17.95	10520.	1. 324	6547	11310.	.1499	2622
Stddev	.72	25.	.797	.4324	138.	.0880	.8261
%RSD	4.022	.2355	60.18	66.05	1.221	58.73	315.1
#1	17.44	10510.	.7608	3489	11210.	.2121	.3220
#2	18.46	10540.	1.888	9604	11410.	.0876	8463
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name:
 Sl0219-001
 Acquired:
 1/22/2015
 18:13:50
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Comment:

#2

12817.

12028.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 2240 .2933 131.0	Se1960_A ug/L .1986 2.178 1097.	Si2516_R ug/L 5803. 96. 1.647	Sn1899_A ug/L 5989 .8416 140.5	Sr4215_R ug/L 162.2 1.7 1.020	Ti3349_A ug/L 2505 .1214 48.45	TI1908_A ug/L 1.950 .854 43.79
#1 #2	.0166 .4314	1.739 -1.341	5736. 5871.	0037 -1.194	161.0 163.4	3364 1647	2.553 1.346
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L . 5074 .1081 21.31	Zn2062_A ug/L 5.212 .021 .4090					
#1 #2	.5838 .4309	5.197 5.227					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12850. 47. .36792	Y_2243_A Cts/S 12054. 37. .30301	Y_3600_A Cts/S 437180. 2163. .49486				
#1	12884.	12080.	438710.				

Sample Name: SI0318-001 Acquired: 1/22/2015 18:18:55 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3036	15.13	150.5	.0105	37.04	.5011	0360
Stddev	.3205	8.62	5.0	.2944	.12	.4633	.0634
%RSD	105.5	56.96	3.349	2804.	.3210	92.46	176.1
#1	5302	9.039	146.9	1977	37.13	.1735	.0088
#2	0770	21.23	154.1	.2187	36.96	.8287	0809
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2327.	.0998	.0209	3816	4.436	4101	2136 .
Stddev	28.	.0150	.1794	.0045	.236	1.608	30.
%RSD	1.195	15.03	859.6	1.175	5.322	392.1	1.420
#1	2307.	.1104	.1477	3785	4.603	.7269	2115.
#2	2346.	.0892	1060	3848	4.269	-1.547	2157.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2.417	778.4	15.28	7047	W 55700 .	.1 906	2374
Stddev	.113	3.9	.14	.1095	636.	.2240	.8017
%RSD	4.693	.5012	.9467	15.54	1.142	117.5	337.8
#1	2.337	775.6	15.18	6272	55250.	.0322	8043
#2	2.497	781.1	15.38	7821	56150.	.3490	.3295
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 SI0318-001
 Acquired:
 1/22/2015
 18:18:55
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

11930.

12765.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 1. 630 .422 25.88	Se1960_A ug/L .2311 2.796 1210.	Si2516_R ug/L 5166 . 89. 1.727	Sn1899_A ug/L . 5976 .4049 67.76	Sr4215_R ug/L 37.18 .41 1.093	Ti3349_A ug/L . 2443 .0430 17.62	TI1908_A ug/L 1.811 .738 40.76
#1 #2	1.928 1.332	-1.746 2.208	5103. 5229.	.3113 .8840	36.89 37.47	.2747 .2138	1.289 2.333
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .2133 .1506 70.59	Zn2062_A ug/L 3.295 .061 1.838					
#1 #2	.3197 .1068	3.252 3.338					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12698. 96. .75476	Y_2243_A Cts/S 11947. 24. .20165	Y_3600_A Cts/S 434790. 2032. .46743				
#1	12630.	11964.	436220.				

Sample Name: SI0344-001 Acqu Method: K6010-2011(v1630) Mod

Acquired: 1/22/2015 18:24:01 Type: Unk Mode: CONC Corr. Factor: 1.000000

User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3993	53.11	25.17	.1397	37.03	2.016	. 0289
Stddev	.2292	2.99	.34	.1184	.39	.064	.0601
%RSD	57.42	5.634	1.336	84.71	1.064	3.167	208.0
#1	2372	51.00	25.41	.0560	37.31	2.062	.0714
#2	5614	55.23	24.93	.2234	36.75	1.971	0136
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	11 350 .	0983	. 0279	.0449	3.809	94.87	1670.
Stddev	88.	.0016	.0695	.0086	.435	.59	4.
%RSD	.7729	1.621	248.9	19.05	11.43	.6261	.2260
#1	11290.	0972	.0770	.0510	3.501	95.29	1672.
#2	11410.	0994	0212	.0389	4.116	94.45	1667.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 729	1 865 .	7.317	7877	W 49190 .	1.035	.1 898
Stddev	.134	6.	1.214	.1456	305.	.102	.1397
%RSD	7.767	.3172	16.59	18.48	.6196	9.851	73.60
#1	1.824	1861.	6.459	8906	48970.	1.107	.0910
#2	1.634	1869.	8.175	6847	49400.	.9627	.2886
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 Sl0344-001
 Acquired:
 1/22/2015
 18:24:01
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

11889.

12763.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 9274 .5094 54.93	Se1960_A ug/L -1.373 .111 8.080	Si2516_R ug/L 4090. 31. .7529	Sn1899_A ug/L 2159 .0201 9.317	Sr4215_R ug/L 1 25 .1 .9 .7320	Ti3349_A ug/L 3. 273 .017 .5261	TI1908_A ug/L . 7613 1.695 222.6
#1 #2	.5672 1.288	-1.451 -1.295	4068. 4112.	2017 2301	124.5 125.8	3.285 3.261	4370 1.960
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .1184 .1412 119.3	Zn2062_A ug/L 5.492 .104 1.892					
#1 #2	.0185 .2182	5.565 5.418					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12765. 2. .01783	Y_2243_A Cts/S 11911. 31. .25901	Y_3600_A Cts/S 431310. 3282. .76092				
#1	12766.	11933.	433630.				

 Sample Name:
 SI0349-001
 Acquired:
 1/22/2015
 18:29:08
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4 573	1. 927	. 8417	0033	7.900	1.013	.0655
Stddev	.1912	1.904	.4184	.0592	.372	.297	.0342
%RSD	41.82	98.79	49.70	1794.	4.711	29.37	52.20
#1	3220	3.274	.5459	.0385	7.636	1.223	.0413
#2	5925	.5810	1.138	0451	8.163	.8024	.0897
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	9560 .	0506	.1635	2816	70.74	-4.037	1875.
Stddev	135.	.0208	.0940	.1066	.66	.707	33.
%RSD	1.407	41.10	57.46	37.88	.9333	17.50	1.752
#1	9465.	0653	.0971	2062	70.27	-3.537	1851.
#2	9655.	0359	.2300	3570	71.20	-4.536	1898.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	.6115	3049.	7.831	-1.259	14190.	.3863	1 362
Stddev	.1631	4.	.728	.191	228.	.1800	.1572
%RSD	26.67	.1443	9.291	15.20	1.608	46.59	115.4
#1	.7268	3052.	8.345	-1.124	14020.	.2590	0251
#2	.4962	3045.	7.316	-1.395	14350.	.5136	2473
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

#2

12975.

12107.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 625 1 .6962 111.4	Se1960_A ug/L . 4487 .9083 202.4	Si2516_R ug/L 4548 . 93. 2.047	Sn1899_A ug/L . 2792 .7521 269.4	Sr4215_R ug/L 64.04 .75 1.166	Ti3349_A ug/L 1016 .0673 66.25	TI1908_A ug/L 1.638 1.443 88.13
#1 #2	1328 -1.117	1.091 1935	4482. 4613.	2526 .8110	63.51 64.57	1492 0540	.6172 2.658
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 0129 .0793 613.8	Zn2062_A ug/L 20.21 .01 .0725					
#1 #2	0690 .0432	20.20 20.22					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 13009. 48. .36603	Y_2243_A Cts/S 12125. 25. .20788	Y_3600_A Cts/S 446370. 2086. .46730				
#1	13043.	12142.	447840.				

Sample Name: PBSIA16ICS1 Acquired: 1/22/2015 18:34:15 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3889	27.63	1.450	4457	.4354	.1461	.0011
Stddev	.0301	7.41	1.002	.9185	.2110	.1315	.1492
%RSD	7.743	26.83	69.09	206.1	48.45	89.96	13380.
#1	4102	32.87	.7417	.2038	.5846	.2391	1044
#2	3676	22.39	2.158	-1.095	.2863	.0532	.1066
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	36.09	1009	0777	.3163	3.528	50.69	- 8.202
Stddev	6.84	.0063	.1029	.0183	.293	.97	33.00
%RSD	18.94	6.282	132.4	5.780	8.311	1.920	402.3
#1	40.92	0964	0049	.3033	3.736	50.00	-31.54
#2	31.25	1054	1505	.3292	3.321	51.38	15.13
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2. 592	14.49	1. 804	.2489	42.22	. 5482	. 0999
Stddev	1.720	3.84	.136	.0134	1.10	.0886	.1499
%RSD	66.36	26.48	7.544	5.386	2.596	16.17	150.1
#1	1.376	11.77	1.708	.2584	43.00	.4855	.2059
#2	3.808	17.20	1.901	.2394	41.45	.6108	0061
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBSIA16ICS1 Acquired: 1/22/2015 18:34:15 Type: Unk Mode: CONC Corr. Factor: 1.000000 Method: K6010-2011(v1630) User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Ti3349 A Sb2068 A Se1960 A Sn1899 A Sr4215_R TI1908 A Elem Si2516 R Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L .8234 .9056 .7746 -.9763 21.68 18.92 .1276 Avg .4168 .8202 7.23 .07 .0185 .0248 .7342 Stddev %RSD 33.34 14.51 2.743 89.17 53.80 84.01 .3719 #1 -.396416.57 18.97 .8880 .3042 .4799 .1145 26.79 #2 1.069 -1.556 18.87 .1407 9232 1.343 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? High Limit Low Limit V 2924_A Elem Zn2062 A Units ug/L ug/L -.2017 2.917 Avg Stddev .1468 .020 %RSD 72.78 .6954 #1 -.0979 2.903 #2 -.3055 2.932 Check? Chk Pass Chk Pass **High Limit Low Limit** Int. Std. Y 3600 R Y 2243 A Y 3600 A Units Cts/S Cts/S Cts/S 12866. 12170. 449930. Avg Stddev **77**. 28. 6713. %RSD 1.4919 .59678 .22899

#1

#2

12812.

12920.

12190.

12150.

445180.

Sample Name: LCSOIA16ICS1 Acquired: 1/22/2015 18:39:24 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	49.18	2066 .	98.04	1.412	478.7	2009 .	51.26
Stddev	.52	44.	.61	.893	.0	20.	.59
%RSD	1.053	2.107	.6228	63.23	.0078	1.006	1.144
#1	49.55	2035.	98.47	.7806	478.6	1995.	50.84
#2	48.82	2096.	97.61	2.043	478.7	2024.	51.67
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2535.	247.6	509.1	205.0	252.7	1018.	9882 .
Stddev	24.	1.1	.6	.2	.5	13.	98.
%RSD	.9366	.4639	.1184	.0983	.2115	1.291	.9937
#1	2518.	248.4	509.5	204.8	253.1	1008.	9813.
#2	2552.	246.8	508.6	205.1	252.3	1027.	9952.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	501.2	4927 .	506.1	104.0	756 1.	509.4	99.07
Stddev	2.0	23.	5.3	.9	76.	1.5	.32
%RSD	.3921	.4593	1.055	.8323	1.011	.3034	.3276
#1	499.8	4943.	502.3	103.4	7507.	510.5	99.30
#2	502.5	4911.	509.9	104.7	7615.	508.3	98.84
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSOIA16ICS1 Acquired: 1/22/2015 18:39:24 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Sb2068 A Se1960_A Si2516 R Sn1899 A Sr4215 R Ti3349 A TI1908 A Elem Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 109.2 499.3 474.2 99.35 100.4 917.7 512.3 Avg Stddev .64 2.2 15.3 3.3 4.1 1.0 .3 %RSD .6402 2.145 1.663 .6525 .8116 .2047 .2419 #1 99.80 98.86 906.9 514.7 496.5 474.9 109.0 109.4 #2 98.90 101.9 928.5 510.0 502.2 473.6 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** Low Limit Elem V 2924 A Zn2062 A Units ug/L ug/L 502.5 Avg 503.3 Stddev .5 .1 %RSD .0918 .0217 #1 502.1 503.4 #2 502.8 503.2 Check? Chk Pass Chk Pass **High Limit Low Limit** Int. Std. Y 3600 R Y 2243 A Y 3600 A Units Cts/S Cts/S Cts/S

12542.

.25403

12565.

12520.

32.

Avg

#1

#2

Stddev

%RSD

11912.

.17164

11897.

11926.

20.

433500.

1546.

.35668

432410.

Sample Name: CCV Acquired: 1/22/2015 18:44:25 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

Range

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Ava	EVE 3	12470	E ก วั 1	403 G	507 E	EOŽ 6	ธ เว็ว

Avg	505.2	12470.	502.1	493.6	507.5	507.6	513.2 6.5 1.275
Stddev	2.5	154.	3.6	12.2	1.3	5.3	
%RSD	.5024	1.237	.7247	2.478	.2530	1.038	
#1	503.4	12360.	499.6	484.9	506.6	503.9	508.6
#2	507.0	12580.	504.7	502.2	508.4	511.4	517.8
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 2520 .	503.8	513.1	510.9	510.3	12700.	1 2670.
Stddev	86.	.2	.5	3.3	3.5	167.	170.
%RSD	.6863	.0473	.0973	.6394	.6791	1.312	1.342
#1	12460.	504.0	513.4	508.5	507.8	12580.	12550.
#2	12580.	503.7	512.7	513.2	512.7	12820.	12790.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Li6707_R ug/L 504.4 5.0 .9879	Mg2025_A ug/L 12650. 2. .0180		ug/L 508.8	Na5895_R ug/L 1 2600 . 137. 1.090	ug/L 508.2	Pb2203_A ug/L 505.6 .6 .1210
#1	500.9	12650.	503.6	505.3	12500.	508.2	505.2
#2	507.9	12640.	511.2	512.2	12690.	508.1	506.1
Check ? Value	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 1/22/2015 18:44:25 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12774.

11937.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 507.0 1.0 .1963	Se1960_A ug/L 500.2 10.8 2.161	Si2516_R ug/L 12560. 156. 1.241	Sn1899_A ug/L 500.1 .6 .1281	Sr4215_R ug/L 502.4 3.7 .7305	Ti3349_A ug/L 504.8 4.0 .7966	TI1908_A ug/L 520.5 .4 .0711
#1 #2	506.3 507.7	492.5 507.8	12450. 12670.	499.6 500.5	499.8 505.0	501.9 507.6	520.2 520.7
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 503.6 2.3 .4664	Zn2062_A ug/L 506.6 .4 .0832					
#1 #2	502.0 505.3	506.9 506.3					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12807. 47. .36618	Y_2243_A Cts/S 11926. 15. .12414	Y_3600_A Cts/S 434420. 1661. .38234				
#1	12841.	11916.	435590.				

Sample Name: CCB Acquired: 1/22/2015 18:49:20 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1811	-4.421	3.078	. 627 1	1. 047	1810	.1584
Stddev	.2537	10.89	.376	.4728	.188	.1060	.0371
%RSD	140.1	246.3	12.20	75.40	17.94	58.57	23.40
#1	3604	3.277	3.344	.9614	1.179	1061	.1846
#2	0017	-12.12	2.813	.2928	.9139	2560	.1322
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4.141	.1199	.0234	0027	1266	2266	10.56
Stddev	6.278	.0486	.0627	.4295	.1554	5.260	10.35
%RSD	151.6	40.52	268.1	15660.	122.8	2321.	97.98
#1	8.580	.1543	0210	3064	0167	3.493	3.244
#2	2986	.0856	.0677	.3009	2365	-3.946	17.88
Check? High Limit Low Limit	Chk Pass	Chk Þass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2.040	2.918	. 749 1	3.354	18.91	. 2376	758 1
Stddev	2.151	.022	.4961	.564	2.50	.2329	.7726
%RSD	105.4	.7668	66.22	16.81	13.24	98.04	101.9
#1	3.561	2.934	.3984	3.752	20.68	.4023	2117
#2	.5194	2.902	1.100	2.955	17.14	.0729	-1.304
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCB Acquired: 1/22/2015 18:49:20 Type: QC

12831.

12640.

12111.

12119.

445330.

445550.

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#1

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 3612 .3829 106.0	Se1960_A ug/L 3.439 .253 7.346	Si2516_R ug/L 7.535 1.637 21.73	Sn1899_A ug/L . 2228 .1492 66.95	Sr4215_R ug/L . 0932 .2319 248.8	Ti3349_A ug/L 1.102 .220 19.97	TI1908_A ug/L . 8014 .2787 34.77
#1 #2	0904 6319	3.260 3.617	6.377 8.693	.3283 .1173	.2572 0708	1.257 .9462	.6044 .9985
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .1239 .1705 137.6	Zn2062_A ug/L .0968 .0876 90.41					
#1 #2	.2445 .0033	.1588 .0349					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12736. 135. 1.0619	Y_2243_A Cts/S 12115. 6. .04920	Y_3600_A Cts/S 445440. 155. .03477				

 Sample Name:
 SI0220-001
 Acquired:
 1/22/2015
 18:54:27
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5. 375	6170.	10.41	2124	45.53	254.4	.3419
Stddev	.047	72.	.98	.5548	.42	3.5	.0317
%RSD	.8824	1.165	9.449	261.2	.9199	1.392	9.274
#1	5.342	6119.	9.712	6047	45.82	251.9	.3643
#2	5.409	6221.	11.10	.1 79 9	45.23	256.9	.3195
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 7960 .	4.968	5.149	40.42	W 1001.	21420.	24850.
Stddev	225.	.121	.057	1.59	32.	336.	210.
%RSD	1.250	2.433	1.101	3.920	3.149	1.568	.8437
#1	17810.	5.054	5.189	39.30	978.9	21180.	24700.
#2	18120.	4.883	5.109	41.54	1024.	21660.	25000.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -25.00	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5.346	14860.	217.5	12.86	1 3630 .	37.65	51.26
Stddev	.017	45.	2.5	.31	151.	.07	.43
%RSD	.3222	.2997	1.163	2.383	1.107	.1941	.8322
#1	5.358	14890.	215.7	13.08	13530.	37.70	50.96
#2	5.333	14830.	219.3	12.64	13740.	37.60	51.56
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: SI0220-001 Acquired: 1/22/2015 18:54:27 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

11935.

12829.

419040.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 2.974 1.173 39.46	Se1960_A ug/L 10.94 .84 7.687	Si2516_R ug/L 1 980 . 27. 1.360	Sn1899_A ug/L 67.42 1.46 2.162	Sr4215_R ug/L 241.0 3.2 1.312	Ti3349_A ug/L 207.2 5.6 2.684	TI1908_A ug/L .0862 .3969 460.4
#1 #2	3.804 2.144	10.35 11.54	1961. 1999.	66.39 68.45	238.8 243.3	203.3 211.1	1944 .3669
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 17.83 .97 5.416	Zn2062_A ug/L 884.7 1.7 .1938					
#1 #2	17.14 18.51	883.5 885.9					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12822. 10. .08136	Y_2243_A Cts/S 11947. 17. .14470	Y_3600_A Cts/S 428670. 13617. 3.1766				
#1	12814.	11959.	438290.				

Sample Name: PBWIA21ICW1 Acquired: 1/22/2015 18:59:29 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5517	8.907	. 2405	.2415	.0863	.4390	0747
Stddev	.0030	8.251	.6792	.4779	.5016	.1264	.0321
%RSD	.5400	92.63	282.4	197.9	581.3	28.79	43.06
#1	5496	3.073	.7207	0964	.4410	.3496	0519
#2	5538	14.74	2398	.5794	2684	.5284	0974
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	-1.296	0160	. 0085	1971	. 5233	3.617	27.97
Stddev	.537	.0026	.0494	.1076	.1573	4.742	38.99
%RSD	41.44	16.25	582.6	54.57	30.06	131.1	139.4
#1	9163	0141	0264	2731	.4121	6.970	.4075
#2	-1.676	0178	.0434	1210	.6346	.2640	55.54
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	. 388 1	10.31	.7414	7192	28.10	.1 855	4912
Stddev	1.401	6.57	.5530	.1171	11.93	.0880	.0506
%RSD	360.9	63.69	74.59	16.28	42.46	47.45	10.30
#1	1.378	14.96	1.132	8020	36.53	.1233	4554
#2	6023	5.669	.3503	6364	19.66	.2478	5269
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name: PBWIA21ICW1
 Acquired: 1/22/2015 18:59:29
 Type: Unk

 Method: K6010-2011(v1630)
 Mode: CONC
 Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

13038.

12251.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L .1413 .2225 157.5	Se1960_A ug/L 9196 1.139 123.8	Si2516_R ug/L 4.746 6.859 144.5	Sn1899_A ug/L 5794 .1786 30.81	Sr4215_R ug/L . 2332 .0685 29.37	Ti3349_A ug/L . 4985 .0754 15.13	TI1908_A ug/L 2.502 .298 11.89
#1 #2	0161 .2986	-1.725 1145	9.596 1038	4532 7057	.2817 .1848	.5519 .4452	2.712 2.291
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 0616 .1857 301.6	Zn2062_A ug/L . 7256 .0869 11.98					
#1 #2	1929 .0698	.7870 .6641					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 13096. 82. .62531	Y_2243_A Cts/S 12273. 31. .25458	Y_3600_A Cts/S 458360. 563. .12281				
#1	13154.	12296.	458750.				

Sample Name: LCSWIA21ICW1 Acquired: 1/22/2015 19:04:37 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 2.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	52.23	2245.	98.63	. 2241	502.7	W 2137 .	54.08
Stddev	.18	31.	.66	1.249	2.7	25.	.42
%RSD	.3520	1.374	.6702	557.5	.5460	1.165	.7759
#1	52.36	2223.	98.17	1.108	500.8	2119.	53.79
#2	52.10	2267.	99.10	6594	504.7	2154.	54.38
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -5.000	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2561.	252.4	547.1	215.6	267.4	1 055 .	10090.
Stddev	23.	.3	.8	.4	.3	14.	54.
%RSD	.9116	.1088	.1530	.1820	.0966	1.356	.5362
#1	2545.	252.2	546.5	215.9	267.6	1045.	10060.
#2	2578.	252.6	547.7	215.3	267.2	1065.	10130.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	516.8	5164.	540.9	97.78	7713.	545.7	102.3
Stddev	4.1	20.	6.9	3.29	69.	.4	.5
%RSD	.8008	.3919	1.278	3.363	.8942	.0673	.4860
#1	513.9	5150.	536.0	95.45	7664.	545.4	102.6
#2	519.7	5178.	545.8	100.1	7762.	545.9	101.9
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSWIA21ICW1 Acquired: 1/22/2015 19:04:37 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 2.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12888.

12083.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 98.87 5.18 5.240	Se1960_A ug/L 93.09 3.68 3.953	Si2516_R ug/L 1007. 7. .7296	Sn1899_A ug/L 504.6 2.3 .4531	Sr4215_R ug/L 513.6 6.4 1.248	Ti3349_A ug/L 475 .4 .4 .0788	TI1908_A ug/L 114.9 1.2 1.018
#1 #2	95.20 102.5	90.49 95.69	1012. 1002.	506.3 503.0	509.0 518.1	475.7 475.1	115.7 114.0
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 5 29.7 3.1 .5882	Zn2062_A ug/L 548.2 .6 .1083					
#1 #2	531.9 527.5	547.8 548.6					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12934. 64. .49467	Y_2243_A Cts/S 12098. 21. .17381	Y_3600_A Cts/S 444460. 218. .04902				
#1	12979.	12113.	444620.				

 Sample Name:
 Sl0386-001
 Acquired:
 1/22/2015
 19:09:40
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	-4.251	9400 .	-1. 523	-5.618	W 13170.	498.5
Stddev	.023	87.	1.772	1.098	29.	4.3
%RSD	.5426	.9275	116.3	19.54	.2173	.8686
#1	-4.234	9339.	2700	-6.395	13150.	495.4
#2	-4.267	9462.	-2.776	-4.842	13190.	501.5
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -50.00	Chk Pass
Elem	Be3130_R	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	. 0236	W 741500 .	6501	5.770	3.286	19.27
Stddev	.1787	8029.	.4016	1.295	.288	1.38
%RSD	758.5	1.083	61.78	22.45	8.760	7.178
#1	1028	735800.	9341	4.854	3.489	20.25
#2	.1499	747200.	3661	6.686	3.082	18.30
Check ? High Limit Low Limit	Chk Pass	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599_R	K_7664_R	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	6935 .	69900 .	225.9	337.8	55.59	4564 .
Stddev	148.	589.	8.3	19.9	.67	61.
%RSD	2.128	.8424	3.669	5.901	1.209	1.345
#1	6831.	69490.	220.1	351.9	55.11	4520.
#2	7040.	70320.	231.8	323.7	56.07	4607.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name:
 SI0386-001
 Acquired:
 1/22/2015
 19:09:40
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Na5895_R	Ni2316_A	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	F 1021000.	39.84	33.59	19.84	1 8.22	2534 .
Stddev	2507.	.19	1.26	2.74	7.18	7.
%RSD	.2454	.4825	3.741	13.80	39.42	.2771
#1	1020000.	39.70	32.70	17.90	23.30	2529.
#2	1023000.	39.98	34.48	21.77	13.14	2539.
Check? High Limit Low Limit	Chk Fail 200000. -1000.	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Sn1899_A	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	6.711	2872 .	2.131	. 2634	10.32	75.54
Stddev	3.532	26.	1.682	5.652	1.28	.85
%RSD	52.64	.8973	78.90	2146.	12.38	1.124
#1	4.213	2854.	3.321	-3.733	11.23	74.94
#2	9.208	2890.	.9423	4.260	9.420	76.14
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12589. 21. .16661	Y_2243_A Cts/S 10998. 13. .11927	Y_3600_A Cts/S 405490. 1396. .34431			
#1 #2	12603. 12574.	10989. 11007.	404500. 406480.			

Sample Name: PBWIA14ICW1

Acquired: 1/22/2015 19:14:43 Type: Unk

Method: K6010-2011(v1630)

Mode: CONC

Corr. Factor: 1.000000

User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2552	9.376	1.131	4969	. 6385	. 2667	.0214
Stddev	.0726	6.868	.061	1.338	.2046	.3050	.0789
%RSD	28.47	73.25	5.428	269.4	32.04	114.4	368.2
#1	3065	14.23	1.087	.4495	.7832	.0510	0344
#2	2038	4.520	1.174	-1.443	.4938	.4824	.0772
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	44.10	0544	0545	1 856	. 0825	8974	-5.249
Stddev	18.67	.0151	.1255	.0354	.0463	4.688	11.82
%RSD	42.34	27.64	230.3	19.08	56.08	522.4	225.1
#1	30.90	0438	.0342	2107	.1152	-4.213	-13.60
#2	57.31	0651	1432	1606	.0498	2.418	3.106
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 594	10.10	1.650	3.692	168.9	. 0548	1484
Stddev	.164	5.41	.338	.432	30.4	.0520	.0984
%RSD	10.31	53.60	20.47	11.70	18.02	94.83	66.31
#1	1.478	6.272	1.889	3.998	147.4	.0916	2180
#2	1.710	13.93	1.411	3.386	190.5	.0181	0788
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBWIA14ICW1 Acquired: 1/22/2015 19:14:43 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Elem Sb2068 A Se1960 A Si2516_R Sn1899_A Sr4215_R Ti3349 A TI1908_A Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L .3218 -.3189 14.33 .4081 Avg -2.301 .2378 1.312 .3694 Stddev .621 1.74 .0378 .2092 .0173 .027 %RSD 115.8 26.98 12.12 9.270 7.262 65.03 2.076 #1 -.0577-1.86215.56 .4349 .2500 .4697 1.292 #2 -.5801 -2.74013.10 .3814 .2256 .1738 1.331 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit Elem V 2924 A Zn2062 A Units ug/L ug/L

-.2671 1.956 Avg Stddev .2917 .053 %RSD 109.2 2.700 #1 -.0608 1.919 #2 -.4733 1.993 Check? Chk Pass Chk Pass **High Limit** Low Limit Int. Std. Y 3600 R Y 2243 A Y 3600 A Units Cts/S Cts/S Cts/S Avg 13114. 12295. 460510. Stddev 105. 31. 9. %RSD .00190 .80422 .24837 #1 13188. 12317. 460510. #2 13039. 12273. 460500.

Sample Name: LCSWIA14ICW1 Acquired: 1/22/2015 19:19:51 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 2.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	52.2 1	2202.	99.91	.0148	4 99.4	W 2128 .	54.36
Stddev	.37	20.	2.29	.8401	3.2	21.	.50
%RSD	.7078	.8987	2.293	5693.	.6458	.9662	.9167
#1	52.47	2188.	98.29	5793	497.1	2113.	54.01
#2	51.95	2216.	101.5	.6088	501.7	2142.	54.71
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -5.000	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2567 .	253.1	547.1	213.7	267. 1	1 064 .	10110.
Stddev	22.	.6	.5	1.8	3.9	22.	24.
%RSD	.8432	.2381	.0920	.8300	1.442	2.058	.2402
#1	2552.	252.7	546.8	214.9	269.8	1049.	10090.
#2	2583.	253.6	547.5	212.4	264.4	1080.	10130.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	506.7	5204 .	533.9	103.4	7746 .	545.2	103.3
Stddev	3.6	8.	11.6	2.2	103.	.4	.0
%RSD	.7123	.1544	2.171	2.137	1.325	.0705	.0453
#1	504.2	5199.	525.7	101.9	7674.	545.0	103.4
#2	509.3	5210.	542.0	105.0	7819.	545.5	103.3
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSWIA14ICW1 Acquired: 1/22/2015 19:19:51 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 2.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12902.

12066.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 103.1 1.3 1.263	Se1960_A ug/L 92.77 7.31 7.883	Si2516_R ug/L 1034. 21. 2.041	Sn1899_A ug/L 497.6 1.6 .3309	Sr4215_R ug/L 505.7 7.3 1.452	Ti3349_A ug/L 469 .9 3.7 .7929	TI1908_A ug/L 114.6 1.4 1.202
#1 #2	102.2 104.0	87.60 97.94	1049. 1019.	496.4 498.8	500.5 510.9	472.5 467.2	115.6 113.6
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 528.2 5.2 .9785	Zn2062_A ug/L 539.7 1.1 .2071					
#1 #2	531.8 524.5	538.9 540.5					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12922. 28. .21406	Y_2243_A Cts/S 12079. 18. .14589	Y_3600_A Cts/S 446150. 3214. .72031				
#1	12941.	12091.	443880.				

 Sample Name:
 SI0226-001
 Acquired:
 1/22/2015
 19:24:54
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	9524	3992 .	-5.578	-7.285	W 1 4950 .	212.3
Stddev	1.250	55.	7.683	.952	25.	2.2
%RSD	131.3	1.375	137.7	13.06	.1655	1.046
#1	-1.837	4030.	1448	-7.958	14930.	210.7
#2	0683	3953.	-11.01	-6.612	14970.	213.9
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -50.00	Chk Pass
Elem	Be3130_R	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	0798	W 669000 .	4210	8.545	6.191	53.32
Stddev	.6864	7180.	.1248	.813	.039	.75
%RSD	860.3	1.073	29.64	9.509	.6317	1.404
#1	5652	663900.	5093	7.970	6.218	53.85
#2	.4056	674100.	3328	9.119	6.163	52.80
Check? High Limit Low Limit	Chk Pass	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599_R	K_7664_R	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	15130.	63730 .	140.2	1608.	108.9	3414.
Stddev	339.	488.	11.2	20.	.9	41.
%RSD	2.239	.7661	7.994	1.247	.8250	1.194
#1	14890.	63390.	132.3	1594.	109.5	3385.
#2	15370.	64080.	148.1	1622.	108.3	3443.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name:
 SI0226-001
 Acquired:
 1/22/2015
 19:24:54
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Na5895_R	Ni2316_A	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 592700 .	75.40	22.90	105.0	23.94	3615 .
Stddev	5890.	1.08	1.54	3.5	13.24	60.
%RSD	.9937	1.430	6.743	3.315	55.29	1.669
#1	588500.	74.64	21.81	107.5	14.58	3657.
#2	596900.	76.16	23.99	102.6	33.30	3572.
Check ? High Limit Low Limit	Chk Warn 25000. -1000.	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Sn1899_A	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	8.156	1 025 .	5.983	3.376	13.02	120.0
Stddev	4.421	11.	.540	8.801	.33	1.0
%RSD	54.21	1.115	9.027	260.7	2.518	.8222
#1	11.28	1017.	6.365	9.599	13.25	119.3
#2	5.029	1033.	5.601	-2.847	12.79	120.7
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12584. 1. .01119	Y_2243_A Cts/S 11097. 9. .07946	Y_3600_A Cts/S 407720. 3342. .81977			
#1 #2	12585. 12583.	11103. 11091.	410080. 405360.			

Sample Name: PBWIA14ICW2 Acquired: 1/22/2015 19:30:00 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2994	10.48	. 6261	2927	1. 586	0215	.0179
Stddev	.1182	17.50	.6994	.5068	.351	.1137	.0100
%RSD	39.49	166.9	111.7	173.1	22.13	529.8	55.98
#1	3830	-1.888	1.121	6510	1.834	.0589	.0250
#2	2158	22.86	.1315	.0656	1.338	1019	.0108
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	41.23	0529	0749	0711	7571	4.996	-9.159
Stddev	4.13	.0082	.0460	.1665	.1903	1.027	51.29
%RSD	10.01	15.48	61.48	234.2	25.14	20.55	560.0
#1	44.15	0471	0423	1888	8917	4.270	-45.42
#2	38.32	0586	1074	.0467	6225	5.722	27.11
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 276	6.011	1.528	W 6.000	87.52	.1693	6280
Stddev	.702	.618	.837	.804	.26	.0064	.7661
%RSD	55.03	10.28	54.76	13.39	.3003	3.807	122.0
#1	1.773	5.574	.9366	6.569	87.71	.1739	-1.170
#2	.7796	6.449	2.120	5.432	87.34	.1648	0864
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Warn 5.000 -5.000	Chk Pass	Chk Pass	Chk Pass

Sample Name: PBWIA14ICW2 Acquired: 1/22/2015 19:30:00 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12670.

12040.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 5567 .0257 4.610	Se1960_A ug/L 8455 1.117 132.1	Si2516_R ug/L 3.507 8.594 245.1	Sn1899_A ug/L 1. 563 .528 33.80	Sr4215_R ug/L .0368 .1781 483.8	Ti3349_A ug/L . 3549 .0757 21.34	TI1908_A ug/L . 539 1 .4705 87.28
#1 #2	.5386 .5749	-1.635 0555	-2.570 9.584	1.937 1.190	.1628 0891	.4084 .3013	.2064 .8718
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 0117 .2592 2207.	Zn2062_A ug/L 1. 361 .063 4.625					
#1 #2	1950 .1715	1.406 1.317					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12657. 18. .14144	Y_2243_A Cts/S 12033. 10. .08171	Y_3600_A Cts/S 442620. 529. .11944				
#1	12645.	12026.	442250.				

Sample Name: LCSWIA14ICW2 Acquired: 1/22/2015 19:35:09 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	53.23	2248.	101.0	1.952	498.1	2194.	55.94
Stddev	.41	27.	1.5	1.054	1.2	17.	.83
%RSD	.7613	1.204	1.500	53.99	.2487	.7677	1.489
#1	52.94	2228.	99.94	1.207	499.0	2182.	55.35
#2	53.52	2267.	102.1	2.697	497.3	2206.	56.53
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2595 .	254.8	555.8	223.7	274.7	1113.	10360.
Stddev	30.	.6	.4	1.7	2.2	27.	92.
%RSD	1.140	.2367	.0802	.7610	.8184	2.457	.8866
#1	2574.	254.4	556.1	222.5	273.1	1094.	10290.
#2	2615.	255.3	555.5	224.9	276.3	1132.	10420.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	518.8	5031 .	550.5	112.8	7839.	5 52.8	101.8
Stddev	4.8	5.	7.4	.6	80.	.4	.1
%RSD	.9198	.1075	1.344	.5562	1.024	.0737	.0804
#1	515.5	5034.	545.3	112.4	7782.	552.6	101.9
#2	522.2	5027.	555.7	113.3	7895.	553.1	101.7
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSWIA14ICW2 Acquired: 1/22/2015 19:35:09 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

11850.

12525.

431800.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 102.7 .2 .1738	Se1960_A ug/L 101.8 .5 .4940	Si2516_R ug/L 1040. 4. .3765	Sn1899_A ug/L 509 .1 .6 .1208	Sr4215_R ug/L 519.6 4.8 .9142	Ti3349_A ug/L 489.8 4.6 .9400	TI1908_A ug/L 113.9 .3 .2878
#1 #2	102.5 102.8	102.2 101.4	1042. 1037.	509.6 508.7	516.2 522.9	486.5 493.0	113.7 114.1
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 547.5 4.2 .7665	Zn2062_A ug/L 549.5 .5 .0841					
#1 #2	544.5 550.5	549.2 549.9					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12515. 14. .10826	Y_2243_A Cts/S 11867. 24. .20094	Y_3600_A Cts/S 433900. 2966. .68350				
#1	12506.	11884.	435990.				

 Sample Name:
 SI0230-002
 Acquired:
 1/22/2015
 19:40:11
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	0544	W 29070.	7.691	. 9569	28.24	394.7	2.040
Stddev	.0652	428.	1.108	.7910	.33	5.0	.042
%RSD	119.8	1.472	14.40	82.66	1.152	1.261	2.052
#1	1005	28760.	8.474	1.516	28.47	391.2	2.011
#2	0083	29370.	6.908	.3976	28.01	398.3	2.070
Check ? High Limit Low Limit	Chk Pass	Chk Warn 25000. -300.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	7525 .	0922	14.19	29.77	1 27.2	10710.	2835 .
Stddev	123.	.0133	.11	.18	1.6	145.	45.
%RSD	1.640	14.43	.7444	.6110	1.262	1.349	1.596
#1	7438.	0828	14.27	29.64	126.1	10610.	2803.
#2	7612.	1016	14.12	29.90	128.3	10820.	2867.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	14.91	4565.	181.2	8.641	W 27190 .	21.84	26.14
Stddev	.13	6.	1.6	.042	295.	.02	1.20
%RSD	.8391	.1267	.8624	.4852	1.083	.1134	4.607
#1	14.83	4569.	180.0	8.671	26980.	21.85	25.28
#2	15.00	4561.	182.3	8.612	27390.	21.82	26.99
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 Sl0230-002
 Acquired:
 1/22/2015
 19:40:11
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 5745 .3333 58.02	Se1960_A ug/L -1.211 2.720 224.6	Si2516_R ug/L 23580 . 369. 1.563	Sn1899_A ug/L 3.324 .495 14.90	Sr4215_R ug/L 201.8 2.4 1.178	Ti3349_A ug/L 90.43 .74 .8197	TI1908_A ug/L .0774 .2671 345.1
#1 #2	.3388 .8101	.7121 -3.134	23320. 23840.	3.675 2.974	200.1 203.4	89.90 90.95	1115 .2662
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 27.93 .35 1.243	Zn2062_A ug/L 56.43 .09 .1669					
#1 #2	27.69 28.18	56.49 56.36					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12895. 17. .13370	Y_2243_A Cts/S 11982. 22. .18638	Y_3600_A Cts/S 435000. 1956. .44961				
#1 #2	12907. 12883.	11966. 11998.	436380. 433620.				

Sample Name: CCV

Acquired: 1/22/2015 19:45:13 Mode: CONC

Type: QC Corr. Factor: 1.000000

Method: K6010-2011(v1630) User: EAM

Custom ID1:

Custom ID2:

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	509.4	12550.	501.4	495.5	510.7	510.4	512.2
Stddev	1.3	142.	3.6	14.0	.8	4.3	4.9
%RSD	.2539	1.133	.7196	2.827	.1488	.8473	.9611
#1	510.4	12450.	498.8	485.6	510.2	507.4	508.7
#2	508.5	12650.	503.9	505.5	511.3	513.5	515.7
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	12510.	503.4	515.6	519.0	517.5	12790.	1 2740 .
Stddev	158.	.9	.2	1.7	.7	178.	54.
%RSD	1.260	.1775	.0312	.3294	.1311	1.391	.4250
#1	12400.	502.8	515.5	520.2	518.0	12670.	12700.
#2	12620.	504.0	515.7	517.8	517.0	12920.	12770.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	507.2	12640.	505.3	515.9	1 2650 .	509.8	504.9
Stddev	5.1	1.	9.8	3.8	138.	.2	1.7
%RSD	1.004	.0103	1.940	.7396	1.091	.0485	.3412
#1	503.6	12640.	498.4	513.2	12550.	509.6	503.7
#2	510.8	12640.	512.2	518.6	12750.	509.9	506.2
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 1/22/2015 19:45:13 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

Custom ID1: Custom ID2: Custom ID3: User: EAM

Comment:

#2

12699.

11889.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 507.3 .4 .0876	Se1960_A ug/L 504.5 9.5 1.875	Si2516_R ug/L 12530. 204. 1.624	Sn1899_A ug/L 500.4 1.7 .3339	Sr4215_R ug/L 502.6 6.0 1.193	Ti3349_A ug/L 511.3 .1 .0131	TI1908_A ug/L 522.4 1.3 .2557
#1 #2	507.6 506.9	497.8 511.2	12390. 12680.	499.2 501.6	498.4 506.9	511.2 511.3	523.3 521.4
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 511.5 1.0 .1936	Zn2062_A ug/L 509.2 .0 .0020					
#1 #2	512.2 510.8	509.2 509.2					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12764. 92. .72092	Y_2243_A Cts/S 11891. 2. .01765	Y_3600_A Cts/S 430950. 1100. .25520				
#1	12829.	11892.	430170.				

Sample Name: CCB Acquired: 1/22/2015 19:50:09

Type: QC

Method: K6010-2011(v1630) User: EAM

Custom ID1:

Mode: CONC

Custom ID2:

Corr. Factor: 1.000000

Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	0945	6.460	1.452	. 0098	.5018	. 2232	.1650
Stddev	.1270	7.310	1.255	.5107	.0843	.0451	.0892
%RSD	134.4	113.2	86.48	5217.	16.81	20.19	54.05
#1	1843	1.291	2.339	.3709	.5615	.2551	.1020
#2	0047	11.63	.5639	3513	.4422	.1913	.2281
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	8.977	. 0745	. 2017	. 0323	5 289	7.086	9.360
Stddev	2.386	.0517	.1395	.0772	.2102	.249	26.93
%RSD	26.58	69.42	69.16	239.3	39.75	3.516	287.7
#1	10.66	.1111	.1031	.0869	3802	7.262	-9.682
#2	7.290	.0379	.3004	0223	6776	6.910	28.40
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1.1 68	8.093	. 366 1	3.390	35.16	.0541	3238
Stddev	.022	.372	.7998	.695	7.37	.0144	.0277
%RSD	1.895	4.597	218.5	20.50	20.97	26.67	8.542
#1	1.183	8.356	1995	3.882	29.94	.0643	3043
#2	1.152	7.830	.9316	2.899	40.37	.0439	3434
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Type: QC Sample Name: CCB Acquired: 1/22/2015 19:50:09 Corr. Factor: 1.000000 Method: K6010-2011(v1630) Mode: CONC User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Sb2068 A Se1960 A Si2516 R Sn1899 A Sr4215 R Ti3349 A TI1908 A Elem ug/L ug/L Units ug/L ug/L ug/L ug/L ug/L -.3441 1.258 17.85 .4963 .1363 1.269 1.368 Avg .534 9.79 .024 Stddev .6329 3.169 .2191 .1777 %RSD 183.9 251.9 54.83 44.15 130.4 1.898 39.08 1.252 #1 .1034 3.499 24.78 .3413 .0107 1.745 1.286 .9897 .2620 #2 -.7916 -.9826 10.93 .6512 Chk Pass Chk Pass Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit Low Limit V 2924 A Zn2062 A Elem Units ug/L ua/L Avg -.0013 .2008 Stddev .2556 .0165 %RSD 19640. 8.192 #1 -.1820.2124 #2 .1794 .1892 Check? Chk Pass Chk Pass **High Limit** Low Limit Y 2243 A Y 3600 A Int. Std. Y 3600 R

Cts/S

1392.

.31092

446810.

448780.

447790.

Units

Stddev

%RSD

Avg

#1 #2 Cts/S

42.

12761.

.32988

12791.

12731.

Cts/S

17.

12084.

.14055

12072.

 Sample Name:
 SI0230-003
 Acquired:
 1/22/2015
 19:55:17
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 088	W 71470 .	23.65	1. 334	50.25	248.4	6. 992
Stddev	.089	296.	.05	.056	.31	2.5	.090
%RSD	8.172	.4134	.2067	4.172	.6232	1.025	1.292
#1	1.025	71260.	23.62	1.373	50.03	246.6	6.929
#2	1.151	71680.	23.68	1.294	50.48	250.2	7.056
Check? High Limit Low Limit	Chk Pass	Chk Warn 25000. -300.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	24240 .	3903	34.40	101.3	110.6	W 40550 .	6224.
Stddev	245.	.2049	.25	.4	.1	926.	74.
%RSD	1.012	52.51	.7380	.4313	.0895	2.283	1.196
#1	24070.	2454	34.58	101.6	110.7	39900.	6171.
#2	24410.	5352	34.22	101.0	110.6	41200.	6276.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -100.0	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	43.66	11290.	633.3	22.54	W 71870 .	59.64	90.00
Stddev	1.01	10.	14.0	.10	344.	.25	.54
%RSD	2.323	.0896	2.214	.4232	.4788	.4232	.6007
#1	44.38	11300.	623.4	22.61	71630.	59.81	90.38
#2	42.95	11280.	643.2	22.47	72110.	59.46	89.61
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.	Chk Pass	Chk Pass

Sample Name: SI0230-003 Acquired: 1/22/2015 19:55:17 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Elem Sb2068 A Se1960 A Si2516 R Sn1899_A Sr4215_R Ti3349 A TI1908 A Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L -1.476Avg .2013 W 38960. 7.397 469.5 114.5 -1.335 Stddev 2.331 .9137 807. .263 5.3 .0 .866 %RSD 158.0 454.0 2.072 3.553 1.119 .0019 64.82 #1 .1727 -.4448 38390. 7.211 465.8 114.5 -1.947#2 -3.124 .8474 39530. 7.583 473.2 114.5 -.7233 Check? Chk Pass Chk Pass Chk Warn Chk Pass Chk Pass Chk Pass Chk Pass **High Limit** 25000. **Low Limit** -200.0 V 2924_A Elem Zn2062 A Units ug/L ug/L 77.84 Avg 226.5 Stddev .16 .6 %RSD .2059 .2594 #1 77.72 226.1 #2 77.95 227.0 Check? Chk Pass Chk Pass High Limit

Low Limit

Y 3600 R

Cts/S

20.

12974.

.15089

12961.

12988.

Y 2243 A

Cts/S

23.

12044.

.19473

12061.

12027.

Y_3600_A

Cts/S

881.

.20255

434550.

435790.

435170.

Int. Std.

Stddev

%RSD

Units

Avg

#1

#2

Sample Name: SI0230-004 Acquired: 1/22/2015 20:00:18 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2309	1 0280 .	2.829	. 2049	1 6.30	51.74	.8176
Stddev	.0402	95.	.471	.0547	.09	.72	.0058
%RSD	17.41	.9191	16.67	26.69	.5804	1.383	.7043
#1	2025	10220.	3.162	.2436	16.37	51.24	.8217
#2	2594	10350.	2.495	.1662	16.23	52.25	.8136
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4969 .	069 1	5.353	15.41	17.77	7683 .	1650.
Stddev	46.	.0132	.035	.10	.64	57.	11.
%RSD	.9255	19.07	.6498	.6509	3.615	.7362	.6524
#1	4936.	0784	5.377	15.48	18.23	7643.	1643.
#2	5002.	0597	5.328	15.34	17.32	7723.	1658.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	8.213	2342 .	110.4	3.841	1 5800 .	14.35	14.48
Stddev	.600	2.	2.3	.338	143.	.11	.66
%RSD	7.300	.0722	2.129	8.794	.9073	.7395	4.550
#1	8.637	2343.	108.7	4.080	15700.	14.42	14.95
#2	7.789	2341.	112.1	3.602	15900.	14.27	14.02
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name:
 SI0230-004
 Acquired:
 1/22/2015
 20:00:18
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 0166 1.594 9585.	Se1960_A ug/L -1.351 .856 63.34	Si2516_R ug/L 1 9960 . 178. .8907	Sn1899_A ug/L . 6906 .9258 134.0	Sr4215_R ug/L 73.89 .98 1.324	Ti3349_A ug/L 55.97 .29 .5121	TI1908_A ug/L 707 1 .1900 26.87
#1 #2	1.144 -1.111	-1.956 7457	19830. 20080.	1.345 .0360	73.20 74.59	56.17 55.76	5728 8415
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 13.32 .09 .6696	Zn2062_A ug/L 68.45 .16 .2324					
#1 #2	13.26 13.38	68.34 68.56					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12619. 4. .03340	Y_2243_A Cts/S 12076. 12. .09826	Y_3600_A Cts/S 438410. 1721. .39260				
#1 #2	12616. 12622.	12067. 12084.	437200. 439630.				

 Sample Name:
 Sl0230-004L
 Acquired:
 1/22/2015
 20:05:21
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5974	10330.	2.596	-1.913	14.06	48.52	1.114
Stddev	.1467	32.	.200	2.384	.00	1.94	.130
%RSD	24.55	.3071	7.698	124.7	.0202	3.992	11.68
#1	7012	10350.	2.454	2268	14.06	47.15	1.022
#2	4937	10300.	2.737	-3.599	14.07	49.89	1.206
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5130 .	3475	4.781	1 3.99	14.97	7687 .	1481.
Stddev	78.	.1126	.151	.03	.35	185.	147.
%RSD	1.511	32.39	3.153	.2053	2.349	2.409	9.902
#1	5076.	4271	4.675	14.01	14.73	7557.	1584.
#2	5185.	2679	4.888	13.97	15.22	7818.	1377.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	15.32	2472.	112.3	2.678	16310.	12.29	12.41
Stddev	5.43	6.	6.1	1.198	169.	.11	6.53
%RSD	35.43	.2255	5.403	44.75	1.034	.8577	52.57
#1	11.48	2468.	108.0	3.525	16190.	12.36	7.800
#2	19.16	2476.	116.6	1.830	16430.	12.21	17.03
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: SI0230-004L Acquired: 1/22/2015 20:05:21 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 5.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 9907 4.162 420.1	Se1960_A ug/L -8.515 1.018 11.95	Si2516_R ug/L 20090. 247. 1.229	Sn1899_A ug/L 2750 3.738 1359.	Sr4215_R ug/L 74.30 1.57 2.111	Ti3349_A ug/L 53.54 .75 1.405	TI1908_A ug/L 6.090 1.133 18.60
#1 #2	1.952 -3.933	-9.234 -7.795	19920. 20270.	2.368 -2.918	73.19 75.41	54.07 53.01	6.891 5.289
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 12.74 .23 1.834	Zn2062_A ug/L 60.07 .19 .3130					
#1 #2	12.91 12.58	59.94 60.21					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12701. 132. 1.0363	Y_2243_A Cts/S 12228. 18. .14550	Y_3600_A Cts/S 448490. 1731. .38599				
#1 #2	12794. 12607.	12215. 12240.	449720. 447270.				

 Sample Name:
 Sl0230-004A
 Acquired:
 1/22/2015 20:10:28
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	475.4	20300 .	461.6	2.723	477.0	528.9	483.9
Stddev	4.3	248.	2.5	1.016	.9	6.0	6.0
%RSD	.9101	1.221	.5397	37.31	.1934	1.141	1.231
#1	472.3	20120.	459.9	2.005	476.4	524.6	479.7
#2	478.4	20480.	463.4	3.442	477.7	533.2	488.2
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	10440.	480.5	4 79.1	492.8	492.1	12600.	11230.
Stddev	124.	.7	.1	6.4	5.1	160.	99.
%RSD	1.191	.1379	.0128	1.304	1.028	1.272	.8845
#1	10350.	480.0	479.0	488.2	488.5	12490.	11160.
#2	10520.	480.9	479.1	497.3	495.6	12720.	11300.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	495.0	7707.	594.8	473.7	21030 .	495.7	497.9
Stddev	4.0	4.	8.7	4.6	248.	1.0	1.1
%RSD	.8032	.0487	1.460	.9722	1.179	.1979	.2127
#1	492.1	7704.	588.7	470.4	20860.	495.0	497.1
#2	497.8	7710.	600.9	476.9	21210.	496.4	498.6
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

 Sample Name:
 Sl0230-004A
 Acquired:
 1/22/2015
 20:10:28
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

12391.

11923.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 464.0 .8 .1748	Se1960_A ug/L 457.2 3.7 .8029	Si2516_R ug/L 19380. 282. 1.453	Sn1899_A ug/L 1. 649 .573 34.76	Sr4215_R ug/L 559.0 6.5 1.161	Ti3349_A ug/L 534.6 6.4 1.190	TI1908_A ug/L 478.7 .5 .1123
#1 #2	463.4 464.5	454.6 459.8	19180. 19580.	1.243 2.054	554.4 563.6	530.2 539.1	478.3 479.0
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 502.4 5.9 1.179	Zn2062_A ug/L 525.0 1.4 .2745					
#1 #2	498.2 506.6	523.9 526.0					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12393. 3. .02206	Y_2243_A Cts/S 11930. 9. .07289	Y_3600_A Cts/S 428580. 3097. .72260				
#1	12395.	11936.	430770.				

426390.

 Sample Name:
 Sl0230-004S
 Acquired:
 1/22/2015
 20:15:26
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	51.63	W 30490 .	99.47	3.183	476.6	W 2170 .	55.20
Stddev	.75	291.	1.12	.834	.1	26.	.92
%RSD	1.460	.9536	1.127	26.20	.0282	1.191	1.666
#1	51.10	30290.	98.68	2.594	476.7	2152.	54.55
#2	52.17	30700.	100.3	3.773	476.5	2189.	55.85
Check? High Limit Low Limit	Chk Pass	Chk Warn 25000. -300.0	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -5.000	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	7658.	248.2	523.6	231.0	278.4	12150 .	11710.
Stddev	81.	.2	.7	3.5	4.6	269.	94.
%RSD	1.053	.0640	.1255	1.535	1.655	2.212	.8034
#1	7601.	248.3	524.1	228.5	275.1	11960.	11650.
#2	7715.	248.1	523.1	233.5	281.6	12340.	11780.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	525.7	8208 .	660.3	105.6	23390 .	544.3	120.8
Stddev	7.1	8.	11.3	.4	200.	.0	.1
%RSD	1.346	.1016	1.717	.3465	.8567	.0046	.1191
#1	520.7	8214.	652.2	105.8	23240.	544.2	120.7
#2	530.7	8202.	668.3	105.3	23530.	544.3	120.9
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Acquired: 1/22/2015 20:15:26 Type: Unk Sample Name: SI0230-004S Corr. Factor: 1.000000 Method: K6010-2011(v1630) Mode: CONC User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Sn1899 A Sr4215_R Ti3349 A TI1908 A Sb2068 A Se1960 A Si2516_R Elem Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 462.5 102.0 56.96 97.04 W 38380. 307.8 582.2 Avg 1.97 2.86 699. 1.1 8.7 8.3 .3 Stddev 1.495 1.796 .2610 %RSD 3.449 2.951 1.821 .3717 308.7 576.0 456.6 101.8 #1 55.57 95.02 37890. #2 58.35 99.07 38880. 307.0 588.3 468.3 102.2 Chk Warn Chk Pass Chk Pass Chk Pass Chk Pass Check? Chk Pass Chk Pass High Limit 25000. -200.0 Low Limit V 2924 A Zn2062 A Elem Units ug/L ug/L 553.4 567.0 Avg 8.0 .9 Stddev 1.443 .1549 %RSD #1 547.8 567.7 559.0 566.4 #2 Chk Pass Chk Pass Check? High Limit Low Limit

Y 3600 A

430650.

Cts/S

5211.

1.2101

434340.

426970.

Y_2243_A Cts/S

12022.

.06739

12017.

12028.

8.

Int. Std.

Stddev

%RSD

Units

Avg

#1

#2

Y 3600 R

Cts/S

57.

12457.

.45945

12417.

12498.

Sample Name: SI0230-004P

Custom ID1:

Acquired: 1/22/2015 20:20:26

Type: Unk

Method: K6010-2011(v1630)

Mode: CONC

Custom ID2:

Corr. Factor: 1.000000

Custom ID3:

Comment:

User: EAM

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	52.61	W 27940 .	101.4	3.441	477.9	W 2189 .	55.11
Stddev	.13	305.	.3	.775	2.9	27.	1.34
%RSD	.2453	1.092	.2565	22.54	.6028	1.226	2.435
#1	52.52	27720.	101.2	2.892	479.9	2170.	54.16
#2	52.70	28150.	101.6	3.989	475.8	2208.	56.06
Check ? High Limit Low Limit	Chk Pass	Chk Warn 25000. -300.0	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -5.000	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	7582.	253.7	529.5	231.3	279.9	11640.	11580.
Stddev	125.	1.3	2.9	1.1	2.4	286.	101.
%RSD	1.651	.4972	.5545	.4920	.8545	2.452	.8746
#1	7494.	254.6	531.5	230.5	278.2	11440.	11510.
#2	7671.	252.8	527.4	232.1	281.5	11850.	11660.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	531.4	8122 .	668.0	105.0	23050 .	552.5	1 20.3
Stddev	8.8	50.	15.4	.2	239.	2.5	.0
%RSD	1.662	.6102	2.301	.1870	1.035	.4480	.0079
#1	525.2	8157.	657.1	104.9	22880.	554.3	120.3
#2	537.7	8087.	678.9	105.2	23220.	550.8	120.3
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: SI0230-004P Acquired: 1/22/2015 20:20:26 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 49.39 1.23 2.492	Se1960_A ug/L 100.4 .1	Si2516_R ug/L W 26790 . 611. 2.282	Sn1899_A ug/L 321.9 1.2 .3609	Sr4215_R ug/L 585.6 9.8 1.670	Ti3349_A ug/L 441.0 3.6 .8177	TI1908_A ug/L 104.0 .8 .8044
#1 #2	48.52 50.26	100.4 100.5	26360. 27230.	322.7 321.1	578.7 592.5	438.5 443.6	104.6 103.4
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Warn 25000. -200.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 559.5 3.4 .6136	Zn2062_A ug/L 573.4 2.4 .4152					
#1 #2	557.1 561.9	575.1 571.7					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12442. 53. .42510	Y_2243_A Cts/S 11990. 61. .51185	Y_3600_A Cts/S 428450. 2118. .49436				
#1 #2	12479. 12405.	11946. 12033.	429940. 426950.				

Sample Name: SI0210-002 Acquired: 1/22/2015 20:25:25 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	13.16	1 2690 .	22.83	9.853	F 65690 .	472.8
Stddev	1.33	142.	2.69	.376	66.	5.5
%RSD	10.11	1.121	11.80	3.819	.1002	1.153
#1	12.22	12590.	20.92	10.12	65730.	468.9
#2	14.10	12800.	24.73	9.587	65640.	476.7
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 20000. -50.00	Chk Pass
Elem	Be3130_R	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	.2839	9343 .	4.148	61.52	W 1074.	F 23680 .
Stddev	.1214	133.	.368	.24	3.	223.
%RSD	42.77	1.421	8.868	.3980	.2617	.9404
#1	.1981	9249.	4.408	61.35	1072.	23520.
#2	.3698	9436.	3.888	61.69	1076.	23840.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -10.00	Chk Fail 20000. -25.00
Elem	Fe2599_R	K_7664_R	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 204900 .	W 130700 .	25.09	1 870.	W 2978 .	452.4
Stddev	3272.	1198.	1.65	11.	43.	2.6
%RSD	1.597	.9164	6.590	.5927	1.456	.5736
#1	202600.	129800.	26.26	1878.	2947.	450.6
#2	207200.	131500.	23.92	1862.	3008.	454.3
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Warn 25000. -1000.	Chk Pass	Chk Pass	Chk Warn 1000. -5.000	Chk Pass

Sample Name: SI0210-002 Acquired: 1/22/2015 20:25:25 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Na5895_R	Ni2316_A	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	24010.	W 4943.	W 2729 .	28.29	10.58	14380.
Stddev	288.	5.		.10	4.27	266.
%RSD	1.198	.1006	.0102	.3445	40.40	1.851
#1	23810.	4940.	2729.	28.22	7.556	14200.
#2	24220.	4947.	2729.	28.36	13.60	14570.
Check? High Limit Low Limit	Chk Pass	Chk Warn 1000. -10.00	Chk Warn 1000. -5.000	Chk Pass	Chk Pass	Chk Pass
Elem	Sn1899_A	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	679.3	37.26	265.2	-3.794	85.30	F 29190 .
Stddev	.7	.42	.4	.765	.00	13.
%RSD	.1058	1.129	.1660	20.16	.0028	.0433
#1	679.8	36.96	264.9	-4.334	85.30	29180.
#2	678.8	37.56	265.5	-3.253	85.30	29200.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 20000. -20.00
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12080. 15. .12018	Y_2243_A Cts/S 11388. 20. .17321	Y_3600_A Cts/S 407270. 292. .07162			
#1 #2	12090. 12070.	11374. 11402.	407060. 407470.			

 Sample Name:
 SI0212-004
 Acquired:
 1/22/2015
 20:30:07
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 5.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3945	62.98	. 716 1	-6.054	1599.	34.43
Stddev	.9644	1.98	6.180	2.747	21.	.05
%RSD	244.4	3.150	863.0	45.38	1.314	.1524
#1	.2874	64.38	-3.654	-7.997	1614.	34.39
#2	-1.076	61.57	5.086	-4.111	1584.	34.47
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Be3130_R	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5583	W 353700 .	6830	1.910	1.1 98	31.45
Stddev	.1597	3383.	.2445	.948	.026	5.95
%RSD	28.61	.9565	35.80	49.60	2.183	18.92
#1	4454	351300.	5101	1.240	1.217	35.65
#2	6713	356100.	8559	2.580	1.180	27.24
Check? High Limit Low Limit	Chk Pass	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599_R	K_7664_R	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	363.9	114300.	157.0	W 496100 .	59.94	10.43
Stddev	21.3	858.	7.9	24.	1.49	3.50
%RSD	5.841	.7507	5.036	.0048	2.481	33.53
#1	379.0	113700.	151.4	496100.	60.99	12.90
#2	348.9	114900.	162.6	496100.	58.89	7.956
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -100.0	Chk Pass	Chk Pass

Sample Name: SI0212-004 Acquired: 1/22/2015 20:30:07 Type: Unk
Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 5.000000
User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Na5895_R	Ni2316_A	Pb2203_A	Sb2068_A	Se1960_A	Si2516_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	F 3033000 .	2.398	2913	12.10	-16.62	5 565 .
Stddev	22760.	1.012	.5269	.90	12.30	120.
%RSD	.7506	42.18	180.9	7.426	74.02	2.150
#1	3049000.	1.683	6639	11.46	-7.919	5481.
#2	3017000.	3.114	.0812	12.73	-25.31	5650.
Check ? High Limit Low Limit	Chk Fail 200000. -1000.	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Sn1899_A	Sr4215_R	Ti3349_A	TI1908_A	V_2924_A	Zn2062_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 977	4499 .	. 7326	. 9665	- 2.560	43.06
Stddev	2.564	40.	.1856	4.336	.362	5.31
%RSD	129.7	.8940	25.34	448.6	14.16	12.34
#1	.1642	4471.	.8638	4.033	-2.816	46.82
#2	3.790	4528.	.6013	-2.100	-2.304	39.30
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11996. 138. 1.1533	Y_2243_A Cts/S 10651. 4. .03578	Y_3600_A Cts/S 375720. 351. .09344			
#1 #2	12094. 11898.	10649. 10654.	375480. 375970.			

Sample Name: PBWIA16ICW1 Acquired: 1/22/2015 20:35:18 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	323 1	5. 958	-1.614	5381	9.484	. 7653	.0513
Stddev	.2133	.719	.566	.4379	.931	.2585	.0403
%RSD	66.02	12.06	35.09	81.38	9.823	33.77	78.50
#1	4740	5.450	-1.213	2285	10.14	.9481	.0798
#2	1723	6.466	-2.014	8478	8.825	.5826	.0228
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	46.12	1204	0493	. 0368	2.351	13.88	30.98
Stddev	7.63	.0012	.1028	.2418	.472	.53	19.80
%RSD	16.54	1.031	208.7	657.5	20.08	3.850	63.91
#1	51.51	1213	1220	1342	2.685	13.51	16.98
#2	40.72	1195	.0234	.2078	2.017	14.26	44.99
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4.349	1 2.95	W 3.278	.3774	W 508.9	1675	5086
Stddev	.456	3.83	.831	.3156	79.9	.4723	.1544
%RSD	10.47	29.56	25.36	83.62	15.71	282.0	30.36
#1	4.027	15.66	2.690	.6006	565.4	5015	6177
#2	4.671	10.25	3.865	.1543	452.4	.1665	3994
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Warn 2.500 -2.500	Chk Pass	Chk Warn 500.0 -500.0	Chk Pass	Chk Pass

Type: Unk Sample Name: PBWIA16ICW1 Acquired: 1/22/2015 20:35:18 Corr. Factor: 1.000000 Mode: CONC Method: K6010-2011(v1630) Custom ID3: User: EAM Custom ID1: Custom ID2: Comment: Sr4215 R Ti3349 A TI1908 A Sb2068 A Se1960 A Si2516 R Sn1899 A Elem ug/L ug/L ug/L **Units** ug/L ug/L ug/L ug/L .3389 .1965 -.8018 .6566 68.73 .8807 -.5645 Avg .1971 .0171 .4174 .9981 4.012 2.66 .3215 Stddev 100.3 2.134 36.50 123.1 710.7 3.874 %RSD 152.0 -.7897 1.108 .6341 .0571 -3.40270.61 #1 1.362 -.8139 .3358 .6534 .0438 #2 -.0492 2.273 66.85 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit Elem V 2924 A Zn2062 A ug/L ug/L Units .0157 .9099 Ava Stddev .2075 .1015 1323. 11.16 %RSD .9817 #1 -.1311 .8381 #2 .1624 Chk Pass Check? Chk Pass **High Limit Low Limit** Y 2243 A Y 3600 A Int. Std. Y 3600 R Cts/S Cts/S Cts/S Units 12355. 12258. 439250. Avg

641.

.14592

439700.

438790.

3.

.02249

12256.

12260.

23.

.18526

12371.

12338.

Stddev

%RSD

#1

#2

Sample Name: LCSWIA16ICW1 Acquired: 1/22/2015 20:40:25 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	52.67	2198 .	97.10	2.315	464.6	2148 .	53.71
Stddev	.69	35.	1.79	.539	.3	22.	.86
%RSD	1.311	1.578	1.842	23.28	.0651	1.027	1.602
#1	52.18	2173.	98.36	1.934	464.4	2132.	53.10
#2	53.16	2222.	95.83	2.697	464.9	2163.	54.32
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	None	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2674 .	259.5	522.7	211.2	262.1	1046.	9929 .
Stddev	30.	.4	.5	3.1	3.8	17.	105.
%RSD	1.133	.1480	.1014	1.485	1.447	1.580	1.056
#1	2653.	259.7	522.3	209.0	259.4	1034.	9855.
#2	2695.	259.2	523.0	213.5	264.7	1058.	10000.
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	524.8	5111.	559.3	100.8	7835 .	543.8	105.8
Stddev	1.6	17.	9.2	.2	91.	.1	.8
%RSD	.3086	.3330	1.645	.2054	1.161	.0185	.7524
#1	523.6	5123.	552.8	100.6	7771.	543.9	105.2
#2	525.9	5099.	565.8	100.9	7899.	543.8	106.3
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: LCSWIA16ICW1 Acquired: 1/22/2015 20:40:25 Type: Unk

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 98.15 .03 .0309	Se1960_A ug/L 95.73 3.16 3.301	Si2516_R ug/L 1111. 32. 2.907	Sn1899_A ug/L 511.4 .6 .1211	Sr4215_R ug/L 518.4 4.7 .9082	Ti3349_A ug/L 487.9 7.1 1.446	TI1908_A ug/L 105.9 1.5 1.456
#1 #2	98.13 98.17	93.50 97.97	1088. 1134.	511.0 511.8	515.1 521.7	482.9 492.8	104.8 107.0
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 546.9 7.0 1.272	Zn2062_A ug/L 515.4 .0 .0062					
#1 #2	542.0 551.8	515.4 515.4					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12225. 119. .97348	Y_2243_A Cts/S 12031. 34. .28530	Y_3600_A Cts/S 428660. 4864. 1.1347				
#1 #2	12309. 12141.	12007. 12056.	432100. 425220.				

Sample Name: CCV Acquired: 1/22/2015 20:45:26 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	508.9	12550.	485.1	494.5	484.7	506.7	496.3
Stddev	4.7	115.	3.0	13.3	1.2	6.5	7.4
%RSD	.9187	.9148	.6157	2.686	.2504	1.283	1.488
#1	505.6	12470.	483.0	485.1	483.8	502.1	491.0
#2	512.2	12630.	487.2	503.8	485.5	511.3	501.5
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 2930 .	515.0	490.7	486.8	488.8	12170 .	1 2270 .
Stddev	209.	.7	.2	7.0	5.0	254.	104.
%RSD	1.619	.1289	.0322	1.428	1.018	2.085	.8474
#1	12780.	515.4	490.6	481.9	485.3	11990.	12190.
#2	13080.	514.5	490.8	491.7	492.3	12350.	12340.
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	515.9	12800.	525.2	W 472.8	1 2770 .	508.1	520.2
Stddev	9.6	9.	11.5	3.6	124.	.7	.8
%RSD	1.862	.0675	2.184	.7522	.9680	.1449	.1446
#1	509.2	12810.	517.1	470.3	12680.	508.6	519.7
#2	522.7	12800.	533.3	475.3	12850.	507.6	520.7
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Warn 500.0 -5.400%	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 1/22/2015 20:45:26 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

12247.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 488.8 .8 .1547	Se1960_A ug/L W 464.5 4.6 .9993	Si2516_R ug/L 12920. 244. 1.889	Sn1899_A ug/L 507.1 .4 .0727	Sr4215_R ug/L 507.9 7.3 1.440	Ti3349_A ug/L 505 .5 7.4 1.462	TI1908_A ug/L 488.5 .6 .1194
#1 #2	489.4 488.3	461.2 467.7	12750. 13100.	506.8 507.3	502.7 513.1	500.3 510.7	488.9 488.1
Check ? Value Range	Chk Pass	Chk Warn 500.0 -5.400%	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 506.3 6.3 1.241	Zn2062_A ug/L 486.1 .3 .0519					
#1 #2	501.9 510.8	485.9 486.3					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12248. 1. .00821	Y_2243_A Cts/S 12112. 4. .03072	Y_3600_A Cts/S 432180. 4948. 1.1448				
#1	12248.	12110.	435680.				

428680.

12115.

Sample Name: CCB Acquired: 1/22/2015 20:50:23 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	. 0962	6.379	1. 899	4388	2.820	.3151	.1 328
Stddev	.2106	7.343	2.259	.0631	.155	.1723	.1102
%RSD	219.0	115.1	118.9	14.39	5.482	54.68	83.01
#1	.2451	1.187	3.496	4835	2.710	.4370	.2108
#2	0528	11.57	.3019	3942	2.929	.1933	.0549
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	13.16	.1 485	.1451	1 790	1.811	3.416	-38.72
Stddev	2.79	.0167	.1692	.1187	.288	2.757	3.21
%RSD	21.16	11.27	116.6	66.29	15.88	80.71	8.284
#1	15.13	.1603	.2647	0951	1.608	5.366	-40.99
#2	11.19	.1367	.0255	2630	2.015	1.466	-36.46
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4.288	6.849	. 9229	2.474	39.77	. 3160	.1112
Stddev	1.079	1.919	.8672	.668	6.08	.0039	.9885
%RSD	25.17	28.02	93.96	26.99	15.28	1.220	889.3
#1	3.525	5.492	.3098	2.946	44.06	.3133	5878
#2	5.051	8.206	1.536	2.002	35.47	.3187	.8101
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCB Acquired: 1/22/2015 20:50:23 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 1881 .1549 82.32	Se1960_A ug/L .1 948 .6495 333.5	Si2516_R ug/L 42.92 9.71 22.62	Sn1899_A ug/L . 4836 .0436 9.018	Sr4215_R ug/L .2319 .0215 9.290	Ti3349_A ug/L . 940 1 .0988 10.51	TI1908_A ug/L 2.1 89 .396 18.09
#1 #2	0786 2977	2645 .6540	36.05 49.78	.4528 .5145	.2166 .2471	1.010 .8702	2.469 1.909
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .1 839 .3306 179.8	Zn2062_A ug/L .14 78 .0115 7.810					
#1 #2	0499 .4176	.1396 .1559					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12328. 103. .83746	Y_2243_A Cts/S 12331. 13. .10801	Y_3600_A Cts/S 439370. 1239. .28205				
#1	12401.	12340.	438490.				

12321. 440250.

12255.

Sample Name: SI0386-001 Acquired: 1/22/2015 20:55:30 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5545	9546.	-1.853	-3.402	W 1 2200 .	502.4	0892
Stddev	.1728	82.	1.489	.170	13.	3.2	.1260
%RSD	31.17	.8566	80.35	5.006	.1100	.6287	141.3
#1	6767	9488.	8001	-3.281	12190.	500.2	0001
#2	4323	9604.	-2.906	-3.522	12210.	504.6	1783
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -50.00	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	F 733600 .	3484	5.036	2.552	24.90	6517.	W 69760 .
Stddev	38740.	.0784	.016	.244	.57	129.	171.
%RSD	5.281	22.50	.3231	9.558	2.303	1.983	.2446
#1	706200.	2929	5.047	2.380	24.49	6426.	69640.
#2	761000.	4038	5.024	2.725	25.30	6608.	69880.
Check ? High Limit Low Limit	Chk Fail 500000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	237.7	354.8	50.48	W 4025 .	F 725300.	38.19	39.09
Stddev	.5	2.9	.23	79.	2162.	.01	.27
%RSD	.1991	.8303	.4639	1.969	.2981	.0337	.6967
#1	237.4	356.8	50.32	3969.	726900.	38.19	38.89
#2	238.1	352.7	50.65	4081.	723800.	38.20	39.28
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -10.00	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 SI0386-001
 Acquired:
 1/22/2015
 20:55:30
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 27.70 .08 .2932	Se1960_A ug/L 13.55 3.05 22.49	Si2516_R ug/L 2855 . 4. .1401	Sn1899_A ug/L 5.520 .328 5.933	Sr4215_R ug/L W 2950 . 21. .6975	Ti3349_A ug/L 3.475 .093 2.684	TI1908_A ug/L 1681 2.145 1276.
#1 #2	27.65 27.76	15.71 11.40	2858. 2852.	5.289 5.752	2935. 2964.	3.409 3.541	1.349 -1.685
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -10.00	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 7.425 .946 12.74	Zn2062_A ug/L 64.93 .05 .0708					
#1 #2	8.094 6.756	64.96 64.89					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11692. 232. 1.9849	Y_2243_A Cts/S 10085. 13. .13185	Y_3600_A Cts/S 358450. 1432. .39950				
#1 #2	11856. 11528.	10095. 10076.	359460. 357440.				

 Sample Name:
 SI0226-001
 Acquired:
 1/22/2015
 21:00:24
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5114	3960 .	-1.573	-2.558	W 13830.	213.3	0581
Stddev	.0992	80.	1.967	.288	32.	5.2	.0952
%RSD	19.40	2.009	125.1	11.24	.2281	2.457	163.9
#1	4412	3904.	-2.964	-2.762	13810.	209.6	.0092
#2	5815	4016.	1817	-2.355	13860.	217.0	1 2 55
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -50.00	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	F 667000 .	3807	7.695	6.048	56.26	13940.	W 60480 .
Stddev	185.	.0261	.184	.308	.04	511.	1563.
%RSD	.0277	6.850	2.389	5.093	.0750	3.664	2.584
#1	666900.	3623	7.825	5.831	56.29	13570.	59370.
#2	667100.	3991	7.565	6.266	56.23	14300.	61580.
Check ? High Limit Low Limit	Chk Fail 500000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	137.1	1565 .	106.7	W 3034 .	F 447800 .	72.49	24.46
Stddev	1.4	1.	2.6	57.	15650.	.18	.16
%RSD	.9871	.0853	2.403	1.878	3.495	.2417	.6672
#1	136.1	1564.	104.9	2994.	436700.	72.36	24.34
#2	138.1	1566.	108.5	3075.	458900.	72.61	24.57
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -10.00	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 Sl0226-001
 Acquired:
 1/22/2015
 21:00:24
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 114.6 2.2 1.908	Se1960_A ug/L 8.047 .407 5.061	Si2516_R ug/L 3833. 57. 1.495	Sn1899_A ug/L 4.242 .269 6.338	Sr4215_R ug/L W 1037. 26. 2.546	Ti3349_A ug/L 7.836 .329 4.202	TI1908_A ug/L -1.975 .634 32.09
#1 #2	113.1 116.2	7.759 8.335	3792. 3873.	4.432 4.052	1018. 1056.	8.069 7.603	-2.423 -1.527
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 1000. -10.00	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 10.27 .16 1.514	Zn2062_A ug/L 114.9 .3 .2480					
#1 #2	10.38 10.16	114.7 115.1					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11844. 88. .74401	Y_2243_A Cts/S 10352. 31. .29682	Y_3600_A Cts/S 366260. 263. .07193				
#1 #2	11907. 11782.	10374. 10331.	366070. 366440.				

Sample Name: PBT1223D Acquired: 1/22/2015 21:05:14 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	4 420	12.46	4997	2716	8.667	W 3.065	.0292
Stddev	.2253	5.73	1.005	.2791	1.042	.021	.0607
%RSD	50.96	45.97	201.2	102.8	12.02	.6677	207.9
#1	6013	16.51	-1.211	0743	9.403	3.079	.0722
#2	2827	8.409	.2113	4690	7.930	3.050	0137
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 2.500 -2.500	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	F 173.2	0992	1212	1307	3.204	25.76	115.9
Stddev	16.2	.0126	.2116	.1648	.210	1.88	18.2
%RSD	9.328	12.68	174.6	126.1	6.559	7.279	15.66
#1	184.6	1081	.0285	2472	3.353	27.09	128.8
#2	161.8	0903	2709	0142	3.055	24.44	103.1
Check ? High Limit Low Limit	Chk Fail 100.0 -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5.844	9.549	W 2.828	F 51.39	479.4	0026	5074
Stddev	2.388	.239	.571	10.70	24.0	.2021	.7551
%RSD	40.87	2.507	20.20	20.82	5.005	7721.	148.8
#1	4.155	9.718	2.424	58.96	496.3	1455	.0266
#2	7.533	9.380	3.232	43.83	462.4	.1403	-1.041
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Warn 2.500 -2.500	Chk Fail 10.00 -10.00	Chk Pass	Chk Pass	Chk Pass

Acquired: 1/22/2015 21:05:14 Type: Unk Sample Name: PBT1223D Mode: CONC Corr. Factor: 1.000000 Method: K6010-2011(v1630) Custom ID1: Custom ID2: Custom ID3: User: EAM Comment: Sn1899 A Ti3349 A TI1908 A Se1960 A Si2516 R Sr4215 R Sb2068 A Elem ug/L ug/L Units ug/L ug/L ug/L ug/L ug/L .3962 -.2668 .6581 .2153 -.9622 44.42 .2935 Avg .0151 1.401 .3493 1.04 1.149 .1332 .2067 Stddev 52.17 5.678 2.346 391.6 20.24 650.8 36.30 %RSD .7523 .5424 -.256043.68 1.106 1.206 -.7152 #1 45.15 .2501 -.2775 #2 -.7756 -1.209-.5191 .5639 Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? **High Limit** Low Limit V 2924 A Zn2062 A Elem Units ug/L ug/L -.3999 1.580 Avg .0282 .209 Stddev 13.25 7.039 %RSD #1 -.3800 1.432 -.4198 1.728 #2 Chk Pass Chk Pass Check? **High Limit** Low Limit Y 2243 A Y 3600 A Int. Std. Y 3600 R Cts/S Cts/S **Units** Cts/S 12342. 441470. 12227. Avg 44. 2361.

22.

.53481

443140.

439800.

.17594

12327.

12357.

.36196

12259.

12196.

Stddev

%RSD

#1

#2

User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3018	10.83	.1439	1 990	8.628	F 10.52	.0830
Stddev	.1059	5.29	.5139	.8857	.378	.44	.0706
%RSD	35.08	48.85	357.3	445.0	4.382	4.142	85.07
#1	3766	7.091	2195	8253	8.896	10.21	.0331
#2	2269	14.57	.5072	.4273	8.361	10.82	.1329
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 5.000 -5.000	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	35.83	0844	1160	. 2247	3.048	2.897	-13.47
Stddev	3.05	.0219	.1280	.2354	.382	8.418	3.52
%RSD	8.511	25.96	110.3	104.8	12.53	290.5	26.13
#1	37.99	0998	0255	.0582	3.317	8.849	-15.95
#2	33.68	0689	2066	.3912	2.778	-3.055	-10.98
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2.437	9.052	2.148	F 16.85	W 674.8	0170	.5274
Stddev	.816	1.344	1.214	1.69	8.1	.2783	.3856
%RSD	33.46	14.85	56.54	10.05	1.199	1640.	73.12
#1	1.861	8.101	3.007	18.04	669.1	.1798	.8000
#2	3.014	10.00	1.289	15.65	680.5	2137	.2547
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Fail 10.00 -10.00	Chk Warn 500.0 -500.0	Chk Pass	Chk Pass

Sample Name: PBT1225A Acquired: 1/22/2015 21:10:21 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

12332.

12452.

Comment:

#2

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 2839 .6001 211.4	Se1960_A ug/L .3308 .3611 109.2	Si2516_R ug/L 77.81 2.73 3.512	Sn1899_A ug/L 2153 .2412 112.0	Sr4215_R ug/L .4151 .3337 80.37	Ti3349_A ug/L .4334 .0910 21.00	Ti1908_A ug/L 0047 .5281 11220.
#1 #2	.7082 1404	.0754 .5861	75.88 79.74	3858 0448	.6511 .1792	.4978 .3691	3781 .3687
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 0129 .0827 640.8	Zn2062_A ug/L 8.186 .144 1.756					
#1 #2	0714 .0456	8.085 8.288					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 12388. 79. .63636	Y_2243_A Cts/S 12438. 19. .15185	Y_3600_A Cts/S 444530. 1239. .27874				
#1	12443.	12425.	443650.				

445410.

Sample Name: SI0227-001T Acquired: 1/22/2015 21:15:30 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1324	167.7	1.526	0228	64.81	57.83	. 0569
Stddev	.0017	8.8	.031	.2495	.35	.78	.0259
%RSD	1.260	5.242	2.003	1096.	.5344	1.353	45.52
#1	1312	174.0	1.547	.1537	65.05	57.28	.0752
#2	1335	161.5	1.504	1992	64.56	58.38	.0386
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 44720 .	2.038	10.13	2.826	11.83	1 982 .	2468.
Stddev	171.	.009	.07	.069	.24	29.	46.
%RSD	.3829	.4487	.7048	2.438	2.061	1.469	1.852
#1	44600.	2.031	10.08	2.778	11.66	1961.	2435.
#2	44840.	2.044	10.18	2.875	12.00	2002.	2500.
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	10.33	1 886 .	325.1	11.34	F 314300 .	10.43	155.2
Stddev	.80	5.	.5	.59	906.	.32	.7
%RSD	7.788	.2567	.1634	5.242	.2882	3.090	.4814
#1	10.90	1882.	325.5	11.76	313700.	10.20	154.7
#2	9.763	1889.	324.8	10.92	315000.	10.66	155.8
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

Sample Name: SI0227-001T Acquired: 1/22/2015 21:15:30 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Se1960_A Elem Sb2068 A Si2516 R Sn1899 A Sr4215_R Ti3349 A TI1908 A Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L 139.5 -.3922 .5426 Avg 1.160 -.0084 547.4 .5873 Stddev .143 4.903 6.2 .2282 1.0 .0882 .2970 %RSD 12.32 58390. 1.139 38.85 .7404 16.25 75.72 -.6022 #1 1.059 -3.475 551.8 .7487 138.8 .4802 3.459 #2 1.261 543.0 .4260 140.3 .6049 -.1822 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass High Limit **Low Limit** Elem V 2924 A Zn2062 A Units ug/L ug/L .5498 Avg 834.5 Stddev .1458 .1 %RSD 26.52 .0116 #1 .6528 834.4 #2 .4467 834.6 Check? Chk Pass Chk Pass High Limit Low Limit

Y 2243 A

Cts/S

1.

11347.

.01150

11346.

11348.

Y 3600 R

Cts/S

13.

11803.

.10695

11794.

11812.

Y 3600 A

Cts/S

4900.

1.2454

389990.

396920.

393460.

Int. Std.

Stddev

%RSD

Units

Avg

#1

#2

Sample Name: SI0227-002T Acquired: 1/22/2015 21:20:17 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2784	1 68.3	4.145	.1367	61.34	59.21	.1 593
Stddev	.1236	9.1	.568	.2449	.15	.78	.1058
%RSD	44.40	5.379	13.70	179.2	.2379	1.321	66.39
#1	1910	161.9	4.547	0365	61.44	58.66	.2341
#2	3658	174.7	3.744	.3099	61.24	59.77	.0845
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 39280 .	1. 532	10.86	3.678	9.971	1 696 .	2330 .
Stddev	380.	.025	.21	.048	.461	20.	
%RSD	.9669	1.599	1.970	1.293	4.618	1.167	.0174
#1	39010.	1.550	11.02	3.644	9.645	1682.	2330.
#2	39550.	1.515	10.71	3.711	10.30	1710.	2330.
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	10.61	1 733 .	312.3	6.856	F 305400 .	12.07	133.5
Stddev	.30	2.	4.2	.257	5854.	.05	1.5
%RSD	2.814	.1142	1.355	3.745	1.917	.4211	1.127
#1	10.82	1732.	309.3	7.038	301200.	12.10	132.4
#2	10.40	1734.	315.3	6.675	309500.	12.03	134.5
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

Sample Name: SI0227-002T Acquired: 1/22/2015 21:20:17 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3: Comment: Sn1899 A Sr4215 R Ti3349 A TI1908 A Elem Sb2068 A Se1960 A Si2516 R ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L 546.9 .0821 119.5 .3518 -.2952 .1777 .6200 Avg 1.5 .6054 Stddev .5555 2.266 15.5 .1317 .1132 365.4 %RSD 312.7 2.827 160.3 1.293 32.17 205.1 1752 118.4 .2717 .1329 #1 -.2151 -.9820 536.0 -.7233 .4318 #2 .5705 2.222 557.8 -.0110 120.6 Check? Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass **High Limit Low Limit** V 2924 A Zn2062 A Elem Units ug/L ug/L 807.0 .6170 Avg Stddev .2230 1.2 %RSD 36.14 .1465 #1 .7747 807.8 #2 .4593 806.1 Check? Chk Pass Chk Pass High Limit Low Limit Int. Std. Y 3600 R Y 2243 A Y 3600 A Units Cts/S Cts/S Cts/S 11725. 11294. 391340. Avg

2488.

.63584

393100.

389580.

Stddev

%RSD

#1

#2

66.

.56586

11772.

11679.

3.

.02220

11296.

11292.

Sample Name: SI0227-003T Acquired: 1/22/2015 21:25:05 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2853	161.6	1.941	0533	61.46	60.06	.0822
Stddev	.4087	13.5	1.948	.4907	.11	.02	.0601
%RSD	143.3	8.348	100.4	919.8	.1713	.0266	73.13
#1	5743	152.0	.5632	.2936	61.54	60.05	.1247
#2	.0037	171.1	3.319	4003	61.39	60.07	.0397
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 41640.	1. 366	10.94	2.419	8.700	300 1.	2267 .
Stddev	270.	.068	.14	.029	.217	54.	35.
%RSD	.6478	4.953	1.247	1.180	2.496	1.809	1.541
#1	41450.	1.318	10.84	2.439	8.547	2962.	2242.
#2	41830.	1.414	11.04	2.399	8.854	3039.	2291.
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	8.282	1650.	323.8	5.114	F 311900 .	10.86	128.9
Stddev	1.184	2.	4.2	.226	3329.	.09	.1
%RSD	14.30	.1342	1.310	4.412	1.067	.8181	.0848
#1	9.120	1649.	320.8	5.274	309600.	10.92	129.0
#2	7.445	1652.	326.8	4.955	314300.	10.80	128.8
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 Sl0227-003T
 Acquired:
 1/22/2015
 21:25:05
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 8691 .0807 9.286	Se1960_A ug/L 1990 .1794 90.12	Si2516_R ug/L 543.9 22.7 4.170	Sn1899_A ug/L . 8647 .5509 63.71	Sr4215_R ug/L 125.5 1.1 .8873	Ti3349_A ug/L . 2256 .1666 73.82	TI1908_A ug/L -1.479 .500 33.79
#1 #2	.9262 .8120	0722 3259	559.9 527.8	.4752 1.254	124.8 126.3	.1078 .3434	-1.126 -1.832
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L . 5601 .1657 29.59	Zn2062_A ug/L 845 .4 .3 .0354					
#1 #2	.4429 .6773	845.2 845.6					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11766. 49. .41814	Y_2243_A Cts/S 11400. 5. .04535	Y_3600_A Cts/S 393670. 1483. .37673				
#1 #2	11801. 11731.	11404. 11396.	394710. 392620.				

Sample Name: SI0227-004T Acquired: 1/22/2015 21:29:53 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2999	160.2	1.065	. 7047	54.45	57.92	.0379
Stddev	.3419	13.8	.485	.5658	.20	.61	.0631
%RSD	114.0	8.604	45.58	80.30	.3585	1.058	166.6
#1	5417	170.0	1.409	.3046	54.59	57.49	.0825
#2	0582	150.5	.7219	1.105	54.31	58.35	0067
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 41410 .	1. 338	11.51	4.490	9.155	2139.	2114 .
Stddev	564.	.043	.05	.508	.359	25.	2.
%RSD	1.363	3.215	.4343	11.32	3.921	1.167	.1172
#1	41010.	1.369	11.55	4.131	9.409	2122.	2115.
#2	41810.	1.308	11.48	4.850	8.901	2157.	2112.
Check ? High Limit Low Limit	Chk Warn 25000. -100.0	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	10.19	1 586 .	331.8	3.834	F 296700.	13.18	130.9
Stddev	.26	2.	2.0	.119	2212.	.09	.7
%RSD	2.556	.1362	.5986	3.098	.7455	.6882	.5602
#1	10.01	1587.	330.4	3.918	295100.	13.12	131.4
#2	10.38	1584.	333.2	3.750	298300.	13.25	130.4
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

Sample Name: SI0227-004T Acquired: 1/22/2015 21:29:53 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 6690 .7436 111.1	Se1960_A ug/L .0490 2.826 5768.	Si2516_R ug/L 589.7 29.0 4.910	Sn1899_A ug/L . 8976 1.006 112.1	Sr4215_R ug/L 119.6 1.8 1.491	Ti3349_A ug/L . 3933 .2947 74.92	TI1908_A ug/L 4761 .8128 170.7
#1 #2	.1432 1.195	-1.949 2.047	569.3 610.2	1.609 .1863	118.4 120.9	.6017 .1850	-1.051 .0986
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L . 5450 .2853 52.35	Zn2062_A ug/L 755.6 .1 .0175					
#1 #2	.3432 .7467	755.7 755.5					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11653. 47. .40573	Y_2243_A Cts/S 11344. 14. .11962	Y_3600_A Cts/S 389560. 3208. .82336				
#1 #2	11686. 11619.	11353. 11334.	391830. 387300.				

Sample Name: SI0230-001T

Type: Unk Acquired: 1/22/2015 21:34:41 Corr. Factor: 1.000000

Method: K6010-2011(v1630) Custom ID1: Mode: CONC

Custom ID2:

Custom ID3:

User: EAM Comment:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	283 1	348.0	4851	6854	62.60	1 35.6	.0764
Stddev	.2238	25.1	1.605	.2037	.34	1.2	.0341
%RSD	79.05	7.202	330.8	29.72	.5470	.8980	44.71
#1	4414	330.3	.6495	5413	62.84	134.8	.1005
#2	1249	365.7	-1.620	8294	62.36	136.5	.0522
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2069.	0192	1. 636	1.415	3.562	522.8	607.7
Stddev	24.	.0141	.094	.164	.067	.8	10.4
%RSD	1.164	73.35	5.744	11.60	1.882	.1528	1.711
#1	2052.	0092	1.703	1.299	3.609	523.3	600.3
#2	2086.	0291	1.570	1.531	3.515	522.2	615.0
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5. 927	456.7	93.59	2.346	F 278800 .	2.733	.8074
Stddev	.943	3.1	1.37	.256	1549.	.089	.6203
%RSD	15.91	.6735	1.465	10.89	.5555	3.274	76.84
#1	6.594	454.5	92.63	2.527	277700.	2.797	.3687
#2	5.261	458.8	94.56	2.166	279900.	2.670	1.246
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Fail 200000. -1000.	Chk Pass	Chk Pass

Sample Name: SI0230-001T Acquired: 1/22/2015 21:34:41 Type: Unk Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 3034 .1834 60.45	Se1960_A ug/L -1.174 .239 20.36	Si2516_R ug/L 747.1 34.5 4.622	Sn1899_A ug/L . 5842 .1319 22.57	Sr4215_R ug/L 36.38 .60 1.659	Ti3349_A ug/L 1. 952 .176 9.037	TI1908_A ug/L 2681 .8251 307.8
#1 #2	4331 1737	-1.343 -1.005	722.7 771.6	.4910 .6775	35.96 36.81	2.077 1.827	.3153 8515
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .1 670 .0677 40.56	Zn2062_A ug/L 145.9 1 .0982					
#1 #2	.1191 .2149	145.8 146.0					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11614. 35. .29736	Y_2243_A Cts/S 11436. 4. .03066	Y_3600_A Cts/S 394150. 2169. .55022				
#1 #2	11590. 11638.	11439. 11434.	392610. 395680.				

 Sample Name:
 SI0279-001
 Acquired:
 1/22/2015
 21:39:34
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	5224	39.76	7490	0926	12.70	10.30	0561
Stddev	.0373	7.88	.1570	.5896	.13	.45	.1814
%RSD	7.147	19.82	20.96	636.5	1.058	4.364	323.1
#1	4960	34.18	8600	5095	12.61	9.983	.0721
#2	5488	45.33	6380	.3243	12.80	10.62	1844
Check? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1 3110 .	.0453	. 5509	.1 670	4. 024	8.295	2085 .
Stddev	272.	.0177	.0218	.3063	.165	.726	30.
%RSD	2.076	39.00	3.952	183.4	4.090	8.751	1.417
#1	12920.	.0328	.5663	.3836	3.908	7.782	2065.
#2	13310.	.0578	.5355	0496	4.141	8.809	2106.
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	3.018	2739 .	49.82	1.270	W 91140 .	3.806	1.128
Stddev	1.098	3.	1.04	.015	985.	.179	.943
%RSD	36.38	.1239	2.086	1.152	1.081	4.712	83.60
#1	3.795	2737.	49.08	1.260	90440.	3.933	1.795
#2	2.242	2741.	50.55	1.281	91840.	3.680	.4612
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 25000. -1000.	Chk Pass	Chk Pass

 Sample Name:
 SI0279-001
 Acquired:
 1/22/2015
 21:39:34
 Type:
 Unk

 Method:
 K6010-2011(v1630)
 Mode:
 CONC
 Corr.
 Factor:
 1.000000

 User:
 EAM
 Custom ID1:
 Custom ID2:
 Custom ID3:

Comment:

#2

11616.

11793.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L . 6223 .8303 133.4	Se1960_A ug/L -1.424 2.728 191.6	Si2516_R ug/L 4009 . 105. 2.620	Sn1899_A ug/L .3918 1.051 268.2	Sr4215_R ug/L 1 00.2 2.0 1.991	Ti3349_A ug/L 3046 .0664 21.80	TI1908_A ug/L . 7159 2.106 294.2
#1 #2	.0353 1.209	.5049 -3.354	3935. 4083.	3513 1.135	98.77 101.6	2576 3515	7732 2.205
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .0014 .0399 2769.	Zn2062_A ug/L 6.304 .086 1.356					
#1 #2	.0296 0267	6.243 6.364					
Check? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11699. 118. 1.0044	Y_2243_A Cts/S 11792. 1. .00435	Y_3600_A Cts/S 408450. 647. .15849				
#1	11782.	11792.	408910.				

407990.

Sample Name: CCV Acquired: 1/22/2015 21:44:40 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	510.5	12590.	477.9	488.1	W 472.4	507.1	494.4
Stddev	4.2	96.	4.6	15.4	.1	6.5	8.1
%RSD	.8185	.7612	.9620	3.147	.0268	1.285	1.639
#1	507.6	12520.	474.6	477.3	472.3	502.5	488.6
#2	513.5	12660.	481.1	499.0	472.5	511.7	500.1
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Warn 500.0 -5.400%	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 1 3200 .	522.4	482.0	480.3	480.1	11 960 .	12150 .
Stddev	159.	.1	.1	4.1	3.0	218.	159.
%RSD	1.204	.0133	.0263	.8553	.6277	1.821	1.307
#1	13090.	522.4	482.1	477.4	478.0	11810.	12030.
#2	13310.	522.3	481.9	483.2	482.3	12120.	12260.
Check ? Value Range	Chk Warn 12500. 5.400%	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	W 528.4	1 2890 .	W 538.5	W 456.0	12750.	508.7	W 530.4
Stddev	1.4	4.	4.9	4.4	147.	.2	.4
%RSD	.2629	.0294	.9024	.9678	1.154	.0387	.0734
#1	527.4	12890.	535.0	452.9	12650.	508.8	530.6
#2	529.4	12890.	541.9	459.2	12850.	508.5	530.1
Check ? Value Range	Chk Warn 500.0 5.400%	Chk Pass	Chk Warn 500.0 5.400%	Chk Warn 500.0 -5.400%	Chk Pass	Chk Pass	Chk Warn 500.0 5.400%

Sample Name: CCV Acquired: 1/22/2015 21:44:40 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

11936.

12145.

424380.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 482.9 1.6 .3270	Se1960_A ug/L W 450.5 4.6 1.029	Si2516_R ug/L 1 3080 . 238. 1.816	Sn1899_A ug/L 515.2 1.6 .3166	Sr4215_R ug/L 514.8 6.7 1.295	Ti3349_A ug/L 506.0 6.1 1.210	TI1908_A ug/L 475.7 .0 .0061
#1 #2	481.8 484.0	447.2 453.7	12910. 13250.	516.4 514.1	510.1 519.6	501.7 510.4	475.7 475.7
Check ? Value Range	Chk Pass	Chk Warn 500.0 -5.400%	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L 509.9 4.5 .8873	Zn2062_A ug/L 479.5 .3 .0570					
#1 #2	506.7 513.1	479.3 479.7					
Check ? Value Range	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11897. 56. .46702	Y_2243_A Cts/S 12144. 2. .01772	Y_3600_A Cts/S 426560. 3081. .72230				
#1	11858.	12142.	428740.				

Sample Name: CCB Acquired: 1/22/2015 21:49:38 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000 User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

Elem	Ag3280_A	Al3961_R	As1891_A	Au2427_A	B_2089_A	Ba4554_R	Be3130_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	2839	11.99	1. 854	0016	.9110	.4463	.1041
Stddev	.1409	9.85	2.273	.0256	.0473	.0840	.0252
%RSD	49.62	82.21	122.6	1561.	5.191	18.82	24.17
#1	3836	18.95	3.461	.0165	.9444	.3869	.1219
#2	1843	5.019	.2465	0198	.8775	.5057	.0863
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Ca3158_R	Cd2265_A	Co2286_A	Cr2677_A	Cu3273_A	Fe2599_R	K_7664_R
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	9.689	.1128	.0032	.11 89	2.361	9.250	-18.20
Stddev	2.656	.0710	.0684	.1109	.153	2.705	14.71
%RSD	27.42	62.92	2130.	93.29	6.463	29.24	80.79
#1	7.811	.1630	.0516	.0405	2.253	7.337	-7.804
#2	11.57	.0626	0452	.1973	2.469	11.16	-28.60
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Li6707_R	Mg2025_A	Mn2576_R	Mo2020_A	Na5895_R	Ni2316_A	Pb2203_A
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Avg	1. 829	6.963	.9655	3.633	96.86	. 2422	. 2826
Stddev	.386	1.110	.0140	.516	6.92	.0019	.6012
%RSD	21.12	15.94	1.448	14.20	7.147	.7821	212.7
#1	2.102	6.178	.9556	3.998	91.97	.2409	.7077
#2	1.556	7.747	.9754	3.268	101.8	.2436	1425
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCB Acquired: 1/22/2015 21:49:38 Type: QC

Method: K6010-2011(v1630) Mode: CONC Corr. Factor: 1.000000

User: EAM Custom ID1: Custom ID2: Custom ID3:

Comment:

#2

11998.

12290.

429970.

Elem Units Avg Stddev %RSD	Sb2068_A ug/L 4283 .7861 183.6	Se1960_A ug/L 3.368 .185 5.483	Si2516_R ug/L 28.97 7.46 25.74	Sn1899_A ug/L . 3638 .6509 178.9	Sr4215_R ug/L . 0619 .0470 75.92	Ti3349_A ug/L 1. 025 .207 20.25	TI1908_A ug/L .2196 .8268 376.5
#1 #2	.1276 9841	3.498 3.237	23.69 34.24	0965 .8241	.0287 .0951	1.171 .8778	.8043 3650
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924_A ug/L .2391 .0617 25.81	Zn2062_A ug/L .1139 .1277 112.1	,				
#1 #2	.2828 .1955	.2042 .0236					
Check ? High Limit Low Limit	Chk Pass	Chk Pass					
Int. Std. Units Avg Stddev %RSD	Y_3600_R Cts/S 11960. 54. .45198	Y_2243_A Cts/S 12320. 43. .34871	Y_3600_A Cts/S 434220. 6002. 1.3823				
#1	11922.	12351.	438460.				

Metals Preparation Benchsheet

Katahdin Analytical Services, Inc.

Revision: 00 Page: IA055 On: 01-16 15 Gerondia C Digestion performed by: $G\varepsilon \Im$ QA-064-Revision 2 - 01/08/2014

#

Katahdin Analytical Services, Inc.

Non-Volatile TCLP/SPLP Extraction Fluid Preparation and Use Logbook

		FI	LUID PRE	PARATIO	ON		
TCLP 1	TCLP Fluid #:	Fluid	l Batch #:	Prep D	ate:	Prepared by	: Measured pH:
SPLP		12	2-2-	01.0	6.15	Cez	4.94
Reagent	Manufacturer Number		Reagent (m		Reag	ent Mass (g)	Fluid Final Volume (L)
Glacial Acetic Acid	5146C		114	.0		N.A.	200 L
Sodium Hydroxide			N.	A.	Ĩ.	4.28	d
0.6% <u>Sulfuric Acid</u> 0.4% nitric acid							
			and the state of t				

	FLUID USE LOG			ACC	
Katahdin Sample Number	TCLP Extraction Start Date	Extr	act to be A	nalyzed f	or:
-		Metals	SVOA	Pest	Herb
PBT1222A	01.06.15	-	i,	-	-
SI 0027-1E			L		
20		L		-	
3C				entri-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
45			p. 100		
550		-	Management,	مرب	
V 6F			~	_	
St0230-15 St0227-1A	01-14-15				
SI 0227-1A	<u> </u>				
		100			
	A. C.				

KATAHDIN ANALYTICAL SERVICES, INC.

Non-Volatile TCLP/SPLP Extraction Log

I. EXTRACTION CONDITIONS	ONS					•	TOIL A STARTION	<u>)</u>	1	Extract	0 1 0 0		
Extraction Method:		SW8	SW846 1311 (TCLP)	OLP)	Extractor ID: 42		Room Thermometer ID: DIG-23	meter	D. Dig-23	A THE PROPERTY OF THE PROPERTY	(Dom	Tomas Calendar	
		SW8	SW846 1312 (SI	(SPLP)	Balance	Balance ID: BAL-04 15	pH Meter ID: Orion 520A s/n 7422	Orion 52	A s/n 7422	DH Probe ID:		(NOUTH TEIT) CHERTAL ZS(±Z) C)	Z3(±Z)°C) >> (5)
Solid pH Determination:	ion:	Date	Date:01-c6-r5			250	Analyst: Ç∈∡	12			1	9000 00000000	9
Rotary Extraction Started:	arted:		Date: いいめい	i.o.	Time: W. U.C.		4	-	Room Temp (degrees	deare	<u>ن</u> ا	30 6	
Rotary Extraction Completed	mplete		Date: Ol·c7 · iS		Time: 07:45				Room Temp (degrees of):	areal, and) () oo) c	
Extraction Filtered		Date:	Date: 01-07-15		Time:13 'CS		6		Fitter of # D 4 MAN 71	F. D. & LAA.	. 5	V.	
Elapsed Extraction Time (HH:MM): 19:00	ime (H	1:MM): /	8		5% HNO	I sw of besti	sh filtere).	í			1381		3
Fluid 1 pH (Day of use):	(e):	777	7117		Fluid 1 F.	Fluid 1 Expiration Date:	Miller St. Mr.	344	TINO3 FOLD	t (nsed to	rivo3 Lot # (used to preserve extracts):	- 1	2000
Fluid 2 pH (Day of use).	1.				Elind 2 E.	piration Date.	20000						
II. EXTRACTION SETTIP					7 7 700 1	Lypitation Date.				***************************************		the state of the s	į
						TCLP Fluid	pH: #1 - 4,93 ± 0.05		#2 - 2.88 ± 0.05	SPLP Fluid pH: #1	1 pH: #1 - 4 2	-420+005 #2	#2 - 5 00 + 0 05
AND MICHAEL MAN		Checl	Check One:	— With through	TCLP pH Detern Selection (dat	TCLP pH Determination and Fluid Selection (date & init. above)		l 🖺	Extraction Setup			i	200
-		100% Wet	< 100% Wet	SPLP		, , , , , , , , , , , , , , , , , , , ,						Extract to	
Katahdin Sample No. (include bottle ID)	Matrix	Solids- waste will yield no	Solids (Perform Solids	FLUID # (1 for east and 2 for west of	Initial pH of solid phase: (if <5, use Fluid #1; if >5 and 3.5 ml. of	pH after 1 N HCL addition (if <5, use Fluid #1; if >5, use	Volume of Extraction	Fluid #	Associated	Weight of	pH of extract	for Metals (M)	Extraction Bottle ID (#
		filtration	Determination below)	Mississippi River)	1 N HCl)	Fluid #2		pesn	Blank ID:	(8)	extraction:	SVOA (S), PEST (P), HERB (H), Cvanide (C)	applicable)
ST 0027:17	\$	7			7.0E	-62.	32.7		PETIZZA	180.69	35.3	2 0 2	, w
8-1284	Š	\		×	0 0 3	7.	(was	\	The same of the sa	3.68	roj		
C+ C627-20	Ü					7.11.		-					0,
3	À	>			??	ž Ž				18.08 18.08	5.02	and the second	57
SH-82-18	iş,	1			, ,	Throad prints o	Politoma a Livos				157		05
STED 27. Sp	3				7.73	0		-		23.00			N W
39.17.0x	力	Js.			6.73	1.12	-		***************************************	8			
PST1222							>		>))		
	5				***************************************		2000	اسس	P13711224	СПИНЕННУПА	7,7	S. S.	w W
AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	Ween production of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	A DO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPE	Personal formation with temptom and describe the same of the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and		ACCESSORY OF THE PROPERTY OF THE CONTINUES OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	Name of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last o	STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE P	Hart of Continues of Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particular Continues of the Particula	A DEPOSIT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T	Marie Communication of the Party of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communicati	P. Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico and Agrico a
						Lita i and debanda special debando i manero (VI) e decidado de la composició de la composic	e selection of the sele	-	ACAMAN CANADA STANGE AND AND AND AND AND AND AND AND AND AND	100 mar (100 mar)	And the second s	The state of the s	
		A Company of the Comp	And the second s	A SA ANDREAS OF SA SA SA SA SA SA SA SA SA SA SA SA SA	The second secon								#
was to the second shower than the second shower than the second s	A Company of the Comp												
Annual Company of the	SOUTH PROPERTY AND ADDRESS OF THE PARTY AND AD	Andrew Commentation of the second	Maria Company Company Company Company	The state of the s	Note and the state of the state		Polymount of the Control of the Cont	The second secon					

KATAHDIN ANALYTICAL SERVICES, INC.

Non-Volatile TCLP/SPLP Extraction Log

. EXTRACTION CONDITIONS				
Extraction Method:	SW846 1311 (TCLP)	Extractor ID: ソル	Room Thermometer	ID: DIG-23 (Room Temp Criteria, 23(±2)°C)
	SW846 1312 (SPLP)	Balance ID: BAL-08	pH Meter ID: Orion 52	0A s/n 7422 pH Probe ID: 57333 526 - 0.23 B
Solid pH Determination:	Date: 01-14-15		Analyst: 2 -	
Rotary Extraction Started:	Date: 0(-14-15	Time: \7510	Analyst: 4	Room Temp. (degrees °C): 21.2
Rotary Extraction Completed:	Date: 01.15 15	Time: 09:30	Analyst: GET	Room Temp. (degrees °C): 20.72
Extraction Filtered:	Date: 01-15-15	Time: 13:00	Analyst: GEJJEAM	Filter Lot #: RUMACTES RYMACTETT RYJA 9034
Elapsed Extraction Time (HH:N	MM): 16-20	5% HNO ₃ ID (used to	wash filters): MRH25	HNO ₃ Lot # (used to preserve extracts): \$288
Fluid 1 pH (Day of use): 5 (Lg	54.19 TELF 4.89 TELF-4.91	Fluid 1 Expiration Dat	e: 1227 - 01-12-1	6 122 - 01-06-16 TEL - 01-05-16
Fluid 2 pH (Day of use):	Amount of Statement (1980) of the Statement of the Control of the	Fluid 2 Expiration Dat	e:	

II. EXTRACTION SETUP		ç					pH: #1 - 4.93 ±	0.05 #	#2 - 2.88 ± 0.05	SPLP Fluid	d pH: #1 - 4.2	20 ± 0.05 #2	- 5.00 ± 0.05
9801010101010101010101010101010101010101		Chec	ck One:			nination and Fluid e & init. above)		Extra	ction Setup				
Katahdin Sample No. (include bottle ID)	Matrix	100% Wet Solids- waste will yield no liquid upon filtration	< 100% Wet Solids (Perform Solids Determination below)	SPLP FLUID # (1 for east and 2 for west of Mississippi River)	Initial pH of solid phase: (if <5, use Fluid #1; if >5 add 3.5 mL of 1 N HCI)	pH after 1 N HCL addition (if <5, use Fluid #1; if >5, use Fluid #2	Volume of Extraction Fluid (mL)	Fluid # used	Associated Extraction Blank ID:	Weight of Waste (g)	pH of extract after extraction:	Extract to be analyzed for: Metals (M), SVOA (S), PEST (P), HERB (H), Cyanide (C)	Extraction Bottle ID (if applicable)
spel chande	CITY COLUMN TO SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE OF THE SERVICE STATE OF THE SERVICE S				460	-	1120	Fees Hero			6.46	C	18
5I 0199-2E CM	3L			- Chief Property Constitution of the Constitut	No. 2. Copyright Copyright State of the company of	and the property of the second second second second second second second second second second second second se	1120		=	55,90	8.79	<i>C</i>	1
SI040-14	ジレ				7.75	1.44	2000		1222	99.95	4.72	M	NIA
550227-1 A					7.73	1,52	· · · · · · · · · · · · · · · · · · ·		*	99,99	497		·
- 7-		<u> </u>			7.73	1-59	My water to produce the control of t	And the second s	1221	100,70	4.92		1
- 7	Ung quality with the second se	/		Annesover	7,90	1.55		- Appendix		100,00	4.97		2
1-11	1			Service Contraction of the Contr	7.81	1.58	V			100,21	5.04	6	21
SI 0199-2E(1)	Î			materials			2000	3818	1223 C	(00,01	9.70	MP	14
1 (0)				etimes,		and a class of the control of the co		1	PGT 12230	99,94	8.64	M,P	3
POT 1223C							2.500		J. Company		4.57	M, P	

CONVENTIONAL AND PHYSICAL ANALYTICAL DATA

QC Summary Section

Quality Control Report

Blank Sample Summary Report

Cyanide, Reactive

Samp Type	QC Batch	Anal, Method	Anal. Date	Prep. Date	Result	PQL
MBLANK	WG157267	SW846 7.3.3	20-JAN-15	16-JAN-15	U 0.80 mg/Kg	1.0 mg/Kg
Ignitability						
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	<u>PQL</u>
MBLANK	WG157230	SW846 1010A	14-JAN-15	N/A	> 71. Deg. C	71. Deg. C
Paint Filter Liq	uids Test					
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	<u>PQL</u>
MBLANK	WG157289	SW846 9095B	20-JAN-15	N/A	NFL	
Sulfide,Reactive	e					
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	Result	<u>PQL</u>
MBLANK	WG157158	SW846 7.3.4	16-JAN-15	16-JAN-15	U 20. mg/Kg	27. mg/Kg
Total Solids						
Samp Type	QC Batch	Anal. Method	Anal. Date	Prep. Date	<u>Result</u>	<u>PQL</u>
MBLANK	WG157022	SM2540	16-JAN-15	15-JAN-15	U 1 %	1 %

Quality Control Report

Laboratory Control Sample Summary Report

Cyanide, Reactive

Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG157267-2	LCS	WG157267	20-JAN-15	16-JAN-15	mg/Kg	5	3.2	65	0-100	
Ignitability										
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG157230-2	LCS	WG157230	14-JAN-15	N/A	Deg. C	27	26.	98	80-120	
WG157230-3	LCSD	WG157230	14-JAN-15	N/A	Deg. C	27	28.	106	80-120	7
Sulfide,React	tive									
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG157158-2	LCS	WG157158	16-JAN-15	16-JAN-15	mg/Kg	985.8	870	88	30-120	
Total Solids										
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG157022-2	LCS	WG157022	16-JAN-15	15-JAN-15	%	90	90.	100	80-120	
pH(Laborator	ry)									
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG157086-1	LCS	WG157086	16-JAN-15	N/A	pН	7	7.0	100	90-110	
pH(Soil)					-					
Lab Sample Id	Samp Type	QC Batch	Analysis Date	Prep Date	Units	Spike Amt.	Result	Recovery	Acceptance Range	RPD
WG156986-1	LCS	WG156986	14-JAN-15	14-JAN-15	рH	7	7.0	100	90-110	

Quality Control Report

Duplicate Sample Summary Report

pH(Laboratory)

Duplicate Sample ID	Original Sample ID	QC Batch	Analysis Date	Result Units	Sample Result	Duplicate Result	RPD(%)	RPD Limit
WG157086-2	SI0230-2	WG157086	16-JAN-15	pН	7.7	7.8	1	20
pH(Soil)								
Duplicate Sample ID	Original Sample ID	QC Batch	Analysis Date	Result Units	Sample Result	Duplicate Result	RPD(%)	RPD Limit
WG156986-2	SI0230-1	WG156986	14-JAN-15	На	8 3	8.2	n	20

Sample Data Section

KATAHDIN ANALYTICAL SERVICES – INORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Limit of Quantitation (LOQ)(previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client. Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%. Ε Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis. Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation J (LOQ)(previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL). 1-7 The laboratory's Practical Quantitation Level could not be achieved for this parameter due to sample composition, matrix effects, sample volume, or quantity used for analysis. Please refer to cover letter or narrative for further information. A-4 Please note that the regulatory holding time for ____ __ is "analyze immediately". Ideally, this analysis must be performed in H_ the field at the time of sample collection. for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory. H1 - pH H3 - sulfide H4 - residual chlorine H2 - DO T1 The client did not provide the full volume of at least one liter for analysis of TSS. Therefore, the PQL of 2.5 mg/L could not be achieved. The client provided the required volume of at least one liter for analysis of TSS, but the laboratory could not filter the full one T2 liter volume due to the sample matrix. Therefore, the PQL of 2.5 mg/L could not be achieved. M1 The matrix spike and/or matrix spike duplicate recovery performed on this sample was outside of the laboratory acceptance criteria. Sample matrix is suspected. The laboratory criteria was met for the Laboratory Control Sample (LCS) analyzed concurrently with this sample. The matrix spike and/or matrix spike duplicate recovery was outside of the laboratory acceptance criteria. The native sample M2 concentration is greater than four times the spike added concentration so the spike added could not be distinguished from the native sample concentration. R1 The relative percent difference (RPD) between the duplicate analyses performed on this sample was outside of the laboratory acceptance criteria (when both values are greater than ten times the PQL). MCL Maximum Contaminant Level NL No limit NFL FIP Free Liquid Present No Free Liquid Present NOD No Odor Detected TON Threshold Odor Number As required by Method 5210B, APHA Standard Methods for the Examination of Water and Wastewater (21st edition), the BOD D-1 value reported for this sample is 'qualified' because the check standard run concurrently with the sample analysis did not meet

D-3 The dilution water used to prepare this sample did not meet the method and/or regulatory criteria of less than 0.2 or 0.4 mg/L dissolved oxygen (DO) uptake over the five day period of incubation. These results may not be reportable for compliance

reported BOD result was calculated assuming a final oxygen concentration equal to 1 mg/L.

the criteria specified in the method (198 +/- 30.5 mg/L). These results may not be reportable for compliance purposes.

The measured final dissolved oxygen concentrations of all dilutions were less than the method-specified limit of 1 mg/L. The

purposes.

D-2

Client: Dana Miller EnSafe

5724 Summer Trees Drive

Memphis, TN 38134

Report Date: 02-FEB-15 Lab Sample ID: SI0230-1

Client PO: 16518

Project: Navy Clean WE15-03-06 NWIRP Bethpage, SDG: SI0230

Date Received	14-JAN-15
Date Sampled	13-JAN-15 11:30:00
Matrix	SI
Sample Description	IDWS-0312-011315

Parameter	Result	Adj PQL	Adj MDL	Anal, Method	QC Batch	Analysis Date	Prep. Method Prep. Date Analyst Footnotes	Prep. Date	Analyst	Footnotes
Cyanide, Reactive	U0.80 mg/Kg	1.0	0.16	SW846 7.3.3	WG157267	20-JAN-15 12:42:01	SW846 7.3.4 16-JAN-15	16-JAN-15	SZ	TOTAL CONTRACTOR OF THE CONTRA
Ignitability	>71. Deg. C	71.	71.	SW846 1010A	WG157230	14-JAN-15 10:52:00	N/A	N/A	RO	
Paint Filter Liquids Test	NFL			SW846 9095B	WG157289	20-JAN-15 14:21:00	N/A	N/A	RO	
Sulfide,Reactive	U20 mg/Kg	27	16.39	SW846 7.3.4	WG157158	16-JAN-15 16:10:00	SW846 7.3.4	16-JAN-15	ΑZ	
Total Solids	79.%	-		SM2540G	WG157022	16-JAN-15 09:42:30	SM2540G	15-JAN-15	ΑZ	
pH(Soil)	8.3 pH	0.10	0.10	SW846 9045D		WG156986 14-JAN-15 17:50:00	SW846 9045C 14-JAN-15	14-JAN-15	AZ	

Client: Dana Miller

EnSafe

5724 Summer Trees Drive Memphis, TN 38134

Lab Sample ID: SI0230-2

02-FEB-15 Client PO: 16518 Report Date:

Project: Navy Clean WE15-03-06 NWIRP Bethpage, SDG: SI0230

		Footnotes
ved		Analyst
Date Received	14-JAN-15	Prep. Date Analyst
Date Sampled	13-JAN-15 12:00:00	Prep. Method
Matrix L	AQ 13-	Analysis Date
FI	7	QC Batch
		Anal. Method
		Adj MDL
		Adj PQL
ion	11315	Result
Sample Description	IDWGW-3178-011315	Parameter

H

ΑZ

۲ X

N/A

16-JAN-15 15:32:00

WG157086

SM 4500H-B

0.10

0.10

7.7 pH

pH(Laboratory)

Cert No E87604

Client: Dana Miller

EnSafe

5724 Summer Trees Drive Memphis, TN 38134

02-FEB-15 Lab Sample ID: SI0230-3 Report Date:

Client PO: 16518

Project: Navy Clean WE15-03-06 NWIRP Bethpage,

SDG: SI0230

Date Received Date Sampled Matrix

Analyst Footnotes 14-JAN-15 Prep. Method Prep. Date 13-JAN-15 12:30:00 Analysis Date AQ QC Batch Anal. Method Adj MDL Adj PQL Result IDWGW-F0A37-011315 Sample Description

Ξ

ΑZ

N/A

16-JAN-15 15:32:00

WG157086

SM 4500H-B

0.10

7.6 pH

pH(Laboratory) Parameter

Cert No E87604

Client: Dana Miller

EnSafe

5724 Summer Trees Drive Memphis, TN 38134

Sample Description

Lab Sample ID: SI0230-4

Report Date: 02-FEB-15

Project: Navy Clean WE15-03-06 NWIRP Bethpage, Client PO: 16518

SDG: SI0230

Date Received Date Sampled Matrix

IDWGW-EG332-01131	011315				·	AQ 13-JAN-)	13-JAN-15 13:00:00 14-JAN-15	14-JAN-15		
Parameter	Result	Result Adj PQL	Adj MDL	Anal. Method	QC Batch	Adj MDL Anal. Method QC Batch Analysis Date	Prep. Method Prep. Date Analyst Footnotes	Prep. Date	Analyst	Footnotes
pH(Laboratory) 8.0 pH 0.10	8.0 pH	0.10	0.10	0.10 SM 4500H-B WG157086 16-JAI	WG157086	SM 4500H-B WG157086 16-JAN-15 15:32:00	N/A N/A AZ HI	N/A	AZ HI	

Logbooks and Supporting Documents

WET CHEMISTRY BAICH REPORT Jan 20 2015, 05:06 pm Batch: WG157267

Parameter: Cyanide, Reactive Date Analyzed: 20-JAN-15 Analyst Initials: ZS	Reactive AN-15					Prep Date: 16-JAN-15 Prep Method: SW846 7.3.4 Prep Chemist: AZ	15 7.3.4					
Sample Samp Type	Samp Type Method	Initial Amt	Initial Amt. Final Amt.	Rpt. DF	Result	Rpt Result	TS (%)	ПОМ	MDL	Adj PQL	RPD	%Re.C
SI0230-1 SAMP SI0301-2 SAMP SI0301-2 SAMP WG157267-1 MBLANK WG157267-2 LCS WG157267-4 MS COMMENTE: SI0230-1 SI0301-1 SI0301-1 SI0301-1 WG157267-4 WG157267-2 WG157267-3	SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3 SW846 7.3.3	10.512g 10.199g 11.674g 10.000g 10.000g 10.000g (#2) (#2)	190.00mL 190.00mL 190.00mL 190.00mL 190.00mL 190.00mL	. 951 . 957 . 957 . 957	3.49519 .76857 .2014 .25306 170.09 337 102.888	UO.80 mg/kg UO.80 mg/kg UO.80 mg/kg 3.2 mg/kg UI.0 mg/kg	79. 78. NA NA ਕਰਰਗਰਜ਼	0.16 0.16 0.16 0.16 0.16	0000000	QQ Q	5.5 6.5 6.0	

Date: 0/20/15

Date: W.D Accepted by:

Entered by:

Date: 1.86.15 Accepted by:____

WET CHEMISTRY BATCH REPORT Jan 26 2015, 04:09 pm Batch: WG1S7269

Prep Date: 20-JAN-15

Parameter: Total Cyanide Date Analyzed: 20-JAN-15 Analyst Initials: ZS

Prep Method: EPA 335.4

Prep Chemist: ZS

Samp Type Method

Sample

SIO267-5 SAMP SIO293-1 SAMP SIO316-2 SAMP WG157269-1 MBLANK WG157269-2 LCS

%Rec	5 6 7 8 8 9 9 9
RPD	4
Adj PQL	20. 10. 10. 10. 10.
MDL	
POL	110000
TS (%)	AN NA NA NA NA
Rpt Result	430 ug/L 15. ug/L U10. ug/L U8.0 ug/L 200 ug/L 16. ug/L
DF Result	432.241 15.0984 2.04069 0005 196.629
Rpt.	
Initial Amt. Final Amt.	50.000mL 50.000mL 50.000mL 50.000mL 50.000mL
	50.000mL 50.000mL 50.000mL 50.000mL 50.000mL
oq	EPA 335.4 EPA 335.4 EPA 335.4 EPA 335.4 EPA 335.4

SI0293-1 SI0293-1 SI0293-1

WG157269-1 WG157269-2 WG157269-3

Comments:

WET CHEMISTRY BATCH REPORT Jan 26 2015, 04:10 pm Batch: WG157270

Parameter: Total Cyanide	anide				,	Prep Date: 20-JAN-15	15					
Date Analyzed: 20-JAN-15	AN-15				-	Prep Method: EPA 335.4	35.4					
Analyst Initials: ZS	ω,				,	Prep Chemist: ZS						
Sample Samp Typ	Samp Type Method	Initial Amt	Initial Amt. Final Amt.	Rpt. DF	Result	Rpt Result	TS (%)	PQL	MDL	Adj PQL	RPD %F	% Re C
SI0299-2 SAMP	EPA 335.4	50.000mL	50.000mL	1 1 1 1 1 1 1	.35279	US. 0 ug/I,	i KZ				5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
SI0312-2 SAMP	EPA 335.4	50.000mL	50.000mL	т	1.40549	U5.0 ug/L	NA	ח נח	ь 4 О			
WG157270-1 MBLANK	EPA 335.4	50.000mL	50.000mL	. 	-,0005	U5.0 ug/L	NA	LC)	. 4			
WG157270-2 LCS	EPA 335.4	50.000mL	50.000mL	1	196.629	200 ug/L	NA) LC	. 4 . C) tt	00	0
WG157270-3 MS	EPA 335.4	50.000mL	50.000mL	1	67.0637	67. ug/L	NA	ın	0.4	່ເຕ	9 6	o r-
WG15/270-4 MS	EPA 335,4	50.000mL	50.000mL	Н	95.1935	95. ug/L	NA	ហ	4.0	. o.	99.0	- 10
Comments:												
WG157270-1 WG157270-2 WG157270-3 WG157270-4	SI0299-2 SI0299-2 SI0299-2 SI0312-2											

Date: 1.36.1S Accepted by:

Entered by:

KATAHDIN ANALYTICAL SERVICES, INC. Wet Chemistry Analysis Run Information Sheet

Analyte: CYANIDE	Analyst: 군S
Instrument: KONELAB 20	Analysis Date: 1-20-15

Analytical Method (Check all that apply):

SW846 7.3.4 (Reactive)

EPA 335.4

Reagent Information:

Reagent Name	Reagent ID	Expiration Date
Pyridine / Barbituric Acid	W12701	3.10.15
Phosphate Buffer	SWL3582	12.14.15
Chloramine-T (dry reagent)	SWL3425	12.19.15
Chloramine-T Solution	Prepared on day	of use from dry reagent
10 N NaOH Solution	SWL37197	7.30.15
0.25 N NaOH Solution	Prepared on day	of use from 10 N NaOH

Standards Information:

Standard Name	Concentration	ID	Expiration Date
Cal. Standard / CCV Stock	1000 mg/L	SWL3532	1.31.15
Cal. Std. / CCV Intermediate	50 mg/L	W12662	2.19.15
250 ug/L Calibration Standard	250 ug/L		n day of use
CCV	125 ug/L		n day of use
ICV Stock	1000 mg/L	SWL3670	6.1.15
ICV Intermediate	50 mg/L	W12663	2.18.15
ICV	200 ug/L		n day of use

Notes:

1) Some reagents and standards were prepared on day of use by dilution with reagent water as follows:

Reagent or Standard	Prepared From	Amount Added	Final Volume
Chloramine-T Solution	Chloramine-T (dry reagent)	1.0 g	100 mL
0.25 N NaOH	10 N NaOH	25 mL	1000 mL
Cal. Std. / CCV Intermediate	Cal. Std. / CCV Stock	0.50 mL	10.0 mL
250 ug/L Calibration Standard	Cal. Std. / CCV Intermediate	0.125 mL	25.0 mL
CCV	250 ug/L Calibration Standard	5.0 mL	10.0 mL
ICV Intermediate	ICV Stock	0.500 mL	10.0 mL
ICV	ICV Intermediate	0.100 mL	25.0 mL

2) Additional calibration standards (100, 50, 25, 10, 5 ug/L) prepared by instrument during analysis through dilution of the 250 ug/L calibration standard.

Reactive WG15772677 B R305365

<u>W9012</u> WG-157268 B R305948 E335.4 WG-157269 B R365949 W(154210)

ମଧ୍ୟ Katahdin Analytical Services 0000854

Aquakem v. 7.2									
Results from time period:							The state of the s	The Administration is a second of the second	TO THE REAL PROPERTY OF THE PR
Tue Jan 20 09:04:04 2015				American State of the Control of the			And the state of t	The state of the s	
Tue Jan 20 16:59:51 2015	10	- VII BEVOLUTE	THE PARTY OF THE P	STATE AND COMPANY OF THE PROPERTY OF THE PROPE			77777		
Sample Id	Test short name	Result	Result unit	Result date and time	Dil. Factor	Response	Blank init abs (A)	Main abs 1	Comments
CN-0	Cyanide	0.4043	ļ	1/20/15 11:40:59		0.00687	0.00077		
CN-250	Cyanide	4.91599		1/20/15 11:41:00	20	0.01127	90000-0-	0.01121	VALUE
CN-250	Cyanide	9.56476		1/20/15 11:41:01	25	0.0158	-0.00014	0.01566	A STANSANT AND A STAN
CN-250	Cyanide	25.97104	l/gu	1/20/15 11:41:02		0.0318	0.00137	0.03317	The state of the s
CN-250	Cyanide	50.27011	l/gu	1/20/15 11:41:03		0.0555	220000	0.05627	THE REPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NAM
CN-250	Cyanide	98.34305	l/bri	1/20/15 11:41:04	2.	0.10238	0.00237	0.10474	And the state of t
CN-250	Cyanide	250.53073	l/bri	1/20/15 11:41:05	4.00	0.25078	0.00137	0.25215	The control of the co
CN-CCV	Cyanide	118.0192	l/bn	1/20/15 12:25:13	7	0.12156	-0.00025	0.12131	%P0
CN-CCB	Cyanide	0.22565	l/bn	1/20/15 12:25:14	1	0.0067	-0.00021	0.00649	2
CN-ICV	Cyanide	186.96216	l/bri	1/20/15 12:25:15	_	0.18879	-0.00027	0.18852	760
RCN-Blank	Cyanide	0.25306	l/6rl	1/20/15 12:25:16	-	0.00672	-0.00023	0.00649 RFACTIVE	CYANIF
RCN-LCS	Cyanide	170.09038	l/grl	1/20/15 12:25:17	7	0.17234	0.00663	0.17897 RFA	0.17897 REACTIVE CYANIDE
RCN S10230-1	Cyanide	-0.14809	l/6rl	1/20/15 12:25:18	-	0.00633	-0.00017	0.00616 REA	REACTIVE CYANIDE
RCN Si0301-1	Cyanide	0.76857	l/grl	1/20/15 12:25:19		0.00723	-0.00019	0.00704 REA	REACTIVE CYANIDE
RCN S10301-1 DUP	Cyanide	-0.12683	l/gr	1/20/15 12:25:20	_	0.00635	-0.00016		REACTIVE CYANIDE
RCN S10301-1 MS	Cyanide	102.88863	l/gu	1/20/15 12:25:21	7	0.10681	0.0013	·	REACTIVE CYANIDE
RCN S10301-2	Cyanide	0.2014	l/gu	1/20/15 12:25:22	1	0.00667	0.00076	0.00744 REA	REACTIVE CYANIDE
Blank 1/20	Cyanide	-0.04447	l/gn	1/20/15 12:25:23	_	0.00643	0.0002	0.00664	
LCS 1/20	Cyanide	178.71634	l/gu	1/20/15 12:31:26	Υ-	0.18075	0.0001	0.18085	%68
CN-CCV	Cyanide	119.99535	увп	1/20/15 12:31:27	Y	0.12349	-0.00025	0.12324	%96
CN-CCB	Cyanide	0.46371	l/gu	1/20/15 12:31:28	1	0.00693	0.00033	0.00726	Water Company
High 1/20	Cyanide	227.98793	l/gц	1/20/15 12:31:29	1	0.2288	-0.00006	0.22873	91%
Low 1/20	Cyanide	9.87691	l/grt	1/20/15 12:31:30		0.01611	0.00006	0.01617	%66
SIUZ93-1	Cyanide	15.09846	l/gu	1/20/15 12:31:31	4	0.0212	0.00074	0.02194 REPORTED	
VVG 15/ Z68-3	Cyanide	15.63923	l/gu	1/20/15 12:31:32	_	0.02173	900000	0.02179 REPORTED	ORTED
210299-2	Cyanide	0.26452	l/gri	1/20/15 12:31:33	1	0.00673	0.00023	0.00696 RER	0.00696 RERUN TO CHECK
SIOSAS D	Cyanide	/9.13854	l/grl	1/20/15 12:31:34		0.08365	-0.00002	0.08362 RER	0.08362 RERUN TO CHECK
010312-2	Cyanide	1.1804	l/grl	1/20/15 12:31:35	4	0.00763	0.00007	0.0077 RER	RERUN TO CHECK
310312-2 IMS	Cyanide	92.75763	l/gu	1/20/15 12:31:36	-	0.09693	0.00006	0.09698 RER	RERUN TO CHECK
	Cyanide	128.4944	l/gu	1/20/15 12:35:45	1	0.13178	-0.00024	0.13154	103%
CN-CUB	Cyanide	-0.43466	l/gu	1/20/15 12:35:46	4	0.00605	-0.00015	0.0059	The state of the s
	Cyanide	3.49519	l/grl	1/20/15 12:42:01	_	0.00989	-0.00008	0.00981 REA	REACTIVE CYANIDE
RCN S10301-1 DUP	Cyanide	-0.33707	l/brl	1/20/15 12:42:02	-	0.00615	-0.00023	0.00592 REA	0.00592 REACTIVE CYANIDE
WG15/268-1	Cyanide	-0.00051	l/gu	1/20/15 12:42:03	_	0.00648	-0.00019	0.00629 REPORTED	ORTED
WG15/269-1	Cyanide	-0.00051	l/gu	1/20/15 12:42:03	-	0.00648	-0.00019	0.00629 REPORTED	ORTED
WG15/2/0-1	Cyanide	-0.00051	l/gri	1/20/15 12:42:03	-	0.00648	-0.00019		REPORTED
×	Cyanide	725.17762	l/grl	1/20/15 12:44:14	_	0.12854	-0.00029	0.12825	100%

)))	Cyanide	-0.19832	l/bn	1/20/15 12:44:15	1 0.00628	-0.00025	0.00603	
CN-CCV	Cyanide	-110.66643	/br	1/20/15 12:59:45	1 -0.10144	0.25079	0.14935	-89%
CN-CCB	Cyanide	0.05419	l/gu	1/20/15 12:59:46	1 0.00653	-0.00025	0.00628	
WG157268-2	Cyanide	196.62941	l/gri	1/20/15 12:59:47	1 0.19822	0.00016	0.19838	98%
WG157269-2	Cyanide	196.62941	/gn	1/20/15 12:59:47	1 0.19822	0.00016	0.19838	98%
WG157270-2	Cyanide	196.62941	l/grl	1/20/15 12:59.47	1 0.19822	0.00016	0.19838	%86
High 1/20	Cyanide	241.62114	l/grl	1/20/15 12:59:48	1 0.24209	60000.0-	0.242	%26
CN-CCV	Cyanide	126.40045	l/gri	1/20/15 13:02:27	1 0.12974	-0.00014	0.1296	101%
CN-CCB	Cyanide	-0.21068	l/bri	1/20/15 13:02:28	1 0.00627	-0.00023	0.00604	
ON-CCV	Cyanide	122.62946	l/grl	1/20/15 14:09:10	1 0.12606	-0.00021	0.12585	%86
CN-CCB	Cyanide	0.022	l/grl	1/20/15 14:09:11	1 0.0065	-0.00017	0.00633	
SI0299-2	Cyanide	0.35279	l/gri	1/20/15 14:09:12	1 0.00682	0.00003	0.00685 REPORTED	W. W. W. W. W. W. W. W. W. W. W. W. W. W
WG157270-3	Cyanide	67.06376	l/gri	1/20/15 14:09:13	1 0.07187	-0.00008	0.07179 REPORTED	
SI0312-2	Cyanide	1.40549	l/grl	1/20/15 14:09:14	1 0.00785	-0.00014		
WG157270-4	Cyanide	95.19351	l/gu	1/20/15 14:09:15	1 0.0993	60000.0-	0.09921 REPORTED	
SI0316-2	Cyanide	2.04069	l/grl	1/20/15 14:09:16	1 0.00847	0.00008		
SI0260-13	Cyanide	0.25645	l/grl	1/20/15 14:09:17	1 0.00673	0.00013	0.00685 REPORTED	
SI0260-23	Cyanide	-0.05591	l/br	1/20/15 14:09:18	1 0.00642	0.00019	0.00661 RERUN TO CHECK	ECK
SI0341-11	Cyanide	-0.02178	l/gu	1/20/15 14:09:19	1 0.00646	0.00025	0.00671 RERUN TO CHECK	ECK
\$10260-5	Cyanide	7.56663	l/gri	1/20/15 14:09:20	1 0.01386	0.00036	0.01421 REPORTED	
SI0260-7	Cyanide	3.30259	l/grl	1/20/15 14:13:57	1 0.0097	0.00073	0.01043 REPORTED	
CN-CCV	Cyanide	128.29802	l/gr	1/20/15 14:13:58	1 0.13159	-0.00011	0.13148	103%
CN-CCB	Cyanide	-0.0493	l/6rl	1/20/15 14:13:59	1 0.00643	-0.00015	0.00627	
S10260-9	Cyanide	1.055	l/gn	1/20/15 14:14:00	1 0.00751	0.00014	0.00765 REPORTED	Water and the same of the same
S10260-11	Cyanide	1.3021	Ng.	1/20/15 14:14:01	1 0.00775	0	0.00774 REPORTED	
Si0260-21	Cyanide	6.86254	l/gr	1/20/15 14:14:02	1 0.01317	0.00017	0.01334 REPORTED	
SI0260-22	Cyanide	13.45963	l/grl	1/20/15 14:14:03	1 0.0196	0.00012	0.01973 REPORTED	
CN-CCV	Cyanide	130.28772	l/grl	1/20/15 14:16:37	1 0.13353	-0.00029	0.13324	104%
CN-CCB	Cyanide	-0.13615	l/grl	1/20/15 14:16:38	1 0.00634	-0.00025	0.00609	
S10260-23	Cyanide	0.20806	l/grl	1/20/15 14:24:55	1 0.00668	-0.00012	0.00656 REPORTED	
Si0341-11	Cyanide	0.05516	l/grl	1/20/15 14:24:56	1 0.00653	-0.00011	0.00642 REPORTED	100000000000000000000000000000000000000
CN-CCV	Cyanide	127.78664	l/grl	1/20/15 14:27:09	1 0.13109	-0.00025	0.13084	102%
CN-CCB	Cyanide	-0.04113	l/gri	1/20/15 14:27:10	1 0.00644	-0.00029	0.00614	
CN-CCV	Cyanide	128.30067	l/grl	1/20/15 16:07:49	1 0.13159	-0.00025	0.13134	103%
CN-CCB	Cyanide	-0.05754	ľg/	1/20/15 16:07:50	1 0.00642	0.00001	0.00643	
S10341-1	Cyanide	1.23326	l/gu	1/20/15 16:07:51	1 0.00768	0.00002	0.0077 REPORTED	
\$10341-3	Cyanide	1.73631	l/grl	1/20/15 16:07:52	1 0.00817	0.0001	0.00827 REPORTED	
S10341-5	Cyanide	0.64999	l/grt	1/20/15 16:07:53	1 0.00711	0.00015	0.00726 REPORTED	
\$10341-7	Cyanide	0.91015	l/gu	1/20/15 16:07:54	1 0.00736	0.0005	0.00786 REPORTED	10-
Si0341-9	Cyanide	1.52407	l/grl	1/20/15 16:07:55	1 0.00796	6000.0	0.00886 REPORTED	
S10267-5	1.	430.63245	l/gu	1/20/15 16:07:56	1 0.42641	0.00014	0.42655 AUTODILUTED	
S10268-2		1642.04468	l/grl	1/20/15 16:07:57	1 1.60771	0.00053	1.60824 HIGH, DILUTE	
CN-CCV	Cyanide	135.61249	ng/l	1/20/15 16:10:54	1 0.13872	-0.0002	0.13852	108%

200					The second secon			
כליכים	Cyanide	0.12499) Pr	1/20/15 16:10:55	1 0.0066	-0.0001	0.0065	
SI0267-5	Cyanide	432.24158	/an	1/20/15 16:21:07	2 0.24723	20000	0.04744 DEBOOTED	
CN-CCV	Cvanide	130 04469	/u	1/20/15 16:23:29	1 0 13300	200000	0.2 1.4 RELONDED	70,0
CN-CCB	Cvanide	Cyanide -0.1287	10/	1/20/15 16:23:30	1 0.0025	0.00023	0.13304	8421
S10268-2	Cyanide	1824.42419	l/on	1/20/15 16:29:03	100 0 02427	0.0001	0.00024	
CN-CCV	Cvanide	135 56036	, <u>c</u>	1/20/15 16:31-56		0.00027	O.OZ4 FIGH, DILOTE	
CN-CCB	Cyclida	0.40040	à Ì	100012 10001	0.13607	-0.00013	0.13852	108%
00000	cyallide	-0.12717	ng/i	76:15:91 61/07/1		0.00001	0.00636	
210268-2	Cyanide	1616.75427	l/gr	1/20/15 16:42:42	10 0.16413	-0.00016	O 16398 REPORTED	
CN-CCV	Cyanide	133.0432	/bn	1/20/15 16:45:04	1 0 13621	-0 00015	0 13606	106%
CN-CCB	Cyanide	0.11773	l/bri	1/20/15 16:45:05	1 0.00659	-0.00001	0.00649	3
			3					

Addahell V. / .Z									
Results from time period:				The second secon			Andrew of Address of the Comment of	W 10.00	The state of the s
Tue Jan 20 09:04:04 2015			The state of the s				APPLICATION OF THE PROPERTY OF		TOTAL MARKET AND THE REAL PROPERTY OF THE PROP
Tue Jan 20 16:45:05 2015		***************************************					A CARACTER A CARACTER		The company of the state of the
Sample Id	Test short name	Result	Result unit	t Result date and time	ime Dil Factor	Response	Rlank init ahe (A)	Main ohe 1	
CN-O	Cyanide	0.4043		i .			0.00077	0.00765	
CN-250	Cyanide	4.91599	/bn	1/20/15 11:41:00	1:00	0.01127	-0.0000	0.01121	
CN-250	Cyanide	9.56476	l/6rl	1/20/15 11:41:01	1.01	0.0158	-0.00014	0.01566	Village
CN-250	Cyanide	25.97104	/bn	1/20/15 11:41:02	102	0.0318	0.00137	0.03317	V=1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
CN-250	Cyanide	50.27011	/6n	1/20/15 11:41:03	:03	0.0555	0.00077	0.05627	1 m m m m m m m m m m m m m m m m m m m
CN-250	Cyanide	98.34305	/bri	1/20/15 11:41:04	.04	0	0.00237	0.10474	
CN-250	Cyanide	250.53073	/bri	1/20/15 11:41:05			0.00137	0.25215	
CN-CCV	Cyanide	118.0192	/bri	1/20/15 12:25:13	13	0.12156	-0.00025	0.12131	%0 <i>P</i> '0
CN-CCB	Cyanide	0.22565	l/gu	1/20/15 12:25:14	1.14	0.0067	-0.00021	0.00649	
CN-ICV	Cyanide	186.96216) Di	1/20/15 12:25:15	115	0.18879	-0.00027	0.18852	63%
WG157267-1	Cyanide	0.25306	/br	1/20/15 12:25:16	1.16	0.00672	-0.00023	0.00649 REPORTED	
WG157267-2	Cyanide	170.09038	l/gri	1/20/15 12:25:17	117	0.17234	0.00663	0.17897 REPORTED	EPORTED
RCN S10230-1	Cyanide	-0.14809	l/gri	1/20/15 12:25:18	18	0.00633	-0.00017	0.00616 R	0.00616 RERUN TO CHECK
	Cyanide	0.76857	/bri		1.19	0.00723	-0.00019	0.00704 R	REPORTED
RCN S10301-1 DUP	Cyanide	-0.12683	l/gu	1/20/15 12:25:20	.20	0.00635	-0.00016		RERUN TO CHECK
WG157267-4	Cyanide	102.88863	l/gu		121	0.10681	0.0013	0.10811 R	REPORTED
RCN S10301-2	Cyanide	0.2014	l/gr		.22	0.00667	0.00076	0.00744 REPORTED	EPORTED
Blank 1/20	Cyanide	-0.04447	l/gu		.23	0.00643	0.0002	0.00664 N	0.00664 NOT FOR REACTIVE VERBALS
LCS 1/20	Cyanide	178.71634	l/gu		:26	0.18075	0.0001	0.18085 N	0.18085 NOT FOR REACTIVE VERBALS
CN-CCV	Cyanide	119.99535	/gr		:27	0.12349	-0.00025	0.12324	%96
CN-CCB	Cyanide	0.46371	/bri		.28	0.00693	0.00033	0.00726	A CONTRACTOR OF THE CONTRACTOR
High 1/20	Cyanide	227.98793	l/gu		:29	0.2288	-0.0000	0.22873 NOT	OT FOR REACTIVE VERBALS
Low 1/20	Cyanide	9.87691	l/gu	ĺ	.30	0.01611	0.00006	0.01617 NOT	OT FOR REACTIVE VERBALS
S10293-1	Cyanide	15.09846	l/gri	1/20/15 12:31:31	:31	0.0212	0.00074	0.02194 N	0.02194 NOT FOR REACTIVE VERBALS
SI0293-1 DUP	Cyanide	15.63923	l/gu		:32	0.02173	9000000	0.02179 NO	0.02179 NOT FOR REACTIVE VERBALS
S10299-2	Cyanide	0.26452	/gri		:33	0.00673	0.00023	1000696 NOT	OT FOR REACTIVE VERBALS
SI0299-2 MS	Cyanide	79.13854	/bh		.34	0.08365	-0.00002	0.08362 NOT	OT FOR REACTIVE VERBALS
Si0312-2	Cyanide	1.1804	l/gu		.35	0.00763	0.00007	0.0077 NC	NOT FOR REACTIVE VERBALS
SI0312-2 MS	Cyanide	92.75763	l/gu		.36	0.09693	0.00006	0.09698 N	NOT FOR REACTIVE VERBALS
CN-CCV	Cyanide	128.4944	/bri		:45	0.13178	-0.00024	0.13154	103%
CN-CCB	Cyanide	-0.43466	/6ri		:46	0.00605	-0.00015	0.0059	
KCN SI0230-1	Cyanide	3.49519	Non Non		.01	0.00989	-0.00008	0.00981 REPORTED	PORTED
WG157267-3	Cyanide	-0.33707	/bn	1/20/15 12:42:02	:02	0.00615	-0.00023	0.00592 RE	REPORTED
Blank 1/20	Cyanide	-0.00051	l/gu		:03	0.00648	-0.00019	0.00629 NC	0.00629 NOT FOR REACTIVE VERBALS
CN-CCV	Cyanide	125.17762	ľ⁄gri	1/20/15 12:44:14	14	0.12854	-0.00029	0.12825	100%
CN-CCB	Cyanide	-0.19832	l/gu	1/20/15 12:44:15	15	0.00628	-0.00025	0.00603	The state of the s
CN-CCV		-110.66643	l/gu	1/20/15 12:59:45	45	-0.10144	0.25079	0.14935	-89%
CN-CCB	Cyanide	0.05419	l/grl	1/20/15 12:59:46	1 1	0.00653	-0.00025	0.00628	The state of the s
CS 1/20	Cyanide	196.62941	l/gri	1/20/15	1	0.19822	0.00016	0.19838 NC	0.19838 NOT FOR REACTIVE VERBALS
1// USI	o Cican	77700	7	C CL C 17 CC 1					

CN-CCV	Cyanide	126.40045	/611	1/20/15 13:02:27		0.12974	-0.00014	0.1296	1010
CN-CCB	Cyanide	-0.21068	l/gu	1/20/15 13:02:28	-	0.00627	-0.00023	Commercials.	3
CN-CCV	Cyanide	122.62946	l/bn	1/20/15 14:09:10	-	0.12606	-0.00021	0.12585	7080
CN-CCB	Cyanide	0.022	l/on	1/20/15 14:09:11	-	0.0065	-0.00017	0.00533	200
Si0299-2	Cyanide	0.35279	l/bri	1/20/15 14:09:12		0.00682	0.00003	0.00685 NOT FOR REACTIVE VERBA	0
SI0299-2 MS	Cyanide	67.06376	/bn	1/20/15 14:09:13	_	0.07187	-0.00008	0.07179 NOT FOR REACTIVE VERRALS	ט ק
SI0312-2	Cyanide	1,40549	l/gn	1/20/15 14:09:14		0.00785	-0.00014	0.0077 NOT FOR REACTIVE VERRALS	2 2
SI0312-2 MS	Cyanide	95.19351	l/gri	1/20/15 14:09:15		0.0993	-0.00009	0.09921 NOT FOR REACTIVE VERBALS	A .S
SI0316-2	Cyanide	2.04069	l/grl	1/20/15 14:09:16	-	0.00847	0.00008	NOT FOR REACTIVE	ν I Δ
SI0260-13	Cyanide	0.25645	l/gri	1/20/15 14:09:17	1	0.00673	0.00013	0.00685 NOT FOR REACTIVE VERBALS	S.
S10260-23	Cyanide	-0.05591	l/6rl	1/20/15 14:09:18	1	0.00642	0.00019	0.00661 NOT FOR REACTIVE VERBALS	5
SI0341-11	Cyanide	-0.02178	l/gri	1/20/15 14:09:19	-	0.00646	0.00025	0.00671 NOT FOR REACTIVE VERBALS	0
SI0260-5	Cyanide	7.56663	l/gu	1/20/15 14:09:20	-	0.01386	0.00036	0.01421 NOT FOR REACTIVE VERBALS	2 2
S10260-7	Cyanide	3.30259	/br	1/20/15 14:13:57		0.0097	0.00073	and a series	0
CN-CCV	Cyanide	128.29802	l/grl	1/20/15 14:13:58	_	0.13159	-0.00011		103%
CN-CCB	Cyanide	-0.0493	l/gri	1/20/15 14:13:59	1	0.00643	-0.00015	7700	2
SI0260-9	Cyanide	1.055	l/gri	1/20/15 14:14:00	1	0.00751	0.00014	0.00765 NOT FOR REACTIVE VERBALS	0
S10260-11	Cyanide	1.3021	l/gu	1/20/15 14:14:01	-	0.00775	0	0.00774 NOT FOR REACTIVE VERBALS	2 2
S10260-21	Cyanide	6.86254	l/grt	1/20/15 14:14:02	-	0.01317	0.00017		0
SI0260-22	Cyanide	13.45963	l/gri	1/20/15 14:14:03	+	0.0196	0.00012	0.01973 NOT FOR REACTIVE VERBALS	2 0
CN-CC/	Cyanide	130.28772	/bd/	1/20/15 14:16:37	-	0.13353	-0.00029		104%
CN-CCB	Cyanide	-0.13615	l/gri	1/20/15 14:16:38	-	0.00634	-0.00025		
SI0260-23	Cyanide	0.20806	l/gri	1/20/15 14:24:55	-	0.00668	-0.00012	0.00656 NOT FOR REACTIVE VERBALS	STS
Si0341-11	Cyanide	0.05516	µg√l	1/20/15 14:24:56	*	0.00653	-0.00011	0.00642 NOT FOR REACTIVE VERBALS	SI
CN-CCV	Cyanide	127.78664	l/gri	1/20/15 14:27:09	~	0.13109	-0.00025		102%
CN-CCB	Cyanide	-0.04113	l/gu	1/20/15 14:27:10	_	0.00644	-0.00029	0.00614	
CN-CCV	Cyanide	128.30067	l/gu	1/20/15 16:07:49	_	0.13159	-0.00025	0.13134	103%
CN-CCB	Cyanide	-0.05754	l/gH	1/20/15 16:07:50	*	0.00642	0.00001	0.00643	
Si0341-1	Cyanide	1.23326	l/6rl	1/20/15 16:07:51	-	0.00768	0.00002	0.0077 NOT FOR REACTIVE VERBALS	LS.
S10341-3	Cyanide	1.73631	rig/l	1/20/15 16:07:52	_	0.00817	0.0001	0.00827 NOT FOR REACTIVE VERBALS	S
SI0341-5	Cyanide	0.64999	l/gn	1/20/15 16:07:53	1	0.00711	0.00015	0.00726 NOT FOR REACTIVE VERBALS	S
SIU341-/	Cyanide	0.91015	l/grl	1/20/15 16:07:54	-	0.00736	0.0005	0.00786 NOT FOR REACTIVE VERBALS	S
S10341-9	Cyanide	1.52407	ľĝ	1/20/15 16:07:55	1	0.00796	6000.0	0.00886 NOT FOR REACTIVE VERBALS	FS
SIUZ67-5		430.63245	l/6ri	1/20/15 16:07:56	Ψ.	0.42641	0.00014	0.42655 NOT FOR REACTIVE VERBALS	S
SiU268-2		1642.04468	l/gn	1/20/15 16:07:57	-	1.60771	0.00053	1.60824 NOT FOR REACTIVE VERBALS	rs
CN-CCV	Cyanide	135.61249	l/gri	1/20/15 16:10:54	_	0.13872	-0.0002	0.13852	108%
CN-CCB	Cyanide	0.12499	l/6ri	1/20/15 16:10:55	τ	0.0066	-0.0001	0.0065	
Si0267-5	Cyanide	432.24158	l/grl	1/20/15 16:21:07	7	0.21723	-0.00008	0.21714 NOT FOR REACTIVE VERBALS	S
CN-CCV	Cyanide	130.04469	hg/l	1/20/15 16:23:29	_	0.13329	-0.00025	0.13304	104%
CN-CCB	l	-0.1287	hg/l	1/20/15 16:23:30	-	0.00635	-0.00011	0.00624	
S10268-2		1824.42419	l/gu	1/20/15 16:29:03	100	0.02427	-0.00027	0.024 NOT FOR REACTIVE VERBALS	S
CN-CCV	Cyanide	135.56036	, l/gu	1/20/15 16:31:56	τ	0.13867	-0.00015	0.13852	108%
CN-CCB		-0.12717	l/gu	1/20/15 16:31:57		0.00635	0.00001	0.00636	
S10268-2		1616.75427	l/gri	1/20/15 16:42:42	10	0.16413	-0.00016	0.16398 NOT FOR REACTIVE VERBALS	S
CN-CCV	Cyanide	133.0432	rg/	1/20/15 16:45:04		0.13621	-0.00015	AVAAL III	106%
ころうこ	Cyanide	0.11//3) Dn	1/20/15 16:45:05	_	0.00659	-0 00001	0.00859	

Result Report Aquakem 7.2 Page: 1

Laboratory Analyzer User

Date : 1/20/2015Time : 16:45

Test		Character of the	
Unit		Cyanide µg/l	
		F3/ -	
Sample ID:	Result	Date and Time	Note
CN-CCV	118.0192	1/20/2015 12:25	
CN-CCB	0.2256	1/20/2015 12:25	
CN-ICV	186.9622	1/20/2015 12:25	
RCN-Blank RCN-LCS	0.2531	1/20/2015 12:25	
RCN SI0230-1	170.0904	1/20/2015 12:25	מ
RCN SI0301-1	0.7686	1/20/2015 12:25	R
RCN SI0301-1 DUP		-	R
RCN SI0301-1 MS	102.8886	,,	
RCN SI0301-2	0.2014	1/20/2015 12:25	
Blank 1/20 LCS 1/20		. -	R
CN-CCV	119.9953	 1/20/2015 12:31	R
CN-CCB	0.4637	1/20/2015 12:31	
High 1/20			R
Low 1/20	9.8769	1/20/2015 12:31	
SI0293-1	15.0985	1/20/2015 12:31	
SI0293-1 DUP SI0299-2	15.6392	1/20/2015 12:31	D.
SI0299-2 MS		. -	R R
SI0312~2			R
SI0312-2 MS		_	R
CN-CCV	128.4944	1/20/2015 12:35	
CN-CCB RCN SI0230-1	-0.4347 3.4952	1/20/2015 12:35 1/20/2015 12:42	.
RCN SI0301-1 DUP		1/20/2015 12:42 1/20/2015 12:42	R R
Blank 1/20	-0.0005	1/20/2015 12:42	R
CN-CCV	125.1776	1/20/2015 12:44	
CN-CCB	~0.1983	1/20/2015 12:44	
CN-CCV CN-CCB	-1e+002	1/20/2015 12:59	
LCS 1/20	0.0542 196.6294	1/20/2015 12:59 1/20/2015 12:59	D
High 1/20	241.6211	1/20/2015 12:59	R R
CN-CCV	126.4005	1/20/2015 13:02	
CN-CCB	-0.2107	1/20/2015 13:02	
CN-CCV	122.6295	1/20/2015 14:09	
CN-CCB SI0299-2	0.0220 0.3528	1/20/2015 14:09 1/20/2015 14:09	T)
SI0299-2 MS	67.0638	1/20/2015 14:09	R R
SI0312-2	1.4055	1/20/2015 14:09	R
SI0312-2 MS	95.1935	1/20/2015 14:09	R
SI0316-2	2.0407	1/20/2015 14:09	
SI0260-13 SI0260-23	0.2565	1/20/2015 14:09	
SI0341-11			R R
SI0260-5	7.5666	1/20/2015 14:09	IX.
SI0260-7	3.3026	1/20/2015 14:13	
CN-CCV	128.2980	1/20/2015 14:13	
CN-CCB SI0260-9	-0.0493	1/20/2015 14:13	
SI0260-9 SI0260-11	1.0550 1.3021	1/20/2015 14:14 1/20/2015 14:14	
SI0260-21	6.8625	1/20/2015 14:14	
SI0260-22	13.4596	1/20/2015 14:14	
			•

Aquakem 7.2

Result Report

Page: 2

Laboratory Analyzer User

Date : 1/20/2015

Time : 16:45

Test Unit

Cyanide

Unit		µg/l	
Sample ID:	Result	Date and Time	Note
CN-CCV	130.2877	1/20/2015 14:16	
CN-CCB		1/20/2015 14:16	
SI0260-23		1/20/2015 14:24	R
SI0341-11	0.0552	1/20/2015 14:24	R
CN-CCA	127.7866	1/20/2015 14:27	
CN-CCB	-0.0411	1/20/2015 14:27	
CN-CCV	128.3007	1/20/2015 16:07	
	-0.0575	1/20/2015 16:07	
SI0341-1	1.2333	1/20/2015 16:07	
SI0341-3	1.7363	1/20/2015 16:07	
SI0341-5	0.6500	1/20/2015 16:07	
SI0341-7	0.9102	1/20/2015 16:07	
SI0341-9	1.5241	1/20/2015 16:07	
SI0267-5			R
SI0268-2	·	-	R
CN-CCV	135.6125	1/20/2015 16:10	
CN-CCB	0.1250	1/20/2015 16:10	
SI0267-5	432.2416	1/20/2015 16:21	R
CN-CCV	130.0447	1/20/2015 16:23	
CN-CCB	-0.1287	1/20/2015 16:23	
SI0268-2		·	R
CN-CCV	135.5604	1/20/2015 16:31	
CN-CCB	-0.1272	1/20/2015 16:31	
SI0268-2	2e+003	1/20/2015 16:42	R
CN-CCV	133.0432	1/20/2015 16:45	
CN-CCB	0.1177	1/20/2015 16:45	

Calibration results

Aquakem 7.2

Laboratory Analyzer User

1/20/2015 11:58

Test Cyanide

Accepted

1/20/2015 11:57

Factor

1025

Bias

0.006

Coeff. of det. 0.999908

Errors

	Calibrator	Response	Calc. con.	Conc.	Errors
1	CN-0	0.007	0.40430	0.00000	
2	CN-250	0.011	4.91599	5.00000	
3	CN-250	0.016	9.56476	10.00000	
4	CN-250	0.032	25.97104	25.00000	
5	CN-250	0.055	50.27011	50.00000	
6	CN-250	0.102	98.34305	100.00000	
7	CN-250	0.251	250.53073	250.00000	a a

_WL-014- Revision 1 - 12/31/2009

ANALYST:

CHECKED BY:

QAWL735

DATE:

DATE:

0000063

*	ď
L.C	7
-	ı
-	
3	3
200	۰
G	į
-	•

CYANIDE MINI DISTIL I ATTOM:	TH 1 AT		4500 ON O			DIN ANA	KATAHDIN ANALYTICAL SERVICES	VICES		
	True Value	l	#2-00c#		355.4 901ZB	28	**************************************		PQL = 10 t	10 ug/L (AQ) & 0.5 mg/kg (SL)
Standard	ug/L	ב ב ב ב	Source Standard ID	tandard)	Source Standard Spike Amount mL		Lot Number:		Notes:	
Cal High Point	250		WIRGGR	262	0.250		MgCI2 SOLUTION: <	CUIL INS		
Cal Low Point	10			ß	10	 	1	25		
rcs	200			77	0000	.	NaOH-0.25N:	27.00	J_	
Matrix Spike	100		 	(*)	00	1	24 040	2HQ 120		
Soil LCS	ALEXA PROPERTY OF THE PROPERTY				_		BLOCK ID: WC3	1010+0		
KAS		Res. CI	Res.	Initial	Distillation	Distillation	<u> </u>			
Sample ID		Check	SZ Check	Ŧ	Start	Time	Volume (mL)	Sample Weight (g)	Volume	Comments
Blank		A'A	AN A	ĄN	なられ	10.07	מע			
rcs		NA	ΑN	NA) -	> -))		20mL	
High		NA NA	NA	AM						1,000
Low		NA	W	¥						
ST6293-1			S	>						
一	DUP	١	1	1						
ST0399-3		١	1	7						
1 31	-2 M5	1	1	7						
516312-2		.]	ı	7			-			
1 -2 MS	M5	1	1	7		1				
SI0316-2			1	7	かいか	12.60	1 6	12	-	
SI-0020013	20	1	١	7	`		D -	<u>4</u>	20m/7	**************************************
1 -33	W	ſ		7						
SI6341-11		1	١	7						
SIBAGO-5		AN	A A	4		\$	2	700		, , , , , , , , , , , , , , , , , , ,
t -		_		-			۲.	9700		
6-										
1								1.615		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
12-								1.5 53		199
BE- 7	75	4	-	-1	1	-		- 77.		
DISTILLED BY: 2	れい						TT & CAROLLA LITTLE	<u>Ξ</u> -		A THE TAXABLE PROPERTY OF THE
REVIEWED BY:		N X	l h		mitte			1. QQ. D	5	
טייט ד	7						REVIEW DATE:	100/10	1/3/	71-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
VVL-UZU - Revision 2 - 01/19/2011	-01/19	1/2011							Colonial and American Streems (1900 months second	

T)
~
100
-
⋖
Q

-	Trio Value	2 20 202	355.4 9012B	9012B			S T SOO	
	ug/L	Source Standard ID		andard nount	Lot Number:		S S S S S S S S S S S S S S S S S S S	rdt = 10 ug/L (AQ) & 0.5 mg/kg (SL)
Cal High Point	250						isoles.	
Cal Low Point	9			J. C	MIGGIZ SOLUTION:			
CCS	200	1	0	1000 J	SULFAIMIC ACID:			
Matrix Spike	100	X			NaCH-0.25N: / /	X X		
Soil LCS			ΔN		H2SO4:	-		
KAS	Res. CI	Res.	Distilla	Distilla	5			
Sample ID	Check	S2 mind			Sample Volume (mL)	Sample Weight (g)	Distillate	Commonte
Blank	NA	NA NA	\parallel	2		(6)6:	АОІСШЕ	
TCS	AN	+	2					
High	¥	-		1	S 1.20 IS			
Low	NA	+						
<t0211 -<="" td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t0211>	4							
アクロ	₹ ₩	AN AN	18.32	- 0	4	010-		
-3				-	117	- AIN	U Day	
7-						+.98.1		
Į,						1.969		W
6-	+1	+4				1.665		
T0367-5]	!			4	1.676		
いるのののは	4	\			NO	AN		10
	 		4	4	NA	1.954	14	-
			1	-				
77				1.00	3			
		$\frac{1}{2}$	1	1.00				
		N						
			1					
							j	100
DISTILLED BY: 7		,						
	2	And the second s			DISTILLATION DATE:	ATE: - OD		
NEVIEWED BY:	The state of the s	Lan.			REVIEW DATE.	1]	
WL-020 - Revision 2 - 01/19/2011	14010044	Approximation and a second sec			֓֞֝֝֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	ノーン	Į,	

WET CHEMISTRY BATCH REPORT Jan 20 2015, 09:45 am Batch: WG157230

Parameter: Ignitability	lity				Δ,	Prep Date: N/A						
Date Analyzed: 14-JAN-15	4N-15				Δι	Prep Method: N/A						
Analyst Initials: RO	0				Pa ₄	Prep Chemist: N/A						
Sample Samp Type	Samp Type Method	Initial Amt, Final Amt.	Final Amt.	Rpt. DF	Result	Rpt Result	TS (%)	nga.	MDL	Adj PQL	RPD	%Rec
SI0226-1 SAMP	SW846 1010A	1.0000mL	1.0000mL	н	71	>71. Deg. C	NA	71	71.	71.		
SI0230-1 SAMP	SW846 1010A	19	цg	н	7.1	>71. Deg. C	79.	77	71.	71.		
WG157230-1 MBLANK	SW846 1010A	1,0000mL	1.0000mL	H	71	>71. Deg. C	NA	71	71.	71.		
WG157230-2 LCS	SW846 1010A	1.0000mL	1.0000mL	п	26.571	26. Deg. C	NA	71	71.	71.		86
WG157230-3 LCSD	SW846 1010A	J.0000mL	1.0000mL	н	28.571	28. Deg. C	NA	71	71.	71.	7	106
Comments:												
SI0230-1 WG157230-1 WG157230-2 WG157230-3	Roll off 0316 SI0226-1 SI0226-1 SI0226-1											

KATAHDIN ANALYTICAL SERVICES, INC. - FLASHPOINT - CLOSED CUP LOGBOOK

1205221

mm Hg)		Ę.	274 17 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 						<i>[</i>								
			Comments				and the fact of th		7.				·					11.75
Ambient Barometric Pressure (*) = 773	(in. of Hg) X (25.4 mm/in)		Reported Flashpoint Corrected For	Ambient Barometric Pressure	16.571	16582				A Company of the Comp								
Ambient	(in. of H		oriate box o.)	NO			7	1	\									
	-3666		Flash? (Check appropriate box & record temp.)	Temp.(°C)	27	62								/ / /	121			
27 Degrees Celcius	r: Sw		Flash? (YES	7	7									/)	•		
	p-XYLENE Lot Number: Sucze66		End Temperature	(°C)	27	67	17	7,	12									
p-XYLENE			Start Temperature	(ှင)	255 cs-	75	25	25	752			U	Je Je		and the second s			
SW 846 1010	25 Degrees Celcius		Analysis		1555	915	8c	(025	"LS OV									
METHOD: S	PQL: 24	A CONTRACTOR OF THE CONTRACTOR	Sample ID		p-Xylene (LCS)	p-Xylene (LCS)	Method Blank	Starre-1	5I 6239-1									
<u> </u>	i		i mikudani midani da da da da da da da da da da da da da			*****		Q/	\WL	.74	4				Townson the	stormutert.	kantroluci	l

* = Ambient Pressure of the laboratory at the time of the test. When the pressure differs from 760 mm Hg, correct the flashpoint as follows: Corrected Flashpoint = (Observed Flashpoint in °C) + 0.033 (760 - the ambient barometric pressure in mm Hg).

Reviewed By Amalyst

Date

WL-029 - REVISION 1 - 10/06/2010

WET CHEMISTRY BATCH REPORT Jan 21 2015, 10:00 am Batch: WG157289

Parameter: Paint Filter Liquids Test Date Analyzed: 20-JAN-15 Analyst Initials: RO

Prep Chemist: N/A Rpt. DF Result Initial Amt. Final Amt.

Prep Method: N/A

Prep Date: N/A

Rpt Result

%Rec

RPD

Adj PQL

MOL

PQL

TS (%) 79. NA NFL NFL

Roll off 0316 \$10230-1

SI0230-1 WG157289-1

Comments:

SW846 9095B SW846 9095B

SI0230-1 SAMP WG157289-1 MBLANK

SI0230-1

Samp Type Method

Sample

Entered by:

Katahdin Analytical Services 0000868

	KA.	TAHDIN A	NALYTICA	L SERVICES, II	VC.
ijes Brook vije				STEPHEN OF THE STEPHEN	
ETHOD:	CIVO44 AAAA		PAINIFIL	TER TEST	
	SW846 9095		-		
AINT FILTE	ER:	MESH SIZE 6	0		
OMMENTS			· · · · · · · · · · · · · · · · · · ·		
FL=No Free	Liquid FLP=F	ree Liquid Pre	sent		
CLIENT	KAS SAMPLE	ANALYSIS	ANALYSIS	SAMPLE	FREE LIQUIDS AFTER
ID	ID O	TIME IN	TIME OUT	WEIGHT(g)	5 MINUTES
· · · · · · · · · · · · · · · · · · ·	Blenk	14:20	14:25	100.195	NFL
	510230-1	14:21	1426	100.096	NFL
·					
	· •	/			
7					0
	<u>l_</u>				
	1	j	ľ		

CHECKED BY:

WET CHEMISTRY BATCH REPORT Jan 19 2015, 11:13 am Batch: WG157158

Parameter: Sulfide, Reactive	Reactive			Prep Date: 16-JAN-15	rú.				
Date Analyzed: 16-JAN-15	AN-15			Prep Method: SW846 7.3.4	7.3.4				
Analyst Initials: AZ	22			Prep Chemist: AZ					
Sample Samp Typ	Samp Type Method	d Initial Amt. Final Amt. Rpt. DF Result Rpt Result	Final Amt. Rpt. DF Result	Rpt Result	TS (%)	PQL	MDL	TS(%) PQL MDL Adj PQL RPD	RPD

MDL Adj PQL RPD %Rec	16.39 27 16.39 27 16.39 27 16.39 27 16.39 27 16.39 27 NC	
PQL	72 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
TS (%)	79. NA NA	
Rpt Result	U20 mg/kg U20 mg/kg U20 mg/kg U20. mg/kg 870 mg/kg 780 mg/kg	
Rpt. DF Result	. 02 . 03 0 6.46 6.1	
Rpt. DF		
Initial Amt. Final Amt.	190.00mL 190.00mL 190.00mL 190.00mL 190.00mL 190.00mL	
Initial Am	10.5129 10.1999 11.6749 10.0009 10.4529 10.8599	(#2)
Method	SW846 7.3.4 SW846 7.3.4 SW846 7.3.4 SW846 7.3.4 SW846 7.3.4 SW846 7.3.4	Roll off 0316 Roll off 9939 (4 Roll off 1408 (5 SI0301-1 SI0301-1
Samp Type Method	SAMP SAMP SAMP MBLANK LCS MS	
Sample	S10230-1 SAMP S10301-1 SAMP S10301-2 SAMP WG157158-1 MBLANK WG157158-2 LCS WG157158-3 MS	SI0230-1 SI03301-1 SI0301-1 SI0301-2 WG157158-1 WG157158-2 WG157158-3

Date: 1-19-15

										Ċ	5																					
											Recovery	(%)		88.3																		
		0.0375	0.001							Roloscablo	H.S in Smol.	(mg/kg)	0.54	870.23	2.82	-1.06	785.36	-0.99	3.93	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i	i0/∧lG#	#DIV/0i	i0//\IC#	#DIV/0i	i0//\lQ#	i0//\lG#	i0//\lG#	i0//\lC#	#DIV/0i
1/16/2015 AZ		Na ₂ S ₂ O ₃	Normality:							Calc Sulfide	(as S) in Analysis	Aliquot (mg)	0.00	6.46	0.02	-0.01	6.10	-0.01	0.03	00:00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00
re: YST:											Extraction	Time (sec)	1800.00	1800.00	1800.00	1800.00	1800.00	1800.00	1800.00													
DATE: ANALYST:	STANDARDIZATION OF SODIUM SULFIDE STANDARI	VOL (mL)	Na ₂ S ₂ O ₃	3.56	3.50	3.55	3.54		985.80	Volume	Na ₂ S ₂ O ₃	Added (mL)	6.63	5.84	6.60	6.65	6.45	6.65	6.58													
	STANDARDIZATION OF DIUM SULFIDE STANDA	VOL (mL)	NA ₂ S	2.00	2.00	2.00	Mean Vol Na ₂ S ₂ O ₃ =	CALC NA2S	(mg H ₂ S/L):		Volume I ₂	Added (mL)	10.00	25.00	10.00	10.00	25.00	10.00	10.00													
EPA: 7.3.4.2/9030 PQL = 27 mg/kg	STANE SODIUM S	VOL (mL)	2	10.00	10.00	10.00	Mean Vol	CALC	H GW)		Analysis	Vol. (mL)	150.00	150.00	150.00	150.00	150.00	150.00	150.00													
EPA: 7.3 PQL =											Trap	Vol. (mŁ)	190.00	190.00	190.00	190.00	190.00	190.00	190.00													
FIDES	ATION OF LUTION	(mL)	Na ₂ S ₂ O ₃	6.65	6.64	6.62	6.64	0.02489			Sample	Wt. (g)	10.000	10.000	10.512	10.199	10.452	10.859	11.674													
REACTIVE SULFIDES TITRIMETRIC	STANDARDIZATION OF IODINE SOLUTION	NOF (ME)	21	10.00	10.00	10.00	Mean Na₂S₂O₃=	CALC I ₂ N =			Sample	Q	BLK	LCS S2	SI0230-1	S10301-1	SI0301-1 MS	S10301-1 DUP	SI0301-2													

L	U6157158	R3054	09			2	
,	-	KATAH	<u>IDIN ANAI</u>	YTICAL			
	se continuous sump et				e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		
			REACTIV	E SULFI	DE		
EPA: 7.3.4	.2/9030					PQL: 27 mg/	ľka
REAGENT							
IODINE ST		N 12729		1		1: 544370	<u>(</u>
Na2S SOL	<u>UTION:</u> υ	77492		NaOH-0.25		SW L 368	~2
HCI-6N:	DELIZATION OF	• • • • • • • • • • • • • • • • • • • •		H2SO4-0.0	<u>1N:</u>	/ / / /	
VOL(ml)	DNIZATION OF VOL(ml)	IZ Teacharacha	CALC OF 12 N	·			
12	Na2S2O3		CALC OF 12 P	<u>.</u>			
10	6.65	1					
10	6.64						
10	6.62				•		
	<u>X:</u>						
	DNIZATION OF	H2S_					
VOL(ml)	VOL(ml)	VOL(ml)	CALC OF H2S	i mg/L			
<u> 12</u>	Na2S2O3	Na2S					
(0	3.56	2			•		
10	350	2 2					
(O	3.55	4		_			
	<u>X:</u>				-		18
Time of	Sample	Sample	NaOH Trap	Analysis	mi i2 Soin	ml STS to	Comments
Analysis	ID	Wt. (g)	Vol.(ml)	Vol.(ml)	Added	Endpoint	
16:10	Blen K		190	150	10	6.63	
	LCS		190	150	25	5.84	
	510230-1	10.512	190	150	10	6.60	
	510301-1	10.199	190	150	10	6.65	
	M5-1	10.452	190	150	25	645	
		10.8.59	190				
10223	-2	11.674		150	10	6.65	:
(6:30		(1.011	190	150	10	6.58	
	. `				•		
			_	1-16-6			
			K,				
			1				
	<u> </u>						
IOTES:							
NALYST:	A	B	······································		DATE: /	-16-15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
HECKED E	IV. 2					120/15	
TAVED E				<u></u>	DATE: 1/	(20/19	

TOTAL SOLIDS BATCH REPORT Jan 16 2015, 09:55 am Batch: WG157022

Sample	Matrix	Type	Batch	Prep Date	Tare	Initial	Final	Āq	Date	Raw TS	Rep TS	Recovery	RPD
SI0171-7	SL	SAMP	WG157022	15-JAN-15	1.3131 g	11.7189 9	10.2828 9	AZ	16-JAN-15	86,1990	86. %		
SI0172-11	$_{ m SI}$	SAMP	WG157022	15-JAN-15	1.3223 g	11.3112 g	11.0333 q	AZ	16-JAN-15	97.2180	%.		
SI0172-13	$_{ m ST}$	SAMP	WG157022	15-JAN-15	1.3222 g	14.1494 g	12.7208 g	AZ	16-JAN-15	88,8630	. %		
SI0172-7	SI	SAMP	WG157022	15-JAN-15	1.315 g	14.028 g	13.4921 g	AZ	16-JAN-15	95.7850	%		
SI0172-9	$S\Gamma$	SAMP	WG157022	15-JAN-15	1.3188 g	16.7229 g	16.0793 g	AZ	16-JAN-15	95.8220	96.		
SI0199-1	$_{ m SF}$	SAMP	WG157022	15-JAN-15	1.329 g	12.0966 g	11.0412 g	AZ	16-JAN-15	90.1980	90.		
SI0199-3	$_{ m SF}$	SAMP	WG157022	15-JAN-15	1.3122 g	7.8398 g	7.5072 g	AZ	16-JAN-15	94.9050	95. %		
SI0199-4	SL	SAMP	WG157022	15-JAN-15	1.3233 g	5.3052 g	4.4955 g	AZ	16-JAN-15	79,6650	%0.		
SI0199-5	$_{ m SI}$	SAMP	WG157022	15-JAN-15	1.3206 g	9.0434 g	8.7086 g	AZ	16-JAN-15	95,6650	96. %		
SI0199-6	SL	SAMP	WG157022	15-JAN-15	1.321 g	8.3888 9	7.2031 g	AZ	16-JAN-15	83.2240	% %		
SI0230-1	SL	SAMP	WG157022	15-JAN-15	1.318 g	9.4049 g	7.7414 g	AZ	16-JAN-15	79.4300	79. %		
SI0260-1	$_{ m ST}$	SAMP	WG157022	15-JAN-15	1.3233 g	11.2461 g	8.4825 g	AZ	16-JAN-15	72.1490	72. %		
SI0260-10	SL	SAMP	WG157022	15-JAN-15	1.3332 g	10.0451 g	6.8833 g	AZ	16-JAN-15	63.7070	64. %		
SI0260-11	SL	SAMP	WG157022	15-JAN-15	1.3225 g	15.3094 g	9.9773 g	AZ	16-JAN-15	61.8780	62. %		
SI0260-12	$_{ m ST}$	SAMP	WG157022	15-JAN-15	1.3225 g	15.3094 g	9.9773 g	AZ	16-JAN-15	61.8780	62.%		
SI0260-15	SL	SAMP	WG157022	15-JAN-15	1.3192 g	10.4329 g	7.8735 g	AZ	16-JAN-15	71.9170	72. %		
SI0260-16	$_{ m ST}$	SAMP	WG157022	15-JAN-15	1.3165 g	11.0363 g	9.3468 g	AZ	16-JAN-15	82.6180	83. %		
SI0260-2	SL	SAMP	WG157022	15-JAN-15	1.3233 g	11.2461 g	8.4825 g	AZ	16-JAN-15	72.1490	72. %		
SI0260-3	SL	SAMP	WG157022	15-JAN-15	1.3076 g	10.1611 g	6.1653 g	AZ	16-JAN-15	54.8680	55.%		
SI0260-5	SL	SAMP	WG157022	15-JAN-15	1.3149 g	9.8319 g	6.7274 g	AZ	16-JAN-15	63.5490	64. %		
SI0260-6	SL	SAMP	WG157022	15-JAN-15	1.3149 g	9.8319 g	6.7274 g	AZ	16-JAN-15	63.5490	64.%		
SI0260-7	SL	SAMP	WG157022	15-JAN-15	1,3083 g	10.9318 g	7.5371 g	AZ	16-JAN-15	64.7250	65.%		
SI0260-8	SI	SAMP	WG157022	15-JAN-15	1.3083 g	10.9318 g	7.5371 g	AZ	16-JAN-15	64.7250	65. %		
SI0260-9	SI	SAMP	WG157022	15-JAN-15	1.3332 g	10.0451 g	6.8833 g	AZ	16-JAN-15	63.7070	64.%		
WG157022-1	$_{ m SI}$	MBLANK	WG157022	15-JAN-15	1.3265 g	1.8246 g	1.3259 g	AZ	16-JAN-15	-0.1200	o/o		
WG157022-2	$_{ m ST}$	rcs	WG157022	15-JAN-15	1.3335 g	6.3351 g	5.8319 g	ΑZ	16-JAN-15	89.9390	90.%	100	
WG157022-3	TS	DUP	WG157022	15-JAN-15	1.3203 g	13.1672 g	12,6717 g	AZ	16-JAN-15	95.8170	96.		0
WG157022-4	Sī	DUP	WG157022	15-JAN-15	1.3227 g	13.0267 g	12.5441 g	ΆZ	16-JAN-15	95.8770	96.		0

Accepted by:_

Entered by:_

Roll off 0316
use TS from SI0260-9
use TS from SI0260-1
use TS from SI0260-1
use TS from SI0260-7
SI0172-7
SI0172-7
SI0172-7
SI0172-7

Comments:

S10230-1
S10260-10
S10260-10
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-2
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S10260-10
S102600-10

20072101	2 R364882		IDIN ANALYTICA	KATAHDIN ANALYTICAL SERVICES, INC.		
TOTAL SOLIDS: ASTM [ASTM D2216 - PQL: 0.10%	%0		TOTAL VOLATILE SOLIDS: SM2540 G / E160.4 - PQL 0.10%	S: SM2540 G / E16	0.4 - PQL 0.10%
ANALYST IN:	A)	TS ANALYST OUT:	£ +-16+5-	TVS ANALYST OUT:		Balance Calibrated?
DATE IN:	-(5-15	TS DATE OUT:	5-91-1	TVS DATE OUT:		N/X
TIME IN: (6:	3.7.8	TS TIME OUT:	8:13	TVS TIME OUT:		٦.
TEMP IN:	(02°C	TS TEMP OUT:	100%	TVS TEMP OUT:		Out (TS): Y
Oven ID:		Muffle Oven ID:	030807 (assigned)	HAUS	- SN: 112401631	Out (TVS):
SAMPLE 1D	OI HSIQ	DISH WT (g)	DISH WET WT (g)	11	۽ ا	TMF
Blank	210	,		╀		
125	22.					
5EG171-7	1.					
5IC (72-7	2.					
5	3.	e .				
)1-	4.					
\$1-	5:					
\$ TO 1991-1	e,					
-2	7.					٠.
h-	×.					
5-	<i>'</i> o					
9-	.0)					
510230-1	.)1					
511-02015	12.					The state of the s
- 3	13.					
-51-6						
8-12-	15.					
0.10	.91			- Attachmin		
11	.23					
1 -12	18-18-				,	
5) -	<i> q</i>					
91 _	20°					
	23:		The state of the s			
8nd b-221 015	240					
CHECKED BY:	Š	DATE: 01/16/1	J. Barner			
0,000						

QAWL757

WET CHEMISTRY BATCH REPORT Jan 16 2015, 03:49 pm Batch: WG157086

	Prep Date: N/A
	Pre

Parameter: pH(Laboratory) Date Analyzed: 16-JAN-15 Analyst Initials: AZ

Prep Method: N/A

Prep Chemist: N/A

% Rec	1000
RPD	; ; ; ; ; ;
Adj PQL	0.10 0.10 0.10 0.10 0.10
MDL	0.10
PQL	वित्लाल् !
TS(%)	AN NA NA NA NA
Rpt Result	7.7 pH 7.6 pH 8.0 pH 7.0 pH 7.8 pH
Rpt. DF Result	7.7 7.64 8.03 7
	다 더 더 더 더 다 라 라 라 라
Final A	20.000mL 20.000mL 20.000mL 20.000mL
Initial Amt. Final Amt.	20.000mL 20.000mL 20.000mL 20.000mL 20.000mL
Method	SM 4500H-B SM 4500H-B SM 4500H-B SM 4500H-B SM 4500H-B
Samp Type	SAMP SAMP SAMP 1 LCS 2 DUP

	Frac Tank #7 Frac Tank #6 Frac Tank #1 SI0230-2 SI0230-2
Comments:	SI0230-2 SI0230-3 SI0230-4 WG157086-1

SI0230-2 SAMP SI0230-3 SAMP SI0230-4 SAMP WG157086-1 LCS

SI0230-2

Sample

KATAHDIN ANALYTICAL **PH ELECTROMETRIC** pH meter Accumet 20 Serial Number C0024321 Probe ID: EPA: 150.1 SM 4500H-B SW846 9040 **CALIBRATION STDS: CALIBRATED TO:** LOT NO: SCUL 3727 7.00 pH 7.00 3.40 56/L 7712 pH 4.00 9.97 SWL 36417 pH 10.00 SWL 3697 12.03 pH 12.00 SAMPLE SITE TIME OF Hq REPORTED SAMPLE ID ID **ANALYSIS** TEMP. pН **NOTES** 7.00 15:32 20.7 ST 0230-1 7.70 20.9 1 DUP 7.80 21.3 7.64 21.0 8.03 20.8 L C.S 15'42 7.03 20.7 16/1 ANALYST: 1-10-15 DATE: **CHECKED BY:** DATE:

WET CHEMISTRY BATCH REPORT Jan 15 2015, 09:59 am Batch: WG156983

Parameter: pH(Soil)					ď	Prep Date: 14-JAN-15	.15					
Date Analyzed: 14-JAN-15	AN-15				Ę.	Prep Method: SW846 9045C	5 90450					
Analyst Initials: AZ	ьì				<u>r</u>	Prep Chemist: AZ						
Sample Samp Type	e Method	Initial Amt	Initial Amt. Final Amt.	Rpt. DF R	Result	Rpt Result	TS(%)	PQL	MDE	Adj PQL	RPD	% 0 0 0
SI0137-1 SAMP	SW846 9045D	10.28189	20mT,	CX	α	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SW846 9045D	10.95569	20mL	1 2	7.4	7.4 TH	NA AN		0.10	0.10		
	SW846 9045D	10.3441g	20mL	1	12.69		65.	•	01.0	0.10		
		10.19149	20mL	8	8.16		NA.	!!	01.0	0.10		
		10.37859	20mL		8.17		NA		0.10	0.10		
		11.03169	20mL	1 7	7.74		NA	۲.	0.10	0.10		
		11.80519	20mL	1 7	.27		NA	ri.	0.10	0.10		
STOI71-8 SAMP		11,0315g	20mL	1 7	7.06		NA	н.	0.10	0.10		
_	SW846 9045D	10.4332g	20mL	1 5	.76		NA	۲.	0.10	0.10		
		15.590/9	20mL		.32		NA	ı.	0.10	0.10		
		14.25419	20mL	× ∞	8.62	8.6 pH	A N	٠ <u>.</u> -	0.10	0.10		
		14.0991g	20mL		8.8		AN	ł	0 H 0	0.10		
S10199-1 SAMP		10.7409g	20mL		8.34	8.3 PH	NA	. - !	0.10	0.10		
		11.14119	20mL		8.48		NA	۲.	0.10	0.10		
		11.1133g	20mL		8.04		NA	۳.	0.10	0.10		
		10.01019	20mL	1 8	8.34		NA	۲.	0.10	0.10		
ŧ		10.1871g	20mL		8.09	8.1 pH	NA	۲.	0.10	0.10		
MGISBORG-I FCS		20g	20mI		6.97		NA	۲.	0.10	0.10		100
		10.0274g	20mL	T .	6.93	6.9 pH	NA	۲.	0.10	0.10	0	
WGIS6983-3 DUP	SW846 9045D	11.1774g	20mL	1 7.	.96	8.0 pH	NA	т.	0.10	0.10	1 (7)	
Comments:												

Accepted by:

Date: [-15-15]

Entered by:

MS/MSD on all except pH and TOC SI0171-8 SI0199-6

WET CHEMISTRY BATCH REPORT Jan 15 2015, 10:00 am Batch: WG156986

Parameter: pH(Soil)						Prep Date: 14-JAN-15	15					
Date Analyzed: 14-JAN-15	AN-15					Prep Method: SW846 9045C	9045C					
Analyst Initials: AZ	Z					Prep Chemist: AZ						
Sample Samp Typ	Samp Type Method	Initial Amt	Initial Amt. Final Amt.	Rpt. DF	Result	Rpt Result	TS (%)	PQL	MDL	Adj PQL	RPD	*Rec
!	SW846 9045D	7.60499	20mL	1	6.3		NA NA		0.10	0.10		
STUZZ7-I SAMP	SW846 9045D	6.4412g	20mL	႕	7.38	7.4 pH	NA	т.	0.10	0.10		
	SW846 9045D	5.8979g	20mL	.	7.49		NA	r-f	0.10	0.10		
	SW846 9045D	5.98269	20mL	H	7.4		NA	۲.	0.10	0.10		
STOCKE TO CONTRACT	SW846 9045D	5.7083g	20mL	-1	7.45		NA	۳.	0.10	0.10		
STOCKET SAME	SW846 9045D	12.1565g	20mL	 1	8.28		NA	н.	0.10	0.10		
MGLSGSGS-1 LCG	SW846 9045D	209	20mL	н	7.03		NA	1.	0.10	0.10		00
WG136986-Z DUF	SW846 9045D	10.60739	20mL		8.25	8.2 pH	NA	н.	0.10	0.10	0	; ;
Comments:												
SI0230-1 WG156986-1 WG156986-2	Roll off 0316 SI0230-1 SI0230-1											

Date: 14/15/15

Date: /_

Date: 1-15-15 Accepted by:

WEISG 983 WEISAGE WEISAGE WEISAGE KATAHDIN ANALYTICAL SERVICES, INC.

CORROSIVITY pH / pH Soil

Accumet 20 pH Meter - SN - C0024321 pH Probe SN -

SW 846 9045D

CALIBRATION STDS:	CALIBRATED TO:	LOT NO:	NOTES:
pH 2.00	2.02	5 WL 3617	
pH 4.00	4.00	SWL 3712	·
pH 7.00	7.00	SWL 3722	
pH 10.00	9.99	Sent 3047	
pH 12.00	12.01	54L 3692	WWW.

LAB SAMPLE	ANALYSIS	SAMPLE	SAMPLE	SAMPLE		REPORTED
LCS	TIME	VOL (mL)	WEIGHT(g)	TEMP. (°C)	рН	pН
Les	16:50			20.5	6.97	
SI 0137-1		40	10.2818	1925	8.08	
-2			10.9556	191.5	7.40	
510145-1			10.3441	19.5	12.69	
ST 0171-1			10.1914	101.2	8.16	
- 2			10.3785	101.2	8.07	
ar day			11.0316	19.0	7.741	
-6			11.8051	(9.0	7.27	
-8			11.0315	ra.(7.06	
9			10.4332		5.76	
nup -8	,	V	10.0274	19.3	6.43	
Les				20.9	7.01	
SI 0172-5		40	10.5932	20.6	8.70	
- フ	,		14.2541	20.]	8.62	
-9			141.0991	20.2	8.80	
- 11			15.5907	20.0	8,32	
SI0199-1			10.7409	1a.8	8.32	
- 3			11.1411	14,9	8.48	
-4			11.1133	19.7	8.04	
-5			10.0101	19.5	8.34	
-6			10.1871	19.3	8.09	
np-6 LCS Brins		V	11.1774	19.5	7,96	
LCS				20.9	7.03	
3I 0220-1	*	40	7.6049	20.5	6.30	
SI0227-1	17:50	4	6.4412	20.4	7, 38	
PREP ANALYST:	B		DATE/TIME:	1-14-16 1	3104	
ANALYST:	4			-14-15		
CHECKED BY:	142		DATE:	1/15/15		

KATAHDIN ANALYTICAL SERVICES, INC. CORROSIVITY pH / pH Soil Accumet 20 pH Meter - SN - C0024321 pH Probe SN -SW 846 9045D **CALIBRATION STDS:** CALIBRATED TO: LOT NO: NOTES: SWL 3617 2.02 pH 2.00 pH 4.00 4.00 SWL 3712 7.00 SWL 3722 pH 7.00 9.99 SWL 3047 pH 10.00 Sur 3697 12.01 pH 12.00 LAB SAMPLE ANALYSIS SAMPLE SAMPLE SAMPLE REPORTED TIME VOL (mL) WEIGHT(g) TEMP. (°C) рΗ рΗ SI0227-2 17:55 40 5.8979 20.2 7.49 20.0 5,9826 7.40 -4 5.7083 (9.8 7.45 19.8 12.1565 SI0230-1 8.28 1000 -1 10.6073 19.6 8.75 18:00 165 20.5 7.03 1 1-14-15 PREP ANALYST: 13:04 DATE/TIME: 办 1-14-15 ANALYST: DATE: CHECKED BY: DATE: 11/15/15

WL-015 - Revision 2 - 04/30/2012

Continued from page 50.